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Last time...

Language of probability: Variables, evens, samples space, probability law

Probability axioms, (conditional) total law of probability, independence,
Bayes' rule

Expected values, variance, correlation



Anscombe’s Quartet

Group of 4 datasets with nearly identical simple descriptive statistical properties:
- Mean and sample variance of X

- Mean and sample variance of Y
- Correlation between Xand Y

- Linear regression line (coefficient the same up to 2 or 3 decimal places)
- R?coefficient

A note on R?: A measure for goodness-of-fit

S g v =S

(2

If the fit y=f(x) is a perfect fit, the numerator is zero, R? = 1, and
R? = 0 implies the fit f(x) is no better than baseline average .
Negative values corresponds to models worse than the baseline average.



Anscombe’s Quartet

Group of 4 datasets with nearly identical simple descriptive statistical properties:

- Mean and sample variance of X

- Mean and sample variance of Y

- Correlation between XandY

- Linear regression line (coefficient the same up to 2 or 3 decimal places)

- R?coefficient

Yet, very different distributions, which can be observed by plotting the graphs

Same Pearson correlation, but,
different dependence structure
(X causes Y, but in different ways)

Figure from WikiPedia

||||||||

||||||||

llllllll

llllllll



Regression

Suppose we wish to predict the value of an outcome Y, based on the value of
some input X. The best prediction of Y based on Xis givenby E|Y | X = x|
(‘best’: in terms of minimum loss function, on average, e.g. square loss)

Wish to estimate E[Y| X = x| from data-> Regression
Linear regression is a model that can be employed do this, but they are many
other parametric (e.g. polynomial, GLMs) and non-parametric methods.

Let f(x;) bethevalueoftheline ¥y = o + fx at

The least squares regression line minimises: 0]

Z(yz’ — f(z))? = Z(yi — o — Bx;)’ )

() 1
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Regression

Suppose we wish to predict the value of an outcome Y, based on the value of
some input X. The best prediction of Y based on Xis givenby E|Y | X = x|
(‘best’: in terms of minimum loss function, on average, e.g. square loss)

Wish to estimate E[Y| X = x| from data-> Regression
Linear regression is a model that can be employed do this, but they are many
other parametric (e.g. polynomial, GLMs) and non-parametric methods.

Let f(x;) bethevalueoftheline ¥y = o + fx at

The least squares regression line minimises: 0]
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Regression

Suppose we wish to predict the value of an outcome Y, based on the value of
some input X. The best prediction of Y based on Xis givenby E|Y | X = x|
(‘best’: in terms of minimum loss function, on average, e.g. square loss)

Wish to estimate E[Y| X = x| from data-> Regression
Linear regression is a model that can be employed do this, but they are many
other parametric (e.g. polynomial, GLMs) and non-parametric methods.

Assumptions:
1. Linearity: Y depends linearly on X .
2. Homoscedasticity: variance of residual is 10
the same for any value of X 5.

Residual for every point: ¥i — f(z;) s




Regression

Suppose we wish to predict the value of an outcome Y, based on the value of
some input X. The best prediction of Y based on Xis givenby E|Y | X = x|
(‘best’: in terms of minimum loss function, on average, e.g. square loss)

Wish to estimate E[Y| X = x| from data-> Regression
Linear regression is a model that can be employed do this, but they are many
other parametric (e.g. polynomial, GLMs) and non-parametric methods.

Assumptions: 7 .
1. Linearity: Y depends linearly on X 61 ¢
2. Homoscedasticity: variance of residual is 51 ¢ b 8%

the same for any value of X




Regression

Suppose we wish to predict the value of an outcome Y, based on the value of
some input X. The best prediction of Y based on Xis givenby E|Y | X = x|
(‘best’: in terms of minimum loss function, on average, e.g. square loss)

Wish to estimate E[Y| X = x| from data-> Regression
Linear regression is a model that can be employed do this, but they are many
other parametric (e.g. polynomial, GLMs) and non-parametric methods.

Assumptions:

1. Linearity: Y depends linearly on X .
2. Homoscedasticity: variance of residual is 10
the same for any value of X 5.
3. Independence of observations 0-
4. Normality: For any fixed value of X, 51

Y is normally distributed




Regression

Suppose we wish to predict the value of an outcome Y, based on the value of
some input X. The best prediction of Y based on Xis givenby E|Y | X = x|
(‘best’: in terms of minimum loss function, on average, e.g. square loss)

Wish to estimate E[Y| X = x| from data-> Regression
Linear regression is a model that can be employed do this, but they are many
other parametric (e.g. polynomial, GLMs) and non-parametric methods.

l.e. non-symmetric: Slope of Y on X is different from X on Y.
Positive correlation if 3 > (0, negative correlation if 5 < 0 (dependent)
No linear correlation if 5 =0

10



Multiple Regression

Regress Y on multiple variables,e.g., X and X5 Y = o + 51 X1 + 82X
represents a plane in 3-dimensions.
In 2D: The regression lines with slopes 31 and (.

