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Potential Outcomes: Assumptions

® SUTVA: Stable Unit Treatment Value Assumption
e Consistency: Well-defined treatment (no different versions)
potential outcome is independent of how
the treatment is assigned
 Nointerference: Different individuals (units) within a population
do not influence each other (e.g. does not work in social

behavioural studies, care must be taken for time series data when
defining the units)
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potential outcome is independent of how
the treatment is assigned

 Nointerference: Different individuals (units) within a population
do not influence each other (e.g. does not work in social
behavioural studies, care must be taken for time series data when
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® Positivity: Every individual has a non-zero chance of receiving the

treatment/control: p(t = 1]z) € (0,1) if P(z) >0

® Unconfoundedness (ignorability/exchangeability): Treatment assignment
Is random, given confounding features X
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Observational data: What goes wrong?

p(z|t = 1) # p(z|t = 0)

A
Control treatment

Age

(/ y1(z)p(zft = 1)dz — /yo(ﬂf)p(ﬂf\t = O)dSU) # / (y1(x) — yo(z))p(x)d



Adjustment formula (will be revisited later)

E[Y: — Yo| X] =E[Y1[X] — E[Yo|X]
Y1|T =1, X]| — E[Yy|T =0, X] ByUnconfoundedness: Y1,Yy LT | X
:ZE:Y‘T =1, X] — E[Y‘T = 0, X] By construction:  y — 7y, + (1-T)Y,

Also need positivity
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E[Y: — Yo| X] =E[Y1[X] — E[Yo|X]
=EY1|T =1, X]| — E[Yy|T =0, X] ByUnconfoundedness: Y1,Yy 1L T | X
:ZE:Y‘T — 1, X] — E[Y‘T — O, X] By construction: Y =TY; + (1 - T)Y,

Also need positivity

E[Y, — Yo] =Ex {E[Yl _ YO\X]}

=KEx {E[Y‘T =1, X| - E[Y|T =0, X]} ‘Theadjustmentformula

Hypothetical
[ world 3




Regression Adjustment: Another perspective

Fitamodelfor Q(T,X) =E|Y|T, X]

(last time we substituted T=1 and T=0 into individual treatment effect
=Q(1, ") — Q(0, 2'Y), then took average over all individuals i, via
linear regression). Under the linearity assumption:

Y| T, X| =a0+ 8. X+ 5T +€, Ele] =0




Regression Adjustment: Another perspective

Fitamodelfor Q(T,X) =E|Y|T, X]

(last time we substituted T=1 and T=0 into individual treatment effect
=Q(1, ") — Q(0, 2'Y), then took average over all individuals i, via
linear regression). Under the linearity assumption:

Y| T, X| =a0+ 8. X+ 5T +€, Ele] =0

ATE = Ex [ﬂ[Y\T —1,X]— E[Y|T =0, X]}

— (Oéo + B E|X] + 575) — (Ozo + 5:1:E[X])
= D



Important remarks about the previous form:

1) Depends on the structure of the causal graph of interest

2) Data need not be linear
model-misspecification -> statistical bias

10



Important remarks about the previous form:

2) Data need not be linear, example:

Say we fitted

‘E[Y‘T, X] — _l_/BCEX +6tT+ €,

And obtained Bifor the causal effect,

el =0

BUT, in reality the true data generating distribution is e.g.

Or e.g. non-linear:

A

4ﬂ[Y T, X] _ eao—l—BxX—l—BtT—l—q/X.T
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Important remarks about the previous form:

2) Data need not be linear, example:

Saywefitted E|)Y|T, X| =ag+ B8, X + 5T + €, Ele] =0
And obtained Bifor the causal effect,

BUT, in reality the true data generating distribution is e.g.
EY|T, X|=ag+ 6 X+ 6T +~+vX.T+e, Ele] =0

Or e.g. non-linear:
“ﬂ[Y T, X] _ eozo—l—ﬁxX—l—BtT—l—q/X.T

Then ATE = Ex [E[Y\T —1,X] — E[Y|T =0, X]}
is not simply 5! m—— ' |

I Valid causal inference requires correctly-specified  §
{ models and mathematical guarantees! :




Overview of the course

® Lecture 1: Introduction & Motivation, why do we care about causality?
Why deriving causality from observational data is non-trivial.

® Lecture 2: Recap of probability theory, variables, events, conditional
probabilities, independence, law of total probability, Bayes’ rule

® Lecture 3: Recap of regression, multiple regression, graphs, SCM

® Lecture 4-20: ‘ Causality ‘
‘ Causal Effect Estimation ‘ ‘ Casual Discovery
‘ Obsv confoi nders ‘ nobsv confounders Constraint- Score-
: : FCMS
based based
Regression §| Propensity Front-door
: | ‘ 1V o
Adjustment §|  score criterion

Rdbin_| | } Rubin, Pearl




Matching

Idea: Create a ‘clone/twin’ for each individual (in terms of X)
i.e.ifindividual 1 hast = 1, then their ‘clone/twin’ has t = 0.

Blind ourselves to the outcomes, try to get as similar to a randomised
experiment as possible (‘correct for confounding’)

Example:




Balancing Score
® In a perfect randomised trial: p(t=1|x)=p(t=1)

® |n an observational study, p(t=1|x) can be estimated, since it involves
observational data at at and x (hence identifiable).

