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Last two lectures...

Language of probability: Variables, evens, samples space, probability law

Probability axioms, (conditional) total law of probability, independence,
Bayes' rule

Expected values, variance, correlation

Graphs



Today:

First of the two causal frameworks:
- Potential Outcomes (due to Neyman-Rubin)
- Study our first causal question

In order to estimate:
- Answer to a causal question
- Uncertainty on this answer (under model assumptions)



Two main Frameworks for causal |dent|ﬁabllty

@ Potentlal outcomes framework(Neyman Rubln)

- Requires a given treatment-outcome pair (known directionality)
i - For causal estimation ‘
¢t - More familiar to biomedical researchers (this is changing ...) {

e Structural causal models (Pearl):

- Causal graphs
- Structural equations x = fy(€2), t = fi(z,€), y = fy(a:,t, ey)
- Algorithmic

- For causal estimation and discovery

Extend the language of
probability theory:

Assumption: Independent noise terms: €5 L € 1L €y do-calculus




Observational data: What goes wrong?

p(z|t = 1) # p(z|t = 0)

A
Control treatment

Age

(/ y1(z)p(zft = 1)dz — /yo(ﬂf)p(ﬂf\t = O)dSU) # / (y1(x) — yo(z))p(x)d



Observational data: Stratification

® Measure outcome (success/failure), within each of the young/old
groups separately

® Take weighted average by the probability of being young/old:

E(Healed|t = 1) = E(Healed|t = 1, young)p(young) + E(Healed|t = 1, 0ld)p(old)

VS

E(Healed|t = 0) = E(Healed|t = 0, young)p(young) + [E(Healed|t = 0, old)p(old)



Observational data: Stratification

® Measure outcome (success/failure), within each of the young/old

groups separately
® Take weighted average by the probability of being young/old:
E(Healed|t = 1) = E(Healed|t = 1, young)p(young) + E(Healed|t = 1, 0ld)p(old)
VS
E(Healed|t = 0) = E(Healed|t = 0, young)p(young) + [E(Healed|t = 0, old)p(old)
Issues: (i) All possible confounders need to be observed
(ii) Assume overlap between the two distributions (if there is no overlap, sample is

not representative, e.g. performing the experiment only for old people),
(iii) Poor estimates as confounder dimensionality increases

Agel Age2 Age3 Aged

000 PP
Female | ® |990]| 00 g¢ |
00 Need specific causal effect
000 PP estimation techniques
Male c0o 0O O 7




Potential Outcomes Framework (Rubin-Neyman)

Definition: Given treatment, t, and outcome, y, the potential outcome of
instance/individual i is denoted by y:(l is the value y would have taken if individual
I had been under treatment t.



Potential Outcomes Framework (Rubin-Neyman)

Definition: Given treatment, t, and outcome, y, the potential outcome of
instance/individual i is denoted by y:(l is the value y would have taken if individual

I had been under treatment t.

vol'and y1() are not observed, but potential outcomes

ti)is the observed treatment applied to individual (i), Oor 1
Observed outcomes: yo() OR y41() depend on treatment (fundamental problem of

causal inference):
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Yons =tV + (1= t@)yg” = %

O i ) =1



Potential Outcomes Framework (Rubin-Neyman)

Definition: Given treatment, t, and outcome, y, the potential outcome of
instance/individual i is denoted by y:(l is the value y would have taken if individual

I had been under treatment t.

vol'and y1() are not observed, but potential outcomes

ti)is the observed treatment applied to individual (i), Oor 1
Observed outcomes: yo() OR y41() depend on treatment (fundamental problem of

causal inference): ()
| v)ose (1) —
() _ (), () (i, ) _ JYo i 8=
= + (1 -t = - -
Yops = Y1 + Yo () ¢ 46 — 1

Counterfactual (missing) outcome “what would have happened if ...”