X2

X1

Xt X2 11
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Regress Y on multiple variables,e.g., X and X5 Y = o + 51 X1 + 82X
represents a plane in 3-dimensions.
In 2D: The regression lines with slopes 31 and (.

X is positively correlated withY, irrespective of X5, since X; 1L X5
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Multiple Regression

Regress Y on multiple variables,e.g., X and X5 Y = o + 51 X1 + 82X
represents a plane in 3-dimensions.
In 2D: The regression lines with slopes 31 and (.

X is positively correlated withY, irrespective of X5, since X; 1L X5

But when X JL. X, itis possible for
X1 to be positively correlated with Y overall,
but for fixed X9 be negatively correlated with Y

Example: Simpson’s paradox

Cholesterol

13 Exercise



Improving estimate via ensemble learning [non-examinable]

Do we need the additivity assumption?

n fact, ignoring covariate-treatment interaction can be a source of bias
Data driven approach:

Eo (Y|T,X) = B0+ BxX + 7T +~XT
Eo (Y|T,X) = B0+ BxX + BrT +vXT + By X>
Eo (Y|T,X) = Bo+ BxX + BrT +vXT + Bx X* + 4/ X*T

® V-fold cross-validation using an ensemble learning, e.g. super-learner
® Appropriate choice of loss function, e.g., L1 for conditional median, L2 for
conditional mean, log loss for binary outcome, ...

14



Continuous Super Learner [non-examinable]

2. Training on (V-1) fold

1. V-fold split

Input data

1

2

°
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°
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Eric Polley, Mark van der Laan, Sherri Rose 2011



Continuous Super Learner [non-examinable]

2. Training on (V-1) fold

1. V-fold split

Input data

1

2

GLM
XGBoost
HAL ...

N | =

+
Library of Algorithms

GLM
XGBoost
HAL ...
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GLM
XGBoost
HAL ...
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Continuous Super Learner [non-examinable]

2. Trainingon (V-1) fold 3. Predict on remaining test fold

1. V-fold Sp|it 1 GLM Predicted outcome Ypred Obs Yobs
_’2 > XGBoost || 1 |Z1icim| Z1ixce | Z1HaL| ®*° Yv=1
v HAL...
1 GLM
Input data —{ 2
P o] | XGBoost |—» 2 | Zo6im| Zoxcs | Zonal| oo Yv=2
T y HAL ...
Library of Algorithms o . . . .
N ; GLM
.| XGBoost [V |Zveim| Zvxc | ZvHaL| ®°° Yv=v
- HAL... — —

17 Eric Polley, Mark van der Laan, Sherri Rose 2011




Continuous Super Learner [non-examinable]

2. Trainingon (V-1) fold 3. Predict on remaining test fold

1. V-fold Sp|it A GLM Predicted outcome Ypred Obs Yobs
_’2 > XGBoost || 1 |Z1icim| Z1ixce | Z1HaL| ®*° Yv=1
y HAL ...
1 GLM
Input data —
P 2 *| XGBoost |—>| 2 | Zocim| Zoxce | ZonaL | ®ee Yv=2
T y HAL ...
Library of Algorithms o . . ‘ :
N ; GLM
.| XGBoost [V |Zveim| Zvxc | ZvHaL| ®°° Yv=v
v HAL ... - —
. . l 4. Fit the weight a
S. Tralp each algorlthm. [ Yobs | Yrred| = for each algorithm
on entire dataset combined  «—
with fitted weights a1 YoM + a2Yuarn + asYxge + - -

+ verify goodness-of-fit

18 Eric Polley, Mark van der Laan, Sherri Rose 2011




Discrete Super Learner [non-examinable]

Absolute difference with the Stack
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Smaller mean squared error = better performance

Simulation by Olivier Labayle Pabet



Discrete Super Learner [non-examinable]

Absolute difference with the Stack
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Theorem (Van der Laan, Polley, Hubbard; 2007)
Asymptotically, the stack always wins

Simulation by Olivier Labayle Pabet



Basics of Graphs

Simpson’s paradox: concrete example of why data alone is not enough!
Need to represent causal knowledge as part of a graph - Graph theory

Graph: A collection of nodes (vertices) and edges.

Adjacent nodes: If there is an edge connecting them: Aand B, B and C
Complete graph: There exist an edge between every pair of nodes (not above)
Path: sequences of nodes beginning with node X and ending with X, e.g.,
Thereis a path from A to C because A is connected to B and B is connected to C.

21



Basics of Graphs

Simpson’s paradox: concrete example of why data alone is not enough!
Need to represent causal knowledge as part of a graph - Graph theory

Graph: A collection of nodes (vertices) and edges.

