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Causal Discovery Methods (based on graphical models)

Class of Algorithm

Name

Short

Assumptions ]
comings

Any distribution, No
unobsv. confounders,

PC (oldest) Vialew e, Causal info
. faithfulness only up to Complete
Constraint-based equivalence undirected
Any distribution, classes, graph
Asymptotically correct =~ Non bivariate
FCI )
with confounders,
Markov cond, faithfulness
Empty graph,
Score-based GES clc\)lr?fz:cr:zse\;.s Non-bivariate = adds edges,
removes some
Requires
. additional
Functional Causal Lincam/ g At assumptions Structural
Models (FCMs) ANM v U (not general),  Equation Model
harder for

discrete data




Constraint-based assumptions

e Markov condition:
e Absent edge implies conditional independence (Cl)
e Observing conditional dependence implies an edge

e Causal sufficiency: For any pair of variables X, Y, if there exists a
variable Z which is a direct of cause of both X and Y, then Z is included in
the causal graph (Z may be unobserved)

e Faithfulness:
e Conjugate to the Markov condition
e Edge implies conditional dependence
e Observing Cl implies absence of an edge

Could fail in regulatory systems, e.g., homeostasis.



Peter-Clark (PC) Algorithm

True causal graph: '
1. Start with the complete graph
”’ C > < D )

2.Zeroth order Cl, A 1l By faithfulness:

Need statistical °
independence testing. G ¢ @




Peter-Clark (PC) Algorithm
3. 1st order Cl, A D ,@y faithfulness:

B 1L D|C ©

4. No higher order Cl observed. Notice that conditioning sets only need to
contain neighbours for the two nodes due to the Markov condition. We do
not know the parents but parents are a subsets of neighbours. As the graph

becomes sparser, the number of tests to be performed decreases. This
makes PC very efficient.

5. Orient V-structures (colliders): take triplets where 2 nodes are connected

tothe3rd: A /I Bealy.

° Note C' + Bannot be as it would have
° a been a collider (not detected in 5)



Overview of the course

® Lecture 1: Introduction & Motivation, why do we care about causality?
Why deriving causality from observational data is non-trivial.

® Lecture 2: Recap of probability theory, variables, events, conditional
probabilities, independence, law of total probability, Bayes’ rule

® Lecture 3: Recap of regression, multiple regression, graphs, SCM

Non

® Lecture 4-20: ‘ Causality ‘ | |
. examinable #
‘ Causal Effect Estimation ‘ ‘ Casual Discovery
‘ Obsv confounders ‘ ‘ Unobsv confounders Constraint- Score-
based based
Regression || Propensity Front-door
. |V o
Adjustment score criterion

Rubin Rubin, Pearl




FCMs/LINGAMs/ANMs/IGCI

® Functional Causal Models (FCMs): Utilising asymmetry in data for
causal discovery

® LiINGAMs: Linear non-gaussian acyclic models, allow for new
approaches for causal learning from observational data

Jonas Peters, Dominik Janz ndBern hard Schélkopf

e ANM: Additive noise models and
causal identifiablity

e |GCI: Information Geometric Causal Inference

/ Jonas Peters et al, Elements of Causal Inference (2017)



Causal Structure Identifiability

® LiINGAMs: Linear non-gaussian acyclic models, allow for new
approaches for causal learning from observational data.

® Focusing on 2 variables only, we wish to distinguish between:

r—Yory—ax

® from observational data.