® A balancing score is any function b(x) such that:

x AL t|b(x)

® i.e, distribution of confounders is independent of treatment given b(x):

p(X = z|b(x),t =1) = p(X = z|b(z),t = 0)



Balancing Score: Proof 1 [non-examinable]

Unconfoundednesss given a balancing score. Suppose we have
unconfoudedness, i.e., v\, v\” 1 7® | x®, Then for a balancing score b(x) we

have: . . , .
Y Y AL O | p(x D)
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Balancing Score: Proof 1 [non-examinable]
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Casual Inference by Imbens and Rubin
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Propensity Score

Treatment 4

® Candidate b(x) = x, trivially satisfies:

t=1 ®
p(X = $‘I‘,t — 1) :p(X — $’$,t — O) =1 t=0 - —.M » Gender

® b(x) = xis the finest such function: OK for e.g. binary confounders, but only
gives point estimates for (almost) continuous confounders!

® Propensity score is the coarsest such function (i.e. more data points,

leading to better estimates): e(r) = p(t = 1|x)
Treatment 1 Treatment | 1-dimensional
t-1 000000000 t=1 ‘ ‘ '
-0 Lo oo 000000 —> LX) =0 @@ @ — 0= e(r) <1

AAAAAAAAL VYV YYSER VYN

e
* 2 e
L) . 5 0%

A O )(=Age |||| x=Age



Propensity is balancing: Proof 2 [non-examinable]
The propensity score is a balancing score: X 1l T'|e(X)
Proof: Need to show »pr (T = 1|X, G(X)) = P (T = 1\€(X))

LHS: pT(T= 1\X76(X)) :pT<T: 1!X) = e(X)

T T

Propensity score Propensity score
is a function of X definition



Propensity is balancing: Proof 2 [non-examinable]
The propensity score is a balancing score: X 1l T'|e(X)

Proof: Need to show pr (T = 1]X, G(X)) = Pr (T = 1!€(X))

LHS: pr (T — 1|X, e(X)) — pr (T - 1yx) — e(X)

RHS:

Casual Inference by Imbens and Rubin



Propensity is balancing: Proof 3 [non-examinable]

The propensity score is the coarsest balancing score, i.e., it is a function of
every balancing score b(x): e(x) = f(b(x))
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b(z) = b(z') = b* while e(x) # e(z’). Then,
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Propensity is balancing: Proof 3 [non-examinable]

The propensity score is the coarsest balancing score, i.e., it is a function of
every balancing score b(x): e(x) = f(b(x))

Proof: Let b(x)be a balancing score. Suppose we cannot write the propensity

score e(z)ase(x) = f(b(x)). Therefore, there must be a case where:
b(z) = b(z') = b* while e(x) # e(z’). Then,

p(t = 1]z, b(#))@p(t = 1], b))
b* b*

] o 1 b

Recall definition of balancing score:



Propensity is balancing: Proof 3 [non-examinable]

The propensity score is the coarsest balancing score, i.e., it is a function of
every balancing score b(x): e(x) = f(b(x))

Proof: Let b(x)be a balancing score. Suppose we cannot write the propensity

score e(z)ase(x) = f(b(x)). Therefore, there must be a case where:
b(z) = b(z') = b* while e(x) # e(z’). Then,

p(t = 1|z, b(x))FBp(t = 1]2’, b(z"))

i.e., probability of treatment changes depending on value of x despite b*:

r Y t|b(x)

This violates the definition of a balancing score.
Proof by contradiction.




Propensity Score Matching Algorithms

® Match control and treatment individuals based on their propensity score
® Greedy matching:
 Randomly order list of control and treated.
o Startwith the first individual from e.g. treated and match to control
with the smallest distance (i.e. obtains the local minimum)
 Remove individuals from control and matched treated
 Move to the next treated subject

Treatment Control
40 50
65 25
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Propensity Score Matching Algorithms

® Match control and treatment individuals based on their propensity score
® Greedy matching:
 Randomly order list of control and treated.
o Startwith the first individual from e.g. treated and match to control
with the smallest distance (i.e. obtains the local minimum)
 Remove individuals from control and matched treated
 Move to the next treated subject

® Optimal matching: Minimises the global distance, computationally
demanding



Inverse Probability of Treatment Weighting (IPTW)

® Inflate the weight for under represented-subjects due to missing data

® Based on propensity score

® Weight: inverse probability of receiving observed treatment, for individual
| with covariate x:

oy fti=1
if t; =0

w; = e(x) =p(t=1|x)

1
l1—e(x;)

® Example: Suppose individual (i) has a large e(x), i.e., their probability of
receiving treatment is high.

- Ift;, = 1 then w; = 1 (typical behaviour: most with X; are treated)

- Ift; = 0 then w; > 1 (underrepresented: boost weight for rare event)



Inverse Probability of Treatment Weighting (IPTW)

® Inflate the weight for under represented-subjects due to missing data

® Based on propensity score

® Weight: inverse probability of receiving observed treatment, for individual
| with covariate x:

1 . o
s itt; =1 1
wp=1{ O e(x) = p(t = 1]x)
Treated Not treated

X=0 O 000000000 e(x)=1/10=0.1
X=1 0000 O e(r) =4/5=0.8

1 \ / 1 1

w=gg =2t 00 w=g—2 =555

Rosenbaum 1987



Inverse Probability of Treatment Weighting (IPTW)

1 (4) 1 1 (2) 1
N Z 1 e(r;) N Z 70 1 —e(x;)

treated not treated

Weights may be inaccurate/unstable for subjects with a very low probability
of receiving the observed treatment (other estimators exist)

In a randomised control trial (RCT) limit, p(t = 1|z) = p(t = 0|x)

above reduces to:
N = N7 + Ny

R DI L SR

treated not treated



Overview of the course

® Lecture 1: Introduction & Motivation, why do we care about causality?
Why deriving causality from observational data is non-trivial.
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