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“Correlation does not imply causation”

Spurious correlation (random coincidence)

Number of people who drowned by falling into a pool
correlates with

Films Nicolas Cage appeared in
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Correlation: 66.6%
(r=0.666)
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“Correlation does not imply causation”

Spurious correlation (random coincidence)

Age of Miss America
correlates with

Murders by steam, hot vapours and hot objects
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“Correlation does not imply causation”

Spurious correlation (random coincidence)

Divorce rate in Maine
correlates with

Per capita consumption of margarine
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Correlation: 99.26%
(r=0.9926)
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“Correlation does not imply causation”

Reverse causation:

The faster the wind-turbine rotates, the more wind is observed.
Therefore, rotation of turbines is the cause for winds!
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“Correlation does not imply causation”

Circular/bidirectional cause and consequence:
Hours spent on Netflix and weight gain

Scenario 1:
Hours spent on Netflix » Less activity»increase in weight

Scenario 2:
Weight gain» exercising gets harder »more time online as hobby
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“Correlation does not imply causation”

Confounding factor:

Fever is not a cause of sneezing, they are both symptoms of flu
(no arrow)

Treatment & health outcome relationship confounded by age

Hidden variable



Why should we care about causation?

® To guide actions and policies

® To understand how and why interventions affect outcomes

® Predict what would have happened under a different intervention:
“What if | were to act differently?”
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Why should we care about causation?

® To guide actions and policies

® To understand how and why interventions affect outcomes

® Predict what would have happened under a different intervention:
“What if | were to act differently?”

Controversial examples:

- Biomedical: “Vaccines lead to autism” (no scientific evidence!)
- Political/Economical: “increases in minimum wage, increases
unemployment (people become lazy)”
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Why should we care about causation?

® To guide actions and policies

® To understand how and why interventions affect outcomes

® Predict what would have happened under a different intervention:
“What if | were to act differently?”

Other general examples:

- Biomedical: What drug, what dose, when, how often, ... (see later)
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Why should we care about causation?

® To guide actions and policies
® To understand how and why interventions affect outcomes

® Predict what would have happened under a different intervention:
“What if | were to act differently?”

Other general examples:
- Biomedical: What drug, what dose, when, how often, ... (see later)

- Political: How social media posts from famous individuals (e.g.
celebrities, ex-political figures, etc. ) influence elections

- Environmental: Is the constant energy consumption in region X due
to the regions’s energy efficiency standards or due to its mild climate
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Why should we care about causation?

® To guide actions and policies
® To understand how and why interventions affect outcomes

® Predict what would have happened under a different intervention:

“What if | were to act differently?”

Other general examples:

Biomedical: What drug, what dose, when, how often, ... (see later)
Political: How social media posts from famous individuals (e.g.
celebrities, ex-political figures, etc. ) influence elections
Environmental: Is the constant energy consumption in region X due
to the regions’s energy efficiency standards or due to its mild climate
Education: People with feature X are more likely to obtain an
internship in tech
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More examples: Personalised medicine

An individual is diagnosed with a particular disease
Baseline covariants (‘features’) are measured, e.g., age, sex, BMI, ...

Question: What treatment (A or B) is best for this individual?
What is the causal effect of A or B on the individual’'s health outcome?
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More examples: Personalised medicine

An individual is diagnosed with a particular disease
Baseline covariants (‘features’) are measured, e.g., age, sex, BMI, ...

Question: What treatment (A or B) is best for this individual?
What is the causal effect of A or B on the individual’'s health outcome?

ldeally: We wish to design a policy that maps individual’s:
Features » Best choice: Aor B

Source of data: Biobanks (e.g. UK’s Biobank, US’s All-of-US, ...)
and electronic health records
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More examples: Gene perturbation
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More examples: Gene perturbation
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Pearl’s ladder of causation

= |

_@ 3-LEVEL HIERARCHY
3.

COUNTERFACTUALS

ACTIVITY: Imagining, Retrospection, Understanding
QUESTIONS: What if | had done . . . ? Why?

(Was it X that caused Y? What if X had not

occurred? What if | had acted differently?)
EXAMPLES: Was it the aspirin that stopped my headache?

Would Kennedy be alive if Oswald had not

killed him? What if | had not smoked the last 2 years?

2. INTERVENTION

ACTIVITY: Doing, Intervening

QUESTIONS: Whatifldo. .. ? How?
(What would Y be if | do X?)

EXAMPLES: If | take aspirin, will my headache be cured?
What if we ban cigarettes?

1. ASSOCIATION

Al ACTIVITY:  Seeing, Observing

QUESTIONS: Whatiflsee...?
(How would seeing X change my belief in Y?)
EXAMPLES: What does a symptom tell me about a disease?
What does a survey tell us about the election results?
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Simpson’s paradox

Why concluding causality from purely associational measures, i.e.

correlation, can be very wrong (not just neutral):
“It would have better not to make any statements!”

=

Cholesterol

: > X
Exercise
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Simpson’s paradox

Why concluding causality from purely associational measures, i.e.

correlation, can be very wrong (not just neutral):
“It would have better not to make any statements
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=

IO OO(S)oO o) OO OO(O) 00089 /
|OOO QO Q Op0 OOO%OO/

: > X
Exercise

Cholesterol

22

I”

Exercise

Judea Pearl: A primer



Language of causality and the roles of variables

)« » « »  «

*“What intervention” “how much” “when”, “how often”, “Control” “effect

of”, “why did”, “what if”, ... Causality language

Patient: Info on DNA variants and biomarkers, traits/disease, confounders
Clinician: Which medication, what dose, when, how often, ...