® Assumption: The effect on E is a linear function of C up to additive

noise:
E:(XC+NE, NEJ_LC

These assumptions are not enough to identify cause/effect.
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Theorem: Identifiability of LINGAMs

l.e., non-identifiability of gaussian Cause and Effect. If:

Y =aX + Ny, Ny 1L X
There exists a Sand a random variable Nx s.t.:
X=08Y+Nx, Nx 1LY

if and only if (X, Ny ) ~ A are gaussian.

i.e, itis sufficient that for X (Y) or Ny (/N x ) to be non-gaussian to
render the causal direction identifiable.
[The proof is non-examinable]



Theorem: Identifiability of LINGAMs

Proof:

@ Theorem (Darmois-Skitvic): Let 1, - - - , T4 be independent,
non-degenerate random variable. If there exists non-vanishing
coefficients a1, - ,a4 and by, --- , by suchthatthe two linear
combinations:

i =a121 + -+ agxq
lo =bix1 + -+ + by

[1 1L I are independent, then each ; is normally distributed
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Theorem: Identifiability of LINGAMs

Proof:

@ Theorem (Darmois-Skitvic): Let 1, - - - , T4 be independent,
non-degenerate random variable. If there exists non-vanishing
coefficients a1,--- ,aq4 and by, --- , by suchthat the two linear

combinations:

i =a121 + -+ agxq
lo =bix1 + -+ + by

[1 1L I are independent, then each ; is normally distributed

@ Lemma (Peters 2008): Let X 1l N.Then N A (X + N)
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Theorem: Identifiability of LINGAMs

Proof:

@ Theorem (Darmois-Skitvic): Let 1, - - - , T4 be independent,
non-degenerate random variable. If there exists non-vanishing
coefficients a1,--- ,aq4 and by, --- , by suchthat the two linear

combinations:

i =a121 + -+ agxq
lo =bix1 + -+ + by

[1 1L I are independent, then each ; is normally distributed

@ Lemma (Peters 2008): Let X 1l N.Then N A (X + N)

Ny 1L X
(3) Weprovethat ¥ = aX + Ny = X = Y + Nx, Nx LY
iff (XaNY)NN
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Theorem: Identifiability of LINGAMs

Proof:

(3) Weprove thatif (X, Ny)~ANand Y = aX + Ny, Ny 1L X
i X=pY +Nx, Nx 1LY
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Theorem: Identifiability of LINGAMs

Proof:

@We prove thatif (X, Ny) ~N andY = aX + Ny, Ny 1L X
i X =pY+Nx, Nx 1LY

Define:
g — Cov|X,Y] aVar|X]

- ColY,Y] o2Var[X]+ Var[Ny]

XZﬁY—I—inNX:X—ﬁy
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Theorem: Identifiability of LINGAMs

Proof:

@We prove thatif (X, Ny) ~N andY = aX + Ny, Ny 1L X
i X =pY+Nx, Nx 1LY

Define:
Cov|X,Y] aVar|X]

P = CovlY,Y] o2Var[X]+ Var[Ny]

XZﬁY—I—inNX:X—ﬁy

Cov|Nx,Y| =Cov|X — BY,Y]| =Cov| X,Y]| — BCov|Y,Y]
C’ov Y, Y
=CoulX, V" ( Cov] X Y >

=Cov[X,Y](1—8x 87"



Theorem: Identifiability of LINGAMs

Proof:

@We prove thatif (X, Ny) ~N andY = aX + Ny, Ny 1L X
i X =pY+Nx, Nx 1LY

Define:
- CovX,)Y] aVar|X]

p = CovlY,Y] a?Var[X]+ Var[Ny] ‘>

XZﬁY—I—inNX:X—ﬁy

Then Ny, Y areuncorrelated by construction,
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Theorem: Identifiability of LINGAMs

Proof:

@We prove thatif (X, Ny) ~N andY = aX + Ny, Ny 1L X
i X =pY+Nx, Nx 1LY

Define:
- CovX,)Y] aVar|X]

p = CovlY,Y] a?Var[X]+ Var[Ny] ‘>

XZﬁY—I—inNX:X—ﬁy

Then Nx,Y areuncorrelated by construction,
Moreover, Y is gaussian because (X, Ny) ~ N
Therefore, N x is also gaussian.