(2)  ap 4(d) _
(4) (i) <z> (i), <z> Yy, UtV =
1 —¢ 4+ ¢\ — | |



Potential Outcomes Framework (Rubin-Neyman)

Inverting previous relations, equivalently:

(i) y(é% if ¢ =1
70 y(()z)s if ¢ =0

(i) y(cfzi? if t() =0
I DY R T O

Knowing the potential outcomes is equivalent to knowing the observed and
counterfactual outcomes
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Potential Outcomes Framework (Rubin-Neyman)

Definition: Given treatment, t, and outcome, y, the potential outcome of
instance/individual i is denoted by y:(l is the value y would have taken if individual

I had been under treatment t.

vol'and y1() are not observed, but potential outcomes

ti)is the observed treatment applied to individual (i), Oor 1
Observed outcomes: yo() OR y41() depend on treatment (fundamental problem of

causal inference): | | |
4 = 90 1 (1= 0
Individual treatment effect (causal): 7(?) — = 13 i) _ y(()i)

N
Average treatment effect (causal): 7 = E[+®] = E[y{") — y{"] = % Z (yy) _ yéﬂ)
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Example (Missing data interpretation)

treatment outcome treatment CF outcome CF

0 0.0 -10.039205 1.0 -8.807301
1 0.0 -10.671335 1.0 -8.687408
2 1.0 -9.216676 0.0 -10.466275
3 0.0 -6.952074 1.0 -6.769770
4 1.0 -9.842891 0.0 -10.214971
995 0.0 -6.344171 1.0 -6.584128
996 1.0 -9.563686 0.0 -10.027234
997 1.0 -8.414478 0.0 -9.372274
998 0.0 -9.731127 1.0 -8.558852

999 1.0 -8.097447 0.0 -8.706807
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Example (Missing data interpretation)

treatment  outcome Yo Y, Y;-Y)

0 0.0 -10.039205 -10.039205 ’ ? ?

1 0.0 -10.671335 -10.671335 ? ?

2 1.0 -9.216676 ? 1 -9.216676 ?

3 0.0 -6.952074 -6.952074 ? ?

4 1.0 -9.842891 ? 1 -9.842891 ?
995 0.0 -6.344171 -6.344171 ? ?
996 1.0 -9.563686 ? 1 -9.563686 ?
997 1.0 -8.414478 ? 1 -8.414478 ?
998 0.0 -9.731127 -9.731127 ? ?
999 1.0 -8.097447 ? . -8.097447 ?
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What about the naive
observational estimator?

E[Y|T = 1] — E[Y|T = 0]



Example (Missing data interpretation)

treatment  outcome ' YT Y1-Yp What about the naive
0 0.0 -10.039205 , ? ?  observational estimator?
1 0.0 -10.671335 f ? ?
2 10 -9.216676 | 9216676 2
3 0.0 -6.952074 ﬂc‘ " ? ?
4 10 -9.842801 | -9.842891 ? - 114
995 0.0 -6.344171 ’ | ? ?
996 10 -0.563686 | | 9563686 2
997 1.0 -8.414478 | ?; -8.414478 ?
998 0.0 -9.731127 | | ? ?
999 1.0 -8.097447 , ?

21 -8.097447
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Example (Missing data interpretation)

treatment  outcome treatment_ CF outcome_CF

0 0.0 -10.039205 1.0 -8.807301

1 0.0 -10.671335 1.0 -8.687408

2 1.0 -9.216676 0.0 -10.466275

3 0.0 -6.952074 1.0 -6.769770

4 1.0 -9.842891 0.0 -10.214971
995 0.0 -6.344171 1.0 -6.584128
996 1.0 -9.563686 0.0 -10.027234
997 1.0 -8.414478 0.0 -9.372274
998 0.0 -9.731127 1.0 -8.558852
999 1.0 -8.097447 0.0 -8.706807
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Individual treatment effect:

d, [Yl — Yo]