Consider all variables affecting the system of interest and
the role each plays.

Pre-treatment

Blood
pressure

Example, blood pressure is a confounder here:
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Example, blood pressure is a mediator here:
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Language of causality and the roles of variables

)« » « »  «

*“What intervention” “how much” “when”, “how often”, “Control” “effect
Of”, “Why did", “what if”, Causality language

Patient: Info on DNA variants and biomarkers, traits/disease, confounders
Clinician: Which medication, what dose, when, how often, ...

Consider all variables affecting the system of interest and
the role each plays.

Post-treatment

Blood
pressure

Example, blood pressure is a mediator here:

What happens when there are
lots of variables? @
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Conventions

e Variable to be manipulated: treatment (T), e.g. medication

® Variable we observe as response: outcome (Y),
e.g. success/failure of medication

® Other observable variables that can affect treatment and outcome
causally and we wish to correct for: confounders (X),

e.g. age, sex, socio-economic status, ...

@ Unobservable confounder (U)

20



Causal effect estimation

Have a prior causal knowledge (may be incomplete) and know the

treatment/outcome pair.
Counter example: weight gain, hours online

Interested in estimating the effect size:

8 -1(2) = yio(@)] = [ (1(2) ~ wol@)p(a)ds

Note: The features/confounders x for both treatment and control
groups are drawn from the same distribution p(x)

Goal: Find an unbiased estimator, e.g. signal/noise ratio

27



Randomised experiments: Already in causal framework

In a randomised experiment, the distribution of the confounders p(x) is
designed to be the same for both treatment groups (t=0 or t=1)

Simply take the difference of the averages:
N

Af=E Yi=1(2) — yi=o(x)] = % Z (y%i) (x) — (Z)

1=1

Paired ‘clones’ in treatment and outcome groups ﬁ? ﬁ

Perform statistical test: e.g. T-test and p-values...

Aft

\/(3?\;;)2
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Observational data: What goes wrong?

p(z|t = 1) # p(z|t = 0)

A
Control treatment

Age

(/ y1(z)p(zft = 1)dz — /yo(ﬂf)p(ﬂf\t = O)dSU) # / (y1(x) — yo(z))p(x)d
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Observational data: Stratification

® Measure outcome (success/failure), within each of the young/old
groups separately

® Take weighted average by the probability of being young/old:

E(Healed|t = 1) = E(Healed|t = 1, young)p(young) + E(Healed|t = 1, 0ld)p(old)

VS

E(Healed|t = 0) = E(Healed|t = 0, young)p(young) + [E(Healed|t = 0, old)p(old)
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Observational data: Stratification

® Measure outcome (success/failure), within each of the young/old

groups separately
® Take weighted average by the probability of being young/old:
E(Healed|t = 1) = E(Healed|t = 1, young)p(young) + E(Healed|t = 1, 0ld)p(old)
VS
E(Healed|t = 0) = E(Healed|t = 0, young)p(young) + [E(Healed|t = 0, old)p(old)
Issues: (i) All possible confounders need to be observed
(ii) Assume overlap between the two distributions (if there is no overlap, sample is

not representative, e.g. performing the experiment only for old people),
(iii) Poor estimates as confounder dimensionality increases

Agel Age2 Age3 Aged

000 PP
Female | ® |990]| 00 g¢ |
00 Need specific causal effect
000 PP estimation techniques
Male c0o 0O O N




Real-world data (RWD)

Definition. “Real-world data (RWD) is data relating to patient health or experience or
care delivery collected outside the context of a highly controlled clinical trial”

Examples:

Primary care: CPRD, anonymised patient data from GP practices, millions of patients.
DatalLoch (NHS Lothian, South-East Scotland), health & social care routinely collected
data.

Prospective: UK Biobank, an observational cohort of ~0.5 million individuals with de-
identified genetic, lifestyle and health information (also collects primary care data).
All-of-US in the US, Our Future Health, ...

Strength/weaknesses: # individuals, # features, missingness, ..

Most RWD sources are observational, i.e., any interventions or exposures are not
determined by a study protocol but by patients and healthcare professional

—> Need generally applicable methodologies



Real-world evidence (RWE)

Definition. “Real-world evidence (RWE) is evidence generated from the analysis of
real-world data’”

RCT may not be possible/applicable due to:

e ecthical/feasibility considerations, cost, small number of eligible patients
e Comparators not applicable to standard of care in the NHS

e Limited follow up

e Difference in population

e Differenceinclinical support...

Examples of scenarios where RWD is used (given appropriate data quality):
e Clinical trials where real-world data is used as external control

e Pragmatic trial embedded in routine practice using EHR



The Causal Roadmap

Compatible with Target Trial Emulation Protocol

1. Define: Causal 2. Model-independent
question, causal model & =P definition of the = 3. Observed Data = 4. Causal identifiability
target population (causal) parameter
8. Interpretation € 7. Sensitivity analysis  |€= 6. Statlstlc.:al model <« 5. qugl-mdependent
and estimator statistical estimand

A causal roadmap for generating high-quality real-world evidence
https://doi.org/10.1017/cts.2023.635
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Compatible with Target Trial Emulation Protocol

1. Define: Causal 2. Model-independent -
question, causal model & =P definition of the = 3. Observed Data =P 4. Causal identifiability
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https://doi.org/10.1017/cts.2023.635



https://doi.org/10.1017/cts.2023.635

Two main Frameworks for causal identifiablity

® Potential outcomes framework (Neyman-Rubin):

- Requires a given treