

Methods for Causal Inference Lecture 5: Rubin's framework, propensity score, IPTW

Ava Khamseh

School of Informatics 2024-2025

Potential Outcomes: Assumptions

- SUTVA: Stable Unit Treatment Value Assumption
 - Consistency: Well-defined treatment (no different versions)
 potential outcome is independent of how
 the treatment is assigned
 - No interference: Different individuals (units) within a population do not influence each other (e.g. does not work in social behavioural studies, care must be taken for time series data when defining the units)

Potential Outcomes: Assumptions

- SUTVA: Stable Unit Treatment Value Assumption
 - Consistency: Well-defined treatment (no different versions)
 potential outcome is independent of how
 the treatment is assigned
 - No interference: Different individuals (units) within a population do not influence each other (e.g. does not work in social behavioural studies, care must be taken for time series data when defining the units)
- Positivity: Every individual has a non-zero chance of receiving the treatment/control: $p(t=1|x) \in (0,1) \text{ if } P(x)>0$
- Unconfoundedness (ignorability/exchangeability): Treatment assignment is random, given confounding features X

Observational data: What goes wrong?

$$p(x|t=1) \neq p(x|t=0)$$

$$\left(\int y_1(x)p(x|t=1)dx - \int y_0(x)p(x|t=0)dx \right) \neq \int (y_1(x) - y_0(x))p(x)dx$$

Adjustment formula (will be revisited later)

$$\begin{split} \mathbb{E}[Y_1-Y_0|X] = & \mathbb{E}[Y_1|X] - \mathbb{E}[Y_0|X] \\ = & \mathbb{E}[Y_1|T=1,X] - \mathbb{E}[Y_0|T=0,X] \quad \text{By Unconfoundedness:} \quad Y_1,Y_0 \perp\!\!\!\perp T \mid X \\ = & \mathbb{E}[Y|T=1,X] - \mathbb{E}[Y|T=0,X] \quad \text{By construction:} \quad Y = TY_1 + (1-T)Y_0 \\ & \quad \text{Also need positivity} \end{split}$$

Adjustment formula (will be revisited later)

$$\begin{split} \mathbb{E}[Y_1-Y_0|X] = & \mathbb{E}[Y_1|X] - \mathbb{E}[Y_0|X] \\ = & \mathbb{E}[Y_1|T=1,X] - \mathbb{E}[Y_0|T=0,X] \quad \text{By Unconfoundedness:} \quad Y_1,Y_0 \perp \!\!\! \perp T \mid X \\ = & \mathbb{E}[Y|T=1,X] - \mathbb{E}[Y|T=0,X] \quad \text{By construction:} \quad Y = TY_1 + (1-T)Y_0 \\ & \quad \text{Also need positivity} \end{split}$$

$$\mathbb{E}[Y_1 - Y_0] = \mathbb{E}_X \left[\mathbb{E}[Y_1 - Y_0 | X] \right]$$

 $= \mathbb{E}_X \Big[\mathbb{E}[Y|T=1,X] - \mathbb{E}[Y|T=0,X] \Big] \qquad \text{The adjustment formula}$

Adjustment formula (will be revisited later)

$$\begin{split} \mathbb{E}[Y_1-Y_0|X] = & \mathbb{E}[Y_1|X] - \mathbb{E}[Y_0|X] \\ = & \mathbb{E}[Y_1|T=1,X] - \mathbb{E}[Y_0|T=0,X] \quad \text{By Unconfoundedness:} \quad Y_1,Y_0 \perp\!\!\!\perp T \mid X \\ = & \mathbb{E}[Y|T=1,X] - \mathbb{E}[Y|T=0,X] \quad \text{By construction:} \quad Y = TY_1 + (1-T)Y_0 \end{split}$$

Also need positivity

$$\mathbb{E}[Y_1 - Y_0] = \mathbb{E}_X \left[\mathbb{E}[Y_1 - Y_0 | X] \right]$$
$$= \mathbb{E}_X \left[\mathbb{E}[Y | T = 1, X] - \mathbb{E}[Y | T = 0, X] \right]$$

The adjustment formula

Hypothetical world

Real world

i.e., can be estimated from observational data

Causal identifiability

Regression Adjustment: Another perspective

Fit a model for $Q(T,X) = \mathbb{E}[Y|T,X]$

(last time we substituted T=1 and T=0 into individual treatment effect = $Q(1, x^{(i)}) - Q(0, x^{(i)})$, then took average over all individuals i, via linear regression). Under the linearity assumption:

$$\mathbb{E}[Y|T,X] = \alpha_0 + \beta_x X + \beta_t T + \epsilon , \ \mathbb{E}[\epsilon] = 0$$

Regression Adjustment: Another perspective

Fit a model for $Q(T,X) = \mathbb{E}[Y|T,X]$

(last time we substituted T=1 and T=0 into individual treatment effect = $Q(1,x^{(i)}) - Q(0,x^{(i)})$, then took average over all individuals i, via linear regression). Under the linearity assumption:

$$\mathbb{E}[Y|T,X] = \alpha_0 + \beta_x X + \beta_t T + \epsilon , \ \mathbb{E}[\epsilon] = 0$$

$$ATE = \mathbb{E}_X \left[\mathbb{E}[Y|T=1,X] - \mathbb{E}[Y|T=0,X] \right]$$
$$= \left(\alpha_0 + \beta_x \mathbb{E}[X] + \beta_t \right) - \left(\alpha_0 + \beta_x \mathbb{E}[X] \right)$$
$$= \beta_t$$

Important remarks about the previous form:

1) Depends on the structure of the causal graph of interest

2) Data need not be linear model-misspecification -> statistical bias

Important remarks about the previous form:

2) Data need not be linear, example:

Say we fitted
$$\mathbb{E}[Y|T,X] = \alpha_0 + \beta_x X + \beta_t T + \epsilon$$
, $\mathbb{E}[\epsilon] = 0$
And obtained β_t for the causal effect,

BUT, in reality the true data generating distribution is e.g.

$$\mathbb{E}[Y|T,X] = \alpha_0 + \beta_x X + \beta_t T + \gamma X.T + \epsilon , \ \mathbb{E}[\epsilon] = 0$$

Or e.g. non-linear:

$$\mathbb{E}[Y|T,X] = e^{\alpha_0 + \beta_x X + \beta_t T + \gamma X.T}$$

Important remarks about the previous form:

2) Data need not be linear, example:

Say we fitted
$$\mathbb{E}[Y|T,X] = \alpha_0 + \beta_x X + \beta_t T + \epsilon$$
, $\mathbb{E}[\epsilon] = 0$
And obtained β_t for the causal effect,

BUT, in reality the true data generating distribution is e.g.

$$\mathbb{E}[Y|T,X] = \alpha_0 + \beta_x X + \beta_t T + \gamma X.T + \epsilon , \ \mathbb{E}[\epsilon] = 0$$

Or e.g. non-linear:

$$\mathbb{E}[Y|T,X] = e^{\alpha_0 + \beta_x X + \beta_t T + \gamma X.T}$$

Then $ATE = \mathbb{E}_X \Big[\mathbb{E}[Y|T=1,X] - \mathbb{E}[Y|T=0,X] \Big]$ is **not** simply β_t !!

Valid causal inference requires correctly-specified models and mathematical guarantees!

Overview of the course

- Lecture 1: Introduction & Motivation, why do we care about causality? Why deriving causality from observational data is non-trivial.
- Lecture 2: Recap of probability theory, variables, events, conditional probabilities, independence, law of total probability, Bayes' rule
- Lecture 3: Recap of regression, multiple regression, graphs, SCM

Matching

Idea: Create a 'clone/twin' for each individual (in terms of X)

i.e. if individual 1 has t = 1, then their 'clone/twin' has t = 0.