Hence, Nx, Y areuncorrelated & gaussian, i.e., independent.
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Theorem: Identifiability of LINGAMs

Proof:

Y:&X——Ny, NyJ_LX

@ We prove the reverse: If BY 4+ Nx. Ny ALY —

(X,Ny) ~N

Since Nx 1L Y wehave: Ny =X —8(aX + Ny) = (1 —aB)X — SNy
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Theorem: Identlﬁablllty of LINGAMs

Proof:

@ We prove the reverse: If '
(X, Ny) ~ N

Since Nx 1L Y, we have:

There are 3 cases:

) (1—aB) #0 & B #0
Then, given Nx 1L Y, DS theoremimplies X, Ny ~ N
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Theorem: Identifiability of LINGAMs

Proof:

Y:&X——Ny, NyJ_LX

@ We prove the reverse: If X = BY + Ny, Ny LY i

(X,Ny) ~N

Since Nx 1L Y wehave: Ny =X —8(aX + Ny) = (1 —aB)X — SNy

There are 3 cases:

() (I-aB)#0& B#0
Then, given Nx 1L Y, DS theoremimplies X, Ny ~ N

(i) (1 —af)£0& =0
Then,since Nx 1L Y,and Nxy = X,then X 1l aX + Ny
in contradiction with Peters’ lemma
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Theorem: Identifiability of LINGAMs

Proof:

Y:&X——Ny, NyJ_LX
X=8Y+Ny, Nx 1Y ;

@ We prove the reverse: If
(X> NY) ~ N
Since Nx 1L Y wehave: Ny =X —8(aX + Ny) = (1 —aB)X — SNy
There are 3 cases:
(i) 1—aB=0& B+#0

Then,since Ny IL|Y],and Nx = —8Ny, Ny N+
again in contradiction with Peters’ lemma T

21 Jonas Peters et al, Elements of Causal Inference (2017)



Theorem: Identifiability of LINGAMs

Proof:

Y:&X——Ny, NyJ_LX
X=8Y+Ny, Nx 1Y ;

@ We prove the reverse: If
(X, Ny) ~ N

Since Nx 1L Y wehave: Ny =X —8(aX + Ny) = (1 —aB)X — SNy

There are 3 cases:

22 Jonas Peters et al, Elements of Causal Inference (2017)



Linear Additive Noise Models (ANMs)

ANM: The joint distribution £’x v is said to admitan ANM for X — Y
if there exists a measurable function JY and a noise variable Ny s.t.

Y = fy(X) + Ny, Ny 1L X

For this model, using convolution of probabilities we have:

p(x,y) = pny (¥ — fy(z))px (x)

Similarly, if a backward model exists:

p(r,y) = pny (T — fx(y))py (¥)

It turns out: This imposes very strong conditions on log(px )for which
PXx,yadmits a smooth ANM from YZ;co X (backward model).



In practice

1. Regress Y on X

2. Test whether Y — fy i
iIndependent of X

3. Repeat, swapping Xand Y

4. If the independence is
accepted for one direction and
rejected for the other, infer the
former as the causal direction,

0.4

Residuals of regr. Y on X
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Statistical Test of Independence: Choose one that accounts for
higher order statistic rather than testing correlations only, e.g. HSIC

24

Jonas Peters et al, Elements of Causal Inference (2017)



In practice

16

N N NN
N

(8

library (dHSIC)

library (mgcv)

#

# generate data set

set.seed (1)

X <- rnorm(200)

Y <- X°3 + rnorm(200)

#

# fit models

modelforw <- gam(Y ~ s(X))

modelbackw <- gam(X ~ s(Y))

#

# andependence tests
dhsic.test(modelforw$residuals, X)$p.value
# [1] 0.7628932

dhsic.test (modelbackw$residuals, Y)$p.value
# [1] 0.004221031

#

# computing likelihoods

- log(var(X)) - log(var(modelforw$residuals))
# [1] 0.1420063

- log(var(modelbackw$residuals)) - log(var(Y))
# [1] -1.014013
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