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Recall: Naive regression leads to bias
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Recall: Naive regression leads to bias
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What happens if we naively perform a
linear regressionof Yon T: Y =77 + 65U
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Recall: Instrumental Variable assumptions

® SUTVA: Potential outcomes for each individual i are unrelated to the
treatment status of other individuals:

YO(Z,T) =YD Z® 17O |Z| = |T| = N individuals

® Non-zero average/relevant: Treatment assignment Z associated with the
treatment E {(T(“\z = 1) - (T(i)\z = O)}
® Treatment assignment Z is random (Z and Y do not share a cause).

(Y“)yz = 1,t) = (Y“)yz = O,t)

® Exclusion Restriction: Any effect of Zon Y isviaaneffectof ZonT,i.e,
Z should not affect Y when T is held constant

® Monotonicity (increasing encouragement “dose”
increases probability of treatment, no defiers):

(T@')\z - 1) > (T@)yz - o)
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Recall: Instrumental Variable assumptions

0 Rubin 1996



So far...

® Lecture 1: Introduction & Motivation, why do we care about causality?
Why deriving causality from observational data is non-trivial.

® Lecture 2: Recap of probability theory, variables, events, conditional
probabilities, independence, law of total probability, Bayes’ rule

® Lecture 3: Recap of regression, multiple regression, graphs, SCM

® Lecture 4-20: ‘ Causality ‘
Causal Effect Estimation ‘ ‘ Casual Discovery
Obsv confounders ‘ ‘ Unobsv ff- founders Constraint- Score-
] FCMs
| based based
j Regression Propensity {" ront-door
¥ Adjustment score § criterion




Back to observed confounders

Matching: Stratification, balancing (propensity) score, IPTW, ...
x 1L t|b(x)

Estimation of propensity scores directly from the data & algorithms

e(x) = plt = 1|x)

Sensitivity analysis: No guarantee that matching leads to balance on
variables we did not match for, people who look comparable may differ.

If there is hidden bias, how severe is it:
- Does the conclusion change from statistically significant to not?

- Does it change the direction of effect?




Sensitivity Analysis
Randomised trials are unconfounded by design

Observational data may have possible hidden bias/unobserved
confounder that is not controlled for

No guarantee that matching leads to balance on variables we did not
match for!

People who look comparable may differ
This violates unconfoundedness assumption

Unconfoundedness is fundamentally (directly) unverifiable

Rosenbaum Design of Observational Studies, Springer, 2010



Types of sensitivity Analysis (non-exhaustive)

e Quick and simple sanity checks
eSuper Learning other potential (‘less likely’) confounders

e Deriving bounds on the causal statistical estimates



Sensitivity Analysis: Quick sanity checks

1) Random ‘unobserved’ common cause: Add an independently and randomly
drawn confounder affecting treatment and outcome,
re-run the analysis

Example: Specify how the simulated confounder affects treatment and outcome.
This could be done via a linear model with two equal/different coefficients for a
continuous treatment or a binary flip (probability that simulated confounder’s
effect flips the value of treatment/outcome from O to 1).

If our original causal estimate was
significant, this operation should
not change the results ‘much’.
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Sensitivity Analysis: Quick sanity checks

2) Placebo treatment effect: Replace treatment with randomly generated placebo
e.g. we the same marginal distribution of # treatment and # control

The new estimate should be statistically zero.
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Sensitivity Analysis: Quick sanity checks

3) Subset/validate the data: Subsetting the data is similar to cross-validation,
checking if the causal estimate remain statistically the same
(Can also use bootstrap samples of original data).

If possible validate on a different data set
(where the distribution of T, X, Y is expected to be the same)
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Sensitivity: Super Learning

2. Training on (V-1) fold 3. Predict on remaining test fold

1. V-fold Split 1 GLM Predicted outcome Ypred Obs Yobs
_’2 *| XGBoost |1 1 |Z1.aum|Z1.xce | Z1HAL| *°° Yv=1
v HAL ...
1 GLM
Input data —
P 2 »| XGBoost |— 2 |Z,6im|Zoxes | ZomaL| oo Yv=2
+ — [~ HAL ...
Library of Algorithms
H GLM
1| XGBoost [—>| V |Zvaim|Zvxcs | ZvuaL| *°° Yv=v
y HAL ...
| | l 4. Fit the weight a
5. Train each algorithm E[Yobs|Yprea] = ¥ for each algorithm
on entire dataset combined «—
with fitted weights a1YoLm + a2Yuar +azYxg + - -

If the subject expert suspect that a variable can be confounder, we should
include it in the Super Learner, and allow the model to be chosen via V-fold
cross-validation.
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Sensitivity: Super Learning

2. Training on (V-1) fold 3. Predict on remaining test fold

1. V-fold Split 1 GLM Predicted outcome Ypred Obs Yobs
_’2 *| XGBoost |1 1 |Z1.aum|Z1.xce | Z1HAL| *°° Yv=1
v HAL ...
1 GLM
Input data —
P 2 »| XGBoost |— 2 |Z,6im|Zoxes | ZomaL| oo Yv=2
+ — [~ HAL ...
Library of Algorithms
H GLM
1| XGBoost [—>| V |Zvaim|Zvxcs | ZvuaL| *°° Yv=v
y HAL ...
| | l 4. Fit the weight a
5. Train each algorithm E[Yobs|Yprea] = ¥ for each algorithm
on entire dataset combined «—
with fitted weights a1YoLm + a2Yuar +azYxg + - -

If the subject expert suspect that a variable can be confounder, we should
include it in the Super Learner, and allow the model to be chosen via V-fold
cross-validation.