Adjacent nodes: If there is an edge connecting them: Aand B, B and C
Complete graph: There exist an edge between every pair of nodes (not above)
Path: sequences of nodes beginning with node X and ending with X, e.g.,
Thereis a path from A to C because A is connected to B and B is connected to C.

O

l.e., not this:



Basics of Graphs

Simpson’s paradox: concrete example of why data alone is not enough!
Need to represent causal knowledge as part of a graph - Graph theory

Graph: A collection of nodes (vertices) and edges.

[Gnaresies]

Adjacent nodes: If there is an edge connecting them: Aand B, B and C
Complete graph: There exist an edge between every pair of nodes (not above)
Path: sequences of nodes beginning with node X and ending with X, e.g.,
Directed/Undirected: If the edges have in/out arrows

| Directed | ° ° e

The node that a directed edge starts from: parent

The node a directed edge goes into: child of the node the edge comes from
23




Directed Graphs

The node that a directed edge starts from: parent
The node a directed edge goes into: child of the node the edge comes from

E.g., Ais the parent of B, B is the parent of C.
B is achild of Aand Cis achild of B

24



Directed Graphs

The node that a directed edge starts from: parent
The node a directed edge goes into: child of the node the edge comes from
Directed Path: If the path can be traced along the arrows, i.e., A to B to C above.

Not: 4_Q:>

and

D—O—C

25



Directed Graphs

The node that a directed edge starts from: parent

The node a directed edge goes into: child of the node the edge comes from
Directed Path: If the path can be traced along the arrows, i.e., A to B to C above.
Two nodes connected by a direct path, first node (A) is the ancestor of every
node in the path (B and C) and every node on the path is a descendant of it.

20



Directed Graphs

The node that a directed edge starts from: parent

The node a directed edge goes into: child of the node the edge comes from
Directed Path: If the path can be traced along the arrows, i.e., A to B to C above.
Two nodes connected by a direct path, first node (A) is the ancestor of every
node in the path (B and C) and every node on the path is a descendant of it.

Cyclic: When a directed path exists from a node to itself (complicates things!!)
A direct graph with no cycles is acyclic.

Acyclic ° Cyclic °

27




Directed Graphs

The node that a directed edge starts from: parent

The node a directed edge goes into: child of the node the edge comes from
Directed Path: If the path can be traced along the arrows, i.e., A to B to C above.
Two nodes connected by a direct path, first node (A) is the ancestor of every
node in the path (B and C) and every node on the path is a descendant of it.

Cyclic: When a directed path exists from a node to itself (complicates things!!)
A direct graph with no cycles is acyclic.

Acyclic

Directed Acyclic Graphs (DAGS)

28



A Brief Introduction to Structural Casual Models (SCMs)

Causality: Need to formally state our assumptions about the causal model,
the relevant features of the data, the role they play, how they relate to each other.

29



A Brief Introduction to Structural Casual Models (SCMs)

Causality: Need to formally state our assumptions about the causal model,
the relevant features of the data, the role they play, how they relate to each other.

SCM: Consists of 2 sets of variables U and V, and a set of functions f.
f assigns each variable in V a value based on other variables in U and V.
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A Brief Introduction to Structural Casual Models (SCMs)

Causality: Need to formally state our assumptions about the causal model,
the relevant features of the data, the role they play, how they relate to each other.

SCM: Consists of 2 sets of variables U and V, and a set of functions f.
f assigns each variable in V a value based on other variables in U and V.

“Avariable X is a direct cause of variable Y if X appears in the function that assigns Y’s
value.

Xis acause of Yifitis a direct cause of Y or of any cause of Y.”
U: exogenous variables ‘external to the model’, e.g. noise or we simply do not

explain how they are caused. Not descendants of any other variables. Roots.
V: endogenous variable which is a descendant of at least one exogenous variable

31



A Brief Introduction to Structural Casual Models (SCMs)

V ={M,E, I}
U:{UMaUEaUI}

M: Exam Marks

E: Experience with coding
|: Internship funding

Jav o M =Upy
fg: E=Ug For causality need both the SCM and the graph

fr:l=2M +3E + U

Y 9
ollN©

32



Product Decomposition Rule

Graphical models: Express joint distributions very efficiently

The joint distributions of the variables given by the product of conditional
probability distributions:

n

Py, a2, xn) = | | P(wilpas)
=1
where PA; denote the parents of X; . z

(Discussed in later lectures in more detail). Example:

——0G

P X=xY=yZ=2)=PX =x)P(Y =yl X =2)P(Z =2]Y =y)

Graph assumptions: High-dim estimation —% Few lower-dim probabilities
Graph simplifies the estimation problem and implies more precise estimators
(can draw the graph without necessarily needing the functional form)



Product Decomposition Rule

p(clouds, no-rain, dry-pavement, slippery pavement ) =?