Example (Missing data interpretation)

treatment outcome treatment_CF outcome_CF
0 0.0 {-10.039205 1.0 | -8.807301
1 0.0 |-10.671335 | 1.0 | -8.687408
2 10 | -9.216676 00 |-10.466275
4 10 | -9.842891 0.0
995 0.0 -6.344171 10  -6.584128
996 10 -9.563686 0.0  -10.027234
997 10 -8.414478 0.0  -9.372274
998 0.0 -9.731127 10  -8.558852
999 10  -8.097447 0.0  -8.706807
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Individual treatment effect:

d, [Yl — Yo]

Estimated as:




Example (Missing data interpretation)

treatment  outcome treatment CF outcome_ CF 1 J |
0 0.0 -10.039205 1.0 -8.807301 ' 1.231904 |
1 0.0 -10.671335 1.0 -8.687408 1.983927
2 1.0 -9.216676 0.0 -10.466275 1.249599
3 0.0 -6.952074 1.0 -6.769770 0.182305
4 1.0 -9.842891 0.0 |
995 0.0 -6.344171 1.0
996 1.0 -9.563686 0.0
997 1.0 -8.414478 0.0
998 0.0 -9.731127 1.0
999 1.0 -8.097447 0.0




Example (ng data interpretation)

treatment confounde: outcome treatment_CF outcome_ CF Y:1-Y,

0 00 3635767 -10.039205 10  -8.807301 1.231904

1 0.0 3.895803 -10.671335 1.0 -8.687408 1.983927

2 1.0 4.155425 -9.216676 0.0 -10.466275 1.249599

3 0.0 3.256590 -6.952074 1.0 -6.769770 0.182305

4 1.0 4.071657 -9.842891 0.0 -10.214971 0.372080
995 0.0 3.194709 -6.344171 1.0 -6.584128 -0.239957
996 1.0 4.009078 -9.563686 0.0 -10.027234 0.463548
997 1.0 3.790758 -8.414478 0.0 -9.372274 0.957795
998 0.0 3.852951 -9.731127 1.0 -8.558852 1.172276
999 1.0 3.568936 -8.097447 0.0 -8.706807 0.609360
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Potential Outcomes: Assumptions

® SUTVA: Stable Unit Treatment Value Assumption
e Consistency: Well-defined treatment (no different versions)
potential outcome is independent of how
the treatment is assigned
 Nointerference: Different individuals (units) within a population
do not influence each other (e.g. does not work in social

behavioural studies, care must be taken for time series data when
defining the units)

20



Potential Outcomes: Assumptions

® SUTVA: Stable Unit Treatment Value Assumption

e Consistency: Well-defined treatment (no different versions)
potential outcome is independent of how
the treatment is assigned

 Nointerference: Different individuals (units) within a population
do not influence each other (e.g. does not work in social
behavioural studies, care must be taken for time series data when
defining the units)

® Positivity: Every individual has a non-zero chance of receiving the

treatment/control: p(t = 1]z) € (0,1) if P(z) >0

® Unconfoundedness: Treatment assignment is random, given confounding
features X

21



Unconfoundedness

® Unconfoundedness: Treatment assignment is random, given X:

® Given X, there is no preference for individual (i) to get assigned the
treatment as compared to individual (j) (i.e. randomised)

22



Unconfoundedness

® Unconfoundedness: Treatment assignment is random, given X:

® Given X, there is no preference for individual (i) to get assigned the
treatment as compared to individual (j) (i.e. randomised)

® c.g.,restricting to the old group, person A has the same probability of
receiving the treatment as person

23



Unconfoundedness

® Unconfoundedness: Treatment assignment is random, given X:

® Given X, there is no preference for individual (i) to get assigned the
treatment as compared to individual (j) (i.e. randomised)
® c.g.,restricting to the old group, person A has the same probability of

receiving the treatment as person
® There may be difference in sample size between case and control:

not necessarily=  p(t = 0|z)
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Unconfoundedness

® Unconfoundedness: Treatment assignment is random, given X:

® Given X, there is no preference for individual (i) to get assigned the
treatment as compared to individual (j) (i.e. randomised)

® c.g.,restricting to the old group, person A has the same probability of
receiving the treatment as person

