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Various casual guantities of interest

AverageTreatment Effect (ATE)E|Y7 — Yis|a (common) causal quantity of
interest, but it’s not the only one....

We have talked about Conditional Average Treatment Effect (CATE)

Y7 — Yy| X = x]which is the average treatment effect for individuals with a
certain feature X=x.

Other causal quantities of interest: Causal interaction of two treatments on
outcome.

For example: Two drugs for cancer (chemotherapy and radiotherapy)
|s this interaction positive, negative or neutral?



Causal effect of interactions on outcome

Key: function that can be computed for any statistical model. (Function of
the distribution without needing to specify its parametric form.)

Average Treatment Effect (ATE):

ATEr(Y)=Ex[E(Y |T=1,X)—E(Y |T =0, X)]

Interactions between genes i and j leading to outcome Y:

I 1JEY | (T, 1) = (1,1)) = E(Y | (Th,T2) = (0,1), X)
E(Y | (Th,T2) N(1,0)) — E(Y | (T1, %) = (0,0), X)|.

@ Treatment i given or not

Q ° Treatment j given



Causal effect of interactions on outcome

Key: function that can be computed for any statistical model. (Function of
the distribution without needing to specify its parametric form.)

Average Treatment Effect (ATE):

ATEr(Y)=Ex[E(Y |T=1,X)—E(Y |T =0, X)]

Interactions between genes i and j leading to outcome Y:

)— “3(Y Tl,TQ) (O 1),X)

[33,::43()/ (T1,T%) = (1,1) (
B | (10, T) = (1,0)) — E(Y | (T3, 1) = (0,0), X))

@@ \ /

Treatment i given or not
Treatment j not given
Q ° j Beentjes & Khamseh, Physical Review E (2020)




Example: Linear regression

Suppose a linear ground truth:

Y = ap + a1y + aldy + 1715



Example: Linear regression

Suppose a linear ground truth:

Y = ap + a1y + aldy + 1715

EY |Th=1,T,=1)=ag+ a1 + as + 7
EY |T:=1,T,=0) = ag + oy

E(Y | T =0Ty =1) = ag + as

E(Y | Ty =0,Ts = 0) = ag

ATETl(Y‘ngl):Oél —I—”y, ATETQ(Y‘lel):CVQ—F’}/,
ATEr, (Y | Th = 0) = a3 ATE7, (Y | T = 0) = as

a . . a
1,2 =7 = [2,1



Beyond effect sizes [non-examinable]

Importantly, it allows us to target very precise questions:

1. Effect on health if all people were treated, i.e.,

d, [Yl — Y]

!

{X[

YT =1, X]| —

Y] > 07



Beyond effect sizes [non-examinable]

Importantly, it allows us to target very precise questions:

1. Effect on health if all people were treated, i.e.,

d, [Yl — Y]

!

{X[

Y |T =1, X]] —E[Y] > 0?

2. Effect on health if people were treated based on confounders,

L Ygx) — Y]

!

ﬂX[

YT =d(X), X]| —
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Beyond effect sizes [non-examinable]
Importantly, it allows us to target very precise questions:
1. Effect on health if all people were treated, i.e.,

!

Y - Y] =Ex [E[Y|T =1,X]| —E[Y] > 07

2. Effect on health if people were treated based on confounders,

!

Yy x) — Y] =Ex |EY|T =d(X), X]| — E[Y] > 07

3. Flip it around: What is the optimal treatment rule, i.e.

dops (X) = arg max{ Ex [E[Y|T = d(X), X]] ~ E[Y]}

9 Slide from Sjoerd Beentjes



Time to event causal estimates [non-examinable}

What is the data structure? Example: O = (Y, T, X, 7, A) ~ P,

Here we have

Y = outcome (i.e. event occurs or not (1 or 0))
T =treatment

X = confounders / covariates
Tau = time of event (if it occurs)

C = time of censoring (if patient drops out before event)
Only one of tau or Cis observed, namely 7 = min(T, C)
= censoring occurs or not (1 or0),i.e,is 7 < (7

Causal question:
“Is survival time greater under treatment or not?”’, i.e

P(ry >7%) —P(rg > 7*) > 07

10 Slide from Sjoerd Beentjes



Time to event causal estimates [non-examinable}

® Model a causal inference problem with assumptions manifest in Causal
Graphical Models [Pearl]

® Identify an expression for the causal effect under these assumptions
(“causal estimand”), [Pearl]

® Estimate the expression using statistical methods such as matching or
instrumental variables,

® Verify the validity of the estimate using a variety of robustness checks.

11



Overview of the course

® Lecture 1: Introduction & Motivation, why do we care about causality?
Why deriving causality from observational data is non-trivial.