Dr .
pavemi:nt/ Slippery/
ot not

Causal Inference in Statistics, Pearl (2016)



Product Decomposition Rule

p(clouds, no-rain, dry-pavement, slippery pavement ) ='5% or 10% or 15%?’

Dr .
pavemi:nt/ Slippery/
ot not

Causal Inference in Statistics, Pearl (2016)



Product Decomposition Rule

p(clouds, no-rain, dry-pavement, slippery pavement ) ='5% or 10% or 15%?’

p(clouds)p(no rain | clouds)p(dry pavement | no rain) x
p(slippery pavement | dry pavement) ~

0.6 x0.7x0.9x0.05~0.02

Dr .
pavemint/ Slippery/
ot not



Product Decomposition Rule

p(clouds, no-rain, dry-pavement, slippery pavement ) ='5% or 10% or 15%?’

p(clouds)p(no rain | clouds)p(dry pavement | no rain) x
p(slippery pavement | dry pavement) ~

0.6 x0.7x0.9x0.05~0.02

Dr .
pavemint/ Slippery/
ot not

Combinations: 24-1 =15
Suppose we have 45 data points of these 4 observations
Approx, 45/15 = 3 observations per outcome, some may get 2 or 1 or empty.

Need far more data to estimate the joint distribution as compared to each of
the conditional distributions.



SCM for the Monty Hall Problem
A B C
The player can choose any door withp = 1/3
The car can be behind any door withp = 1/3

X = Door chosen by player

Y = Door hiding the car

Z = Door opened by host



SCM for the Monty Hall Problem
A B C
4+

Z needs to use 2 pieces of information:

X = Door chosen by player

Y = Door hiding the car

Z = Door opened by host

(1) not be the door chosen by player
(2) not be the door that hides the car



SCM for the Monty Hall Problem
B

X = Door chosen by player

Y = Door hiding the car

Z = Door opened by host

Z needs to use 2 pieces of information: V =AX,Y, 7}
(1) not be the door chosen by player U={Ux,Uy,Uz}
2) not be the door that hides the car F={f}
X =Ux
Y =Uy

7 = f(X,Y)+Ugy



SCM for the Monty Hall Problem

A B C X = Door chosen by player
l Y = Door hiding the car
Z = Door opened by host
The joint probability: P(X,Y,Z)=P(Z|X,Y)P(Y)P(X)

5
A



SCM for the Monty Hall Problem
B

X = Door chosen by player

Y = Door hiding the car

Z = Door opened by host

1/3 1/3
The joint probability: P(X,Y,Z)=P(Z|X,Y)P(Y)P(X)

0.5 for x =y # 2
PZIX,)Y)=< 1lforax #y+#z

Ofor z=xorz=y



Conventions

e Variable to be manipulated: treatment (T), e.g. medication

® Variable we observe as response: outcome (Y),
e.g. success/failure of medication

® Other observable variables that can affect treatment and outcome
causally and we wish to correct for: confounders (X),

e.g. age, sex, socio-economic status, ...

@ Unobservable confounder (U)

43



Conventions

e Variable to be manipulated: treatment (T), e.g. medication

e Variable we observe as response: outcome (Y),

e.g. success/failure of medication

® Other observable variables that can affect treatment and outcome

causally and we wish to correct for: confounders (X),

e.g. age, sex, socio-economic status, ...

® Unobservable confounder (U)

For simplicity drop Ui's from graphs if:

Ur 1L Ux 1 Uy @




Conventions

e Variable to be manipulated: treatment (T), e.g. medication

e Variable we observe as response: outcome (Y),
e.g. success/failure of medication

® Other observable variables that can affect treatment and outcome
causally and we wish to correct for: confounders (X),
e.g. age, sex, socio-economic status, ...

® Unobservable confounder (U)

A different story when Us are dependent
or a confounder: See |V




Causal Identification vs Estimation

Causal Identification problem: Is it possible to express a causal quantity in terms
of the probability distribution of the observed data, and if so, how?

Estimation problem: How to estimate the functional relationship between

treatment T and outcome 'Y, given other variables X in the system.
For example: E|Y|T, X| = f(T, X)

46




Overview of the course

® Lecture 1: Introduction & Motivation, why do we care about causality?
Why deriving causality from observational data is non-trivial.

® Lecture 2: Recap of probability theory, variables, events, conditional
probabilities, independence, law of total probability, Bayes’ rule

® Lecture 3: Recap of regression, multiple regression, graphs, SCM

® Lecture 4-20: ‘ Causality ‘
Causal Effect Estimation ‘ ‘ Casual Discovery
Obsv confouhders ‘ ‘ Unobsv confounders Constraint- Score-
based based
¥ Regression Propensity Front-door
P L. . IV .
- Adjustment |§  score criterion

Rubin Rubin, Pearl
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