® There may be difference in sample size between case and control:

not necessarily=  p(t = 0|z)

® However, if we do not restrict to the old group, there is a clear preference:
older individuals are more likely to receive the drug

® No unobserved confounders
(see later: unverifiable in observational data)

25



Unconfoundedness: A graphical representation

® Unconfoundedness: Treatment assignment is random, given X:

vy 1Lt | a

Hypothetical §

' Realworld §

If everyone receive the treatment: Y1
If everyone is prevented from receiving the treatment: Yo

Then the hypothetical outcomes are entirely determined by

the set of features X of the individuals.
260



Unconfoundedness: A graphical representation

® Unconfoundedness: Treatment assignment is random, given X:

} Realworld §

7y()) ﬂt(fb) |£IZ‘

If everyone receive the treatment: Y1
If everyone is prevented from receiving the treatment: Yo

Then the hypothetical outcomes are entirely determined by

the set of features X of the individuals.
27



Positivity

For existing values of covariates in the population, i.e., P(X — :E) > ()
(binary T)

Intuitively: If everyone was given the treatment, i.e., there is no control
group, we have no idea if/how the outcomes observed are due to the
treatment itself (because we have no background to compare it to!)

Similarly, when everyone is in the control group: Then we will not have
tested the treatment.

Tutorial question: See why this condition is essential (mathematically)

28



Positivity (common support/overlap)

Control: T=0
Treatment T=1

Control Treatment

No overlap
Complete violation of positivity

29

Age



Positivity (common support/overlap)

Control: T=0
Treatment T=1

Control Treatment

N

Some violation of positivity
30

A

Age



Positivity (common support/overlap)

Control: T=0
Treatment T=1

Control Treatment

Complete overlap: No positivity violation

31

Age



Positivity vs unconfoundedness

Issue: We potentially wish to condition on many variables to make it more likely
for unconfoundedness to be satisfied ...



Positivity vs unconfoundedness

Issue: We potentially wish to condition on many variables to make it more likely
for unconfoundedness to be satisfied ...

But the more we condition on, the harder it is to satisfy positivity

Example: Young Old
000 ( X Af |
(X X o 00
Female 06 Female 006
o0 0 O ( X )
Mal
ale 000 Male ° o6

Easy to check for binary/categorical variable X:

O<PT=1X=2x)<1

33



Positivity vs unconfoundedness

Issue: We potentially wish to condition on many variables to make it more likely
for unconfoundedness to be satisfied ...

But the more we condition on, the harder it is to satisfy positivity

Example:

Young Old
00 ( X Af |
(X X ( A X )
Female 06 Female 006
( X X ) O ( X )
Mal
ale 000 Male ° o6

Tutorial question: Discuss the problem of no support, extrapolation and model-
misspecification

34



Regression Adjustment

® Xis a sufficient set of confounders if conditioning on X, there would be no
confounding bias

. : . (4)
® For individual (i) there is only one observed outcome: Y,
® Would like to estimate (infer) counterfactual: 4V, — & |y®|1 —¢;, 2

® Using adesign matrix, fit: Y = 0x X + 811 + ¢

Ctrl Drug Young Old
1 0 1 0 y) Bi=0 + Br=youn
/1 O\ (0 1\ ( y \ / tﬁtio "I_Ba:ioldg\
r—|. . x=|. .| —S = .
0 1 1 0 y(N_l) 51&21 + Bzc: oun
\0 1/ \0 1) \ y ™ \ Bi=1 +5xioldg)




Adjustment formula (will be revisited later)

E[Y: — Yo| X] =E[Y1[X] — E[Yo|X]
Y1|T =1, X]| — E[Yy|T =0, X] ByUnconfoundedness: Y1,Yy LT | X
:ZE:Y‘T =1, X] — E[Y‘T = 0, X] By construction:  y — 7y, + (1-T)Y,

Also need positivity

=




Adjustment formula (will be revisited later)

ElY: — Yy| X]

]
Ls

V1| X] = E[Yo|X]
=EY1|T =1, X]| — E[Yy|T =0, X] ByUnconfoundedness: Y1,Yy 1L T | X
:ZE:Y‘T — 1, X] — E[Y‘T — O, X] By construction: Y =TY; + (1 - T)Y,

Also need positivity

E[Y, — Vo] =Ex |E[Y; — YO\X]}

ATE =K x E[Y’T = 1, X] — E[Y’T = 0, X]} ‘Theadjustmentformula




Adjustment formula (will be revisited later)

E[Y: — Yo| X] =E[Y1[X] — E[Yo|X]
=EY1|T =1, X]| — E[Yy|T =0, X] ByUnconfoundedness: Y1,Yy 1L T | X
:ZE:Y‘T — 1, X] — E[Y‘T — O, X] By construction: Y =TY; + (1 - T)Y,

Also need positivity

E[Y, — Yo] =Ex {E[Yl _ YO\X]}

=KEx {E[Y‘T =1, X| - E[Y|T =0, X]} ‘Theadjustmentformula

Hypothetical
[ world 3




Regression Adjustment: Another perspective

Fitamodelfor Q(T,X) =E|Y|T, X]

(last time we substituted T=1 and T=0 into individual treatment effect
=Q(1, ") — Q(0, V), then took average over all individuals i, via
linear regression). Under the linearity assumption:

Y| T, X| =a0+ 8. X+ 5T +€, Ele] =0

39



Regression Adjustment: Another perspective

Fitamodelfor Q(T,X) =E|Y|T, X]

(last time we substituted T=1 and T=0 into individual treatment effect
=Q(1, ") — Q(0, V), then took average over all individuals i, via
linear regression). Under the linearity assumption:

Y| T, X| =a0+ 8. X+ 5T +€, Ele] =0

ATE = Ex [ﬂ[Y\T —1,X]— E[Y|T =0, X]}

— (Oéo + B E|X] + 575) — (Ozo + 5:1:E[X])
= D

40



Important remarks about the previous form:

1) Depends on the structure of the causal graph of interest

2) Data need not be linear
model-misspecification -> statistical bias

41



Important remarks about the previous form:

2) Data need not be linear, example:

Say we fitted

‘E[Y‘T, X] — _l_/BCEX +6tT+ €,

And obtained Bifor the causal effect,

el =0

BUT, in reality the true data generating distribution is e.g.

Or e.g. non-linear:

A

4ﬂ[Y T, X] _ eao—l—BxX—l—BtT—l—q/X.T

42

YT, X| =a0+ B X + BT +~vX.T +¢€, Ele] =0




Important remarks about the previous form:

2) Data need not be linear, example:

Saywefitted E|)Y|T, X| =ag+ B8, X + 5T + €, Ele] =0
And obtained Bifor the causal effect,

BUT, in reality the true data generating distribution is e.g.
EY|T, X|=ag+ 6 X+ 6T +~+vX.T+e, Ele] =0

Or e.g. non-linear:
“ﬂ[Y T, X] _ eozo—l—ﬁxX—l—BtT—l—q/X.T

Then ATE = Ex [E[Y\T —1,X] — E[Y|T =0, X]}
is not simply 5! m—— ' |

I Valid causal inference requires correctly-specified  §
{ models and mathematical guarantees! :




Overview of the course

® Lecture 1: Introduction & Motivation, why do we care about causality?
Why deriving causality from observational data is non-trivial.

® Lecture 2: Recap of probability theory, variables, events, conditional
probabilities, independence, law of total probability, Bayes’ rule

® Lecture 3: Recap of regression, multiple regression, graphs, SCM

® Lecture 4-20: ‘ Causality ‘
Causal Effect Estimation ‘ ‘ Casual Discovery
Obsv confouhders ‘ ‘ Unobsv confounders Constraint- Score-
based based
¥ Regression Propensity Front-door
P L. . IV .
- Adjustment |§  score criterion

Rubin Rubin, Pearl
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