But some times there are too many potential candidate confounders...
Perhaps we wish to use feature selection, then perform sensitivity tests

including selected/non-selected features.
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Sensitivity: Super Learning

Example: PCA plots capture variation in a population
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Sensitivity: Super Learning

6th PC

12rd FC

16th PC

Example: PCA plots capture variation in a population

10th PC

14th PC

16th PC

20th PC

Population Ancestry

Stratification

Variant

Add higher-order PCs as
confounders in the SL and
test if the estimates change
(they should stabilise at
some order).

biobank”



Sensitivity Analysis: Bounds

® ‘This difference in the unobserved covariate u, the critic continues, is the
real reason outcomes differ in the treated and control groups: it is not an
effect caused by the treatment, but rather a failure on the part of the
investigators to measure and control imbalances in u. Although not
strictly necessary, the critic is usually aided by an air of superiority: “This

nn

would never happen in my laboratory.

Roseibaum Design of Observational Studies, Springer, 2010



Sensitivity Analysis: Bounds

® ‘This difference in the unobserved covariate u, the critic continues, is the
real reason outcomes differ in the treated and control groups: it is not an
effect caused by the treatment, but rather a failure on the part of the
investigators to measure and control imbalances in u. Although not
strictly necessary, the critic is usually aided by an air of superiority: “This

nn

would never happen in my laboratory.

® “ltis important to recognize at the outset that our critic may be, but need
not be, on the side of the angels. The tobacco industry and its (sometimes
distinguished) consultants criticized, in precisely this way, observational
studies linking smoking with lung cancer.”’

Rosei®aum Design of Observational Studies, Springer, 2010



Sensitivity Analysis: Bounds

® Take individuals (i) and (j), such that their observed covariates are
the same: X — XU hence e!*) = ¢l9) no hidden bias
® Consider e.g., the odds ratio: .

O
7
1_etrue
(7)
etiue
(7)

1_€true

< <T — I'~1

1
I

® Otherwise if there is a hidden bias, e.g., " = 2, one subject is twice
as likely to receive treatment than not, because of unobserved
pre-treatment feature

® ['quantifies degree of bias.
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Hypothesis testing detour

Suppose we have estimated the causal effect of treatment T on outcome Y
and we wish to quantify if this difference is significantly away from zero

it}

Pictorially:

i ,u’ + o'
The zero line
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Hypothesis testing detour

Suppose we have estimated the causal effect of treatment T on outcome Y
and we wish to quantify if this difference is significantly away from zero

wxro ]
-- i ,u’ + o'
o The zero line

Significant Not significant

(> 30 away from zero) (zero within 1o )

Pictorially:
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Hypothesis testing detour

Suppose we have estimated the causal effect of treatment T on outcome Y
and we wish to quantify if this difference is significantly away from zero

Suppose we have the null hypothesis Hy that the causal effect of treatment
on outcome is zero.
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Hypothesis testing detour

Suppose we have estimated the causal effect of treatment T on outcome Y
and we wish to quantify if this difference is significantly away from zero

Suppose we have the null hypothesis Hy that the causal effect of treatment
on outcome is zero.

The alternative hypothesis 1 is that the causal effect of treatment on
outcome is ‘significantly’ non-zero.

This significance is quantified by a p-value, obtained via statistical testing.
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Hypothesis testing detour

Suppose we have estimated the causal effect of treatment T on outcome Y
and we wish to quantify if this difference is significantly away from zero

Suppose we have the null hypothesis Hy that the causal effect of treatment
on outcome is zero.

The alternative hypothesis 1 is that the causal effect of treatment on
outcome is ‘significantly’ non-zero.

This significance is quantified by a p-value, obtained via statistical testing.

A commonly used statistic in this context is a t-test (or z-test).