® Lecture 2: Recap of probability theory, variables, events, conditional
probabilities, independence, law of total probability, Bayes’ rule

® Lecture 3: Recap of regression, multiple regression, graphs, SCM

® Lecture 4-20:

‘ Causality ‘
‘ Causal Effect Estimation ‘ ‘ Casual Discovery
‘ Obsv confounders ‘ ‘Unobsvconfounders Constraint- Score-
FCMs

based based

Regression || Propensity Front-door
. |V o

Adjustment score criterion

Rubin




Pearl’s Model of Causality

® Ladder of causation:
e Association: What does a symptom tell me about a disease?

e Intervention (perturbation): If | take aspirin will my headache be

cured?
e Counterfactual: Was it the aspirin that stopped the headache?

(alternative versions of past events, strongest causal statements e.g.

physical laws)

® Aim: To model and identify the causal estimand

® Causal graphical models + structural equations

13



Causal Graphical Models

e Diagrammatic representation of probability distributions + causal info
e Graph: Consists of a set of vertices V (hodes), edges E

e V are the variables and E contains information between the variables
e Graphs can be directed, undirected and bidirectional (confounder?)

O—0] 60 -0

e Directed graphs may include directed cycles, i.e., mutual causation/feedback
process

e A graph with nodirected cycles is an acyclic graph. @

14 Causality, Pearl (2009)



Directed Acyclic Graphs (DAGS)

@ Z, X are parents of Y
a ° Z, X, W are ancestors of Y

Y has no children

X has no parents
® DAG in which every node has at most one parent is a tree
® A tree in which every node has at most one child is a chain
e DAG:
 Expresses model assumptions explicitly

 Represents joint probability functions
* Provides efficient inference of observations

15



DAG contains more info than joint probability

p(a.b, ¢) = p(cla, b)p(a,b) = plcla, Blp(bla)p(a) Q’Q
pla.b,c) = plalb, c)p(b,c) = p(alb, c)p(c|b)p( (<)
’19

symmetrlc

Symmetric
ina, b, c

® Probabilistic notations are not enough to describe causal aspects

® Using repeated application of product/Bayes’ rule, one can write any joint
probability distribution in terms of its marginals and conditionals

® A graph s fully connected if there is a link between every pair of nodes

® Theinterest lies in the absence of a link and link direction.

16



Basic DAG structures:

® Conditional independence via graphs and D-separation
® 3 main graph structures:

() OWO

Fork Chain Collider

® Next Lecture: Do-calculus and causal identification

17



Fork

p(a,b, c) = p(alc)p(blc)p(c) plalb, c)p(blc)p(c)

Case 1: No conditioning a

p(a,b) =Y pla,b,c) =Y plalc)p(ble)p(c) # p(a)p(b) in general

= a /bl

Case 2: Conditioningon c

plable) = P ne) PRI o]y

= a 1L b|c c blocks (d-separates) the path fromatob

18

Fork




Chain

p(a,b,c) = p(a)p(cla)p(b|c)

Case 1: No conditioning Chain
=" pla)p(cla)p(ble) = p(a) Z p(blc)p(cla) = p(a)p(bla) # p(a)p(d)
- Using:
= a fL b|() N p(ble)p(cla) Zp ble, a)p(cla) = Zp (b, c|a) = p(b|a)

Case 2: Conditioningon c

pla.b,c) _ plaplclalp(ble) _ p(@)p(ble)plale)p(eN

p(c) p(c) p(c) p(a)

p(a,blc) = = p(alc)p(b|c)

= a 1L blc c blocks (d-separates) the path fromatob

19



Collider
p(a,b, ) = p(a)p(B)p(cla, b ) (o)

Case 1: No conditioning Q

Zp p(cla, b) Zp cla, b) P®) [ Collider

= a 1L b|@ with no conditioning, a and b are independent

Case 2: Conditioningon c

_ p(a;b, ) — p(a)p(b)p(cla, b) alc c) in genera
pla,ble) = % - PROPELALD) s p(ale)p(t]c) in general

=a fL b|C c unblocks the pathfromatob

20



Summary

® Conditional independence via graphs and D-separation
® 3 main graph structures:

() OWO

Fork Chain Collider

a L bl a L b|0 a1l bl|()
a1l blc all blc a L blc

21



Collider example

B: State of battery, B=1 charged, B=0 flat
F: State of fuel tank, F=1 full, F=0 empty
G: State of electric fuel gauge, G=1 full, G=0 empty

Given Info:
p(B=1)=09
p(F: 1) =0.9
p(G=1B=1F =
p(G=1B=1F =
p(G=1B=0,F =
p(G=1B=0,F =

22

Collider




Collider example e 6

B: State of battery, B=1 charged, B=0 flat
F: State of fuel tank, F=1 full, F=0 empty
G: State of electric fuel gauge, G=1 full, G=0 empty e

@ Before any conditioning (before observing):
p(FF=0)=0.1

23



Collider example

B: State of battery, B=1 charged, B=0 flat
F: State of fuel tank, F=1 full, F=0 empty
G: State of electric fuel gauge, G=1 full, G=0 empty

@ Before any conditioning (before observing):

p(F=0)=0.1
@ Now suppose we observe G=0
v
p(G =0|F = 0)p(F' = 0)

p(F'=0|G =0) =

p(G = 0)