Blind ourselves to the outcomes, try to get as similar to a randomised experiment as possible ('correct for confounding')

Example:

Balancing Score

- In a perfect randomised trial: p(t=1|x)=p(t=1)
- In an observational study, p(t=1|x) can be estimated, since it involves observational data at a t and x (hence identifiable).
- A balancing score is any function b(x) such that:

$$x \perp \!\!\!\perp t | b(x)$$

• i.e., distribution of confounders is independent of treatment given b(x):

$$p(X = x|b(x), t = 1) = p(X = x|b(x), t = 0)$$

Unconfoundednesss given a balancing score. Suppose we have unconfoundedness, i.e., $Y_1^{(i)}, Y_0^{(i)} \perp \!\!\!\perp T^{(i)} \mid X^{(i)}$. Then for a balancing score b(x) we have:

$$Y_1^{(i)}, Y_0^{(i)} \perp \perp T^{(i)} \mid b(X^{(i)})$$

Unconfoundednesss given a balancing score. Suppose we have

unconfoudedness, i.e., $Y_1^{(i)}, Y_0^{(i)} \perp \!\!\!\perp T^{(i)} \mid X^{(i)}$. Then for a balancing score b(x) we have:

$$Y_1^{(i)}, Y_0^{(i)} \perp \perp T^{(i)} \mid b(X^{(i)})$$

Proof: Need to show
$$p_T \Big(T = 1 | Y_1, Y_0, b(X) \Big) = p_T \Big(T = 1 | b(X) \Big)$$

have:

Unconfoundednesss given a balancing score. Suppose we have unconfoudedness, i.e., $Y_1^{(i)}, Y_0^{(i)} \perp \!\!\!\perp T^{(i)} \mid X^{(i)}$. Then for a balancing score b(x) we

$$Y_1^{(i)}, Y_0^{(i)} \perp \perp T^{(i)} \mid b(X^{(i)})$$

Proof: Need to show $p_T \Big(T = 1 | Y_1, Y_0, b(X) \Big) = p_T \Big(T = 1 | b(X) \Big)$

Maths aside: Iterated expectations $\mathbb{E}_Z[Z] = \mathbb{E}_W[\mathbb{E}_{Z|W}[Z|W]]$

Unconfoundednesss given a balancing score. Suppose we have unconfoundedness, i.e., $Y_1^{(i)}, Y_0^{(i)} \perp \!\!\!\perp T^{(i)} \mid X^{(i)}$. Then for a balancing score b(x) we have:

$$Y_1^{(i)}, Y_0^{(i)} \perp \perp T^{(i)} \mid b(X^{(i)})$$

Proof: Need to show
$$p_T \Big(T = 1 | Y_1, Y_0, b(X) \Big) = p_T \Big(T = 1 | b(X) \Big)$$

Maths aside: Iterated expectations $\mathbb{E}_Z[Z] = \mathbb{E}_W[\mathbb{E}_{Z|W}[Z|W]]$

$$\mathbb{E}_{W}[\mathbb{E}_{Z|W}[Z|W]] = \sum_{w} \sum_{z} p(Z = z|W = w) \ z \ p(W = w)$$
$$= \sum_{w,z} \frac{p(z,w)}{p(w)} \ z \ p(w) = \sum_{z} p(z) \ z = \mathbb{E}_{Z}[Z]$$

Unconfoundednesss given a balancing score. Suppose we have unconfoundedness, i.e., $Y_1^{(i)}, Y_0^{(i)} \perp \!\!\!\perp T^{(i)} \mid X^{(i)}$. Then for a balancing score b(x) we have:

$$Y_1^{(i)}, Y_0^{(i)} \perp \perp T^{(i)} \mid b(X^{(i)})$$

$$\begin{aligned} & \textbf{Proof: Need to show} \quad p_T \Big(T = 1 | Y_1, Y_0, b(X) \Big) = p_T \Big(T = 1 | b(X) \Big) \\ & p_T \Big(T = 1 | Y_1, Y_0, b(X) \Big) = \mathbb{E}_T \Big[T | Y_1, Y_0, b(X) \Big] \\ & = \mathbb{E}_{X | Y_1, Y_0, b(X)} \Bigg[\mathbb{E} \Big[T | Y_1, Y_0, b(X), X \Big] | Y_1, Y_0, b(X) \Bigg] \\ & \boxed{\mathbb{E}[Z | W] = \mathbb{E}_{V | W} [\mathbb{E}[Z | W, V] | W]} \end{aligned}$$