-

signal  ATE
g. = ~ t-distributed (or z-distributed)
1101S€ OATE
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Significance: p-value

Probability of obtaining a measurement of statistics that is
more extreme than the value to, given the null hypothesis.

signal
5 | > 1o H())

p-value = Pr( ,
noise

A




Significance: p-value

Probability of obtaining a measurement of statistics that is
more extreme than the value to, given the null hypothesis.

signal
5 | > 1o H())

noise

p-value = Pr ‘

A




Significance: p-value

Probability of obtaining a measurement of statistics that is
more extreme than the value to, given the null hypothesis.

p-value = Pr

Hy

Highly likely that the estimate
is not from the null-distribution
Reject the null in favour of alt




Significance: p-value

® Correct inference:
True negative: H, not rejected, and the estimate is indeed from Hy

True Positive: H is rejected correctly, the estimate is indeed from H;

® Incorrect inference:
False negative: Hjnot rejected, but the estimate is from H1(type Il error)

False positive: Hj is rejected incorrectly but the estimate is from Hy not H;

(Type | error)

Figure from WikiPedia: Type |, Type |l errors



Sensitivity Analysis bound: An example [non-examinable]

® S pairs,s = 1,..,S of two subjects, one treated, one control, matched for

observed covariates

@ Statistical test: Wilcoxon'’s sighed rank test (hon-parametric), W is the sum
of the ranks of the positive differences between treatment and control
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http://www-stat.wharton.upenn.edu/~rosenbap/BehStatSen.pdf

Sensitivity Analysis bound: An example [non-examinable]

® S pairs,s = 1,..,S of two subjects, one treated, one control, matched for

observed covariates

@ Statistical test: Wilcoxon'’s sighed rank test (hon-parametric), W is the sum
of the ranks of the positive differences between treatment and control
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http://www-stat.wharton.upenn.edu/~rosenbap/BehStatSen.pdf

Sensitivity Analysis bound: An example [non-examinable]

® S pairs,s = 1,..,S of two subjects, one treated, one control, matched for
observed covariates

@ Statistical test: Wilcoxon'’s sighed rank test (hon-parametric), W is the sum
of the ranks of the positive differences between treatment and control

Control | Treatment | Difference| Abs Diff

82 87 5 S
102 92 -10 10
100 80 -20 20
95 110 15 15
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http://www-stat.wharton.upenn.edu/~rosenbap/BehStatSen.pdf

Sensitivity Analysis bound: An example [non-examinable]

® S pairs,s = 1,..,S of two subjects, one treated, one control, matched for
observed covariates

@ Statistical test: Wilcoxon'’s sighed rank test (hon-parametric), W is the sum
of the ranks of the positive differences between treatment and control

Control |Treatment Difference| Abs Diff Rank

82 87 ) ) 1
102 92 -10 10 2
Based on
number here
100 80 -20 20 )
95 110 15 15 4
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http://www-stat.wharton.upenn.edu/~rosenbap/BehStatSen.pdf

Sensitivity Analysis bound: An example [non-examinable]

® S pairs,s = 1,..,S of two subjects, one treated, one control, matched for
observed covariates

@ Statistical test: Wilcoxon'’s sighed rank test (hon-parametric), W is the sum
of the ranks of the positive differences between treatment and control

Control |Treatment Differencel Abs Diff Rank Rank sum of -ves: 7
Rank sum of +ve: 8
55 %8 13 13 3 Wstat = 7 (the smaller of above)
82 87 5 5 1
Weritical: Look-up table
102 92 10 10 5 critical P

Total number of individuals: N
e e | Threshold: 0.05

If Wstat < Weritical reject

l.e. drug group significantly

95 110 15 15 4 different from control

100 80 -20 20 5
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Sensitivity Analysis bound: An example [non-examinable]

® S pairs,s = 1,..,S of two subjects, one treated, one control, matched for
observed covariates

@ Statistical test: Wilcoxon'’s sighed rank test (hon-parametric), W is the sum
of the ranks of the positive differences between treatment and control

® In a moderately large randomized (here matched) experiment, under the
null hypothesis of no effect, W is approximately normally distributed

SW] = S(S+1)/4 , Var[W]=S(S+1)(2S +1)/24

34
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Sensitivity Analysis bound: An example [non-examinable]

® Example: W=300, S=25 pairs in arandomised experiment
® In arandomised experiment (1" = 1, well-matched):

E[W] = 162.5 , Var[W] = 1381.25 , deviate Z = (300 — 162.5)/v/1381.25 = 3.70

® Compared to a normal distribution: p-value = 0.0001
® In a moderately large observational study, under the null

hypothesis of no effect, the distribution of W is approximately
bounded between two Normal distributions (notice: 1" =~ 1)

Pmax = AS(S+1)/2 | pimin = (1 = A)S(5S+1)/2
0 =X1—-X)S(S+1)(25+1)/6
A=T/(1+T) Notice I' =1
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Sensitivity Analysis bound: An example [non-examinable]

® Example: W=300, S=25 pairs in arandomised experiment
eFor'=2 A=1/(1+T1)=2/3
Umax = AS(S +1)/2=216.67 , pmin = (1 —X)S(S+1)/2=108.33

o° =A1-XNS(S+1)(25+1)/6 =1227.78

Z1 =547 = p=0.00000002
Zo = 2.38 = p=0.009 still significant, even with' = 2

® For the tobacco and lung cancer example, I =.6

Notice: Here there are two sources of uncertainty:

1) Due to the (causal) statistical estimates
2) Due to sensitivity analysis (of unobserved variables, bias)
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