24 Bishop, Pattern Recognition and Machine Learning, Chapter 8



Collider example °

B: State of battery, B=1 charged, B=0 flat
F: State of fuel tank, F=1 full, F=0 empty
G: State of electric fuel gauge, G=1 full, G=0 empty

@ Before any conditioning (before observing):
p(F=0)=0.1

@ Now suppose we observe G=0

_we=0Fp =opr =0

p(F = 0|G = 0)
G —
B,Fe{0,1}

2. p(G=0F=0.B)p(B) =081 — p(G = 0|B, F)p(B|F)p(F)
Be{0,1} v v B,F%{:o,l}

= Y p(G=0[B,F)p(B)p(F) = 0.315
Since B and F are independent B,Fe{0,1} v v




Collider example °

B: State of battery, B=1 charged, B=0 flat
F: State of fuel tank, F=1 full, F=0 empty
G: State of electric fuel gauge, G=1 full, G=0 empty

@ Before any conditioning (before observing):
p(F=0)=0.1
(2) p(F =0|G =0) =0.257

p(F = 0) <p(F =0|G =0)

Observing that gauge reads empty makes it more
likely that the tank is indeed empty.

20



Collider example

B: State of battery, B=1 charged, B=0 flat
F: State of fuel tank, F=1 full, F=0 empty
G: State of electric fuel gauge, G=1 full, G=0 empty

(2) p(F=0|G =0)=0.257

@ Now we also observe B=0
p(F=0,G=0,B=0)
p(G=0,B=0)

- p(G=0/B=0,F=0)p (F 0)p(B = 0|F = 0)
B ZFe{o,l}P(G:mB 0, F)p(F)p(B = 0| F)

p(F=0/G=0,B=0)=

= 0.111




Collider example e 6

B: State of battery, B=1 charged, B=0 flat
F: State of fuel tank, F=1 full, F=0 empty
G: State of electric fuel gauge, G=1 full, G=0 empty G

(2) p(F=0|G =0)=0.257

@ Now we also observe B=0
p(F=0,G=0,B=0)
p(G=0,B=0)

- p(G=0/B=0,F=0)p (F 0)p(B = 0|F = 0)
B ZFG{O,l}p(G:O’B 0, F)p(F)p(B = 0| F)

p(F=0/G=0,B=0)=

= 0.111

p(F =0|G =0) > p(F = 0|G =0, B = 0)

Probability that tank is empty F=0 has decreased with extra
information on the state of the battery



Collider example e 6

B: State of battery, B=1 charged, B=0 flat
F: State of fuel tank, F=1 full, F=0 empty
G: State of electric fuel gauge, G=1 full, G=0 empty G

(1) p(F=0)=01

(2) p(F=0|G =0)=0.257

() »(F =0/G=0,B=0)=0.111

Conditioning on G, then finding out the battery is flat, ‘explains

away’ the observation that the fuel gauge reads empty. The state of
the fuel tank and the battery have become dependent:

p(F = 0|G =0) # p(F =0|G =0,B =0)

(Even though: p(F) = p(F'|B))



D-separation

A path pis blocked by a set of nodes Z if and only if:

1) p contains a chain of nodes A->B ->Corafork A<-B->Csuch
that the middle node Bisin Z (i.e. B is conditioned on), or

2) pcontains a collider A -> B <- C such that the collision node B is
notin Z,and no descendant of Bisin Z.

© 3@



Confounder vs not a confounder

Classical
confounder
case

T

No
confounder
case

Ex |Ey [Y]X,T]] Z/dw p(ﬂ?)/dy y p(ylz,t)

d:v p(z) / dy y (?z’x‘xt‘)t )

p(y, x[t)

dx p(x dy Y
p(z)
/dy y p(ylt) = Ey [Y|T],

j Independence of Xand W

on the RHS graph j.,




Pearl’s framework
Graphical models & Do-calculus

32



Observation (conditioning) vs intervention

Distinguish between: a variable T takes a value t naturally and cases
where we fix T=t by denoting the latter do(T=t)

p(Y =y|T =1t

Probability that Y=y conditional on finding T=t
l.e., population distribution of Y among individuals °
whose T value is t (subset)

p(Y = yldo(T = 1) ()—(

Probability that Y=y when we intervene to make T=t
i.e., population distribution of Y if everyone in the population had
their T value fixed at t.

Graph surgery

33



Structural Causal Models (SCM)

An SCM consists of d structural assignments

Xj Z:fj(PAj,Nj) ] ]:1,,d

Parents of X, i.e., direct causes of X Jointly independent noise variables

. 6 ()

= f2 (X1 ,Nz) / \
- (%) (%)
e Ni,...,Ny jointly independent \/
e G is acyclic

34 Jonas Peters et al, Elements of Causal Inference (2017)



S

. THE UNIVERSITY
= of EDINBURGH

Methods for Causal Inference
Lecture 9: D-separation and intro to Pearl’s framework

Ava Khamseh

School of Informatics
2024-2025