Unconfoundednesss given a balancing score. Suppose we have unconfoundedness, i.e., $Y_1^{(i)}, Y_0^{(i)} \perp \!\!\!\perp T^{(i)} \mid X^{(i)}$. Then for a balancing score b(x) we have:

$$Y_1^{(i)}, Y_0^{(i)} \perp \!\!\! \perp T^{(i)} \mid b(X^{(i)})$$

Proof: Need to show
$$p_T\Big(T=1|Y_1,Y_0,b(X)\Big)=p_T\Big(T=1|b(X)\Big)$$

$$p_T(T = 1|Y_1, Y_0, b(X)) = \mathbb{E}_T[T|Y_1, Y_0, b(X)]$$

$$= \mathbb{E}_{X|Y_1,Y_0,b(X)} \left[\mathbb{E} \left[T|Y_1, Y_0, b(X), X \right] | Y_1, Y_0, b(X) \right]$$

$$= \mathbb{E}_{X|Y_1,Y_0,b(X)} \left[\mathbb{E} \left[T|b(X),X \right] | Y_1, Y_0,b(X) \right]$$

$$\mathbb{E}[Z|W] = \mathbb{E}_{V|W}[\mathbb{E}[Z|W,V]|W]$$

By Unconfoundedness:
$$Y_1, Y_0 \perp \!\!\! \perp T \mid X$$

Unconfoundednesss given a balancing score. Suppose we have unconfoudedness, i.e., $Y_1^{(i)}, Y_0^{(i)} \perp \!\!\!\perp T^{(i)} \mid X^{(i)}$. Then for a balancing score b(x) we have:

$$Y_1^{(i)}, Y_0^{(i)} \perp \!\!\! \perp T^{(i)} \mid b(X^{(i)})$$

Proof: Need to show
$$p_T\Big(T=1|Y_1,Y_0,b(X)\Big)=p_T\Big(T=1|b(X)\Big)$$

$$p_T\Big(T=1|Y_1,Y_0,b(X)\Big)=\mathbb{E}_T\Big[T|Y_1,Y_0,b(X)\Big]$$

$$=\mathbb{E}_{X|Y_1,Y_0,b(X)}\Big[\mathbb{E}\Big[T|Y_1,Y_0,b(X),X\Big]|Y_1,Y_0,b(X)\Big]$$

$$\mathbb{E}[Z|W]=\mathbb{E}_{V|W}[\mathbb{E}[Z|W])$$

$$= \mathbb{E}_{X|Y_1,Y_0,b(X)} \left[\mathbb{E}\left[T|b(X),X\right] | Y_1,Y_0,b(X) \right]$$

$$= \mathbb{E}_{X|Y_1,Y_0,b(X)} \left[\mathbb{E} \left[T|b(X) \right] | Y_1, Y_0, b(X) \right]$$

$$\mathbb{E}[Z|W] = \mathbb{E}_{V|W}[\mathbb{E}[Z|W,V]|W]$$

By Unconfoundedness: $Y_1, Y_0 \perp \!\!\! \perp T \mid X$

By definition of balancing score:

$$X \perp \!\!\!\perp T|b(X)$$

Unconfoundednesss given a balancing score. Suppose we have unconfoudedness, i.e., $Y_1^{(i)}, Y_0^{(i)} \perp \!\!\!\perp T^{(i)} \mid X^{(i)}$. Then for a balancing score b(x) we have:

$$Y_1^{(i)}, Y_0^{(i)} \perp \!\!\! \perp T^{(i)} \mid b(X^{(i)})$$

$$\mathbb{E}[Z|W] = \mathbb{E}_{V|W}[\mathbb{E}[Z|W,V]|W]$$

By Unconfoundedness: $Y_1, Y_0 \perp \!\!\! \perp T \mid X$

By definition of balancing score:

$$X \perp \!\!\!\perp T|b(X)$$

Casual Inference by Imbens and Rubin

Propensity Score

Candidate b(x) = x, trivially satisfies:

$$p(X = x | x, t = 1) = p(X = x | x, t = 0) = 1$$

e(x) = p(t = 1|x)

- b(x) = x is the **finest** such function: OK for e.g. binary confounders, but only gives point estimates for (almost) continuous confounders!

Treatment
$$t=1$$
 $t=0$
 $b(x)$

The propensity score is a balancing score: $X \perp\!\!\!\perp T|e(X)$

Proof: Need to show
$$p_T \Big(T = 1 | X, e(X) \Big) = p_T \Big(T = 1 | e(X) \Big)$$

LHS:
$$p_T \Big(T=1|X,e(X)\Big) = p_T \Big(T=1|X\Big) = e(X)$$

Propensity score Propensity score is a function of X

definition

The propensity score is a balancing score: $X \perp\!\!\!\perp T|e(X)$

Proof: Need to show
$$p_T (T = 1 | X, e(X)) = p_T (T = 1 | e(X))$$

LHS:
$$p_T(T = 1|X, e(X)) = p_T(T = 1|X) = e(X)$$

RHS:

$$\mathbb{E}[Z|W] = \mathbb{E}_{V|W}[\mathbb{E}[Z|W,V]|W]$$

$$p_T(T = 1|e(X)) = \mathbb{E}[T|e(X)] = \mathbb{E}_{X|e(X)} \left[\underbrace{\mathbb{E}[T|e(X), X]}_{e(X)} \middle| e(X) \right]$$
$$= \mathbb{E}[e(X)|e(X)] = e(X)$$

The propensity score is the coarsest balancing score, i.e., it is a function of every balancing score b(x): e(x) = f(b(x))

The propensity score is the coarsest balancing score, i.e., it is a function of every balancing score b(x): e(x) = f(b(x))

Proof: Let b(x) be a balancing score. Suppose we **cannot** write the propensity score e(x) as e(x) = f(b(x)). Therefore, there must be a case where : $b(x) = b(x') = b^*$ while $e(x) \neq e(x')$. Then,

$$p(t = 1|x, b(x)) = p(t = 1|x) = e(x) \neq e(x') = p(t = 1|x') = p(t = 1|x', b(x'))$$

The propensity score is the coarsest balancing score, i.e., it is a function of every balancing score b(x): e(x) = f(b(x))

Proof: Let b(x) be a balancing score. Suppose we **cannot** write the propensity score e(x) as e(x) = f(b(x)). Therefore, there must be a case where : $b(x) = b(x') = b^*$ while $e(x) \neq e(x')$. Then,

$$p(t = 1|x, b(x)) \not \ni p(t = 1|x', b(x'))$$

$$b^*$$

Recall definition of balancing score:

$$x \perp \!\!\!\perp t | b(x)$$

The propensity score is the coarsest balancing score, i.e., it is a function of every balancing score b(x): e(x) = f(b(x))

Proof: Let b(x) be a balancing score. Suppose we **cannot** write the propensity score e(x) as e(x) = f(b(x)). Therefore, there must be a case where : $b(x) = b(x') = b^*$ while $e(x) \neq e(x')$. Then,

$$p(t = 1|x, b(x)) \not \ni p(t = 1|x', b(x'))$$

i.e., probability of treatment changes depending on value of x despite b*:

$$x \not\perp \!\!\!\perp t|b(x)$$

This violates the definition of a balancing score. Proof by contradiction.

- Match control and treatment individuals based on their propensity score
- Greedy matching:
 - Randomly order list of control and treated.
 - Start with the first individual from e.g. treated and match to control with the smallest distance (i.e. obtains the **local** minimum)
 - Remove individuals from control and matched treated
 - Move to the next treated subject

Treatment	Control
40	50
65	25

- Match control and treatment individuals based on their propensity score
- Greedy matching:
 - Randomly order list of control and treated.
 - Start with the first individual from e.g. treated and match to control with the smallest distance (i.e. obtains the **local** minimum)
 - Remove individuals from control and matched treated
 - Move to the next treated subject

- Match control and treatment individuals based on their propensity score
- Greedy matching:
 - Randomly order list of control and treated.
 - Start with the first individual from e.g. treated and match to control with the smallest distance (i.e. obtains the **local** minimum)
 - Remove individuals from control and matched treated
 - Move to the next treated subject

- Match control and treatment individuals based on their propensity score
- Greedy matching:
 - Randomly order list of control and treated.
 - Start with the first individual from e.g. treated and match to control with the smallest distance (i.e. obtains the local minimum)
 - Remove individuals from control and matched treated
 - Move to the next treated subject
- Optimal matching: Minimises the global distance, computationally demanding

• ATE:
$$\tau = \hat{\mathbb{E}}[\tau^{(i)}] = \hat{\mathbb{E}}[y_1^{(i)} - y_0^{(i)}] = \frac{1}{N} \sum_{i=0}^{N} \left(y_1^{(i)} - y_0^{(i)} \right)$$

Inverse Probability of Treatment Weighting (IPTW)

- Inflate the weight for under represented-subjects due to missing data
- Based on propensity score
- Weight: inverse probability of receiving observed treatment, for individual i with covariate x:

$$w_i = \begin{cases} \frac{1}{e(x_i)} & \text{if } t_i = 1\\ \frac{1}{1 - e(x_i)} & \text{if } t_i = 0 \end{cases}$$

$$e(x) = p(t = 1|x)$$

- Example: Suppose individual (i) has a large e(x), i.e., their probability of receiving treatment is high.
- If $t_i = 1$ then $w_i \approx 1$ (typical behaviour: most with x_i are treated)
- If $t_i = 0$ then $w_i \gg 1$ (underrepresented: boost weight for rare event)

Inverse Probability of Treatment Weighting (IPTW)

- Inflate the weight for under represented-subjects due to missing data
- Based on propensity score
- Weight: inverse probability of receiving observed treatment, for individual i with covariate x:

$$w_i = \begin{cases} \frac{1}{e(x_i)} & \text{if } t_i = 1\\ \frac{1}{1 - e(x_i)} & \text{if } t_i = 0 \end{cases}$$

$$e(x) = p(t = 1|x)$$

Inverse Probability of Treatment Weighting (IPTW)

$$e(x) = p(t = 1|x)$$

$$\frac{1}{N} \sum_{\text{treated}} y_{\underline{1}}^{(i)} \frac{1}{e(x_i)} - \frac{1}{N} \sum_{\text{not treated}} y_{\underline{0}}^{(i)} \frac{1}{1 - e(x_i)}$$

Weights may be inaccurate/unstable for subjects with a very low probability of receiving the observed treatment (other estimators exist)

In a randomised control trial (RCT) limit, p(t=1|x) = p(t=0|x) above reduces to:

$$\frac{1}{N_1} \sum_{\text{treated}} y_{\underline{1}}^{(i)} - \frac{1}{N_0} \sum_{\text{not treated}} y_{\underline{0}}^{(i)}$$

$$N = N_1 + N_0$$

Overview of the course

- Lecture 1: Introduction & Motivation, why do we care about causality? Why deriving causality from observational data is non-trivial.
- Lecture 2: Recap of probability theory, variables, events, conditional probabilities, independence, law of total probability, Bayes' rule
- Lecture 3: Recap of regression, multiple regression, graphs, SCM

Methods for Causal Inference Lecture 5: Rubin's framework, propensity score, IPTW

Ava Khamseh

School of Informatics 2024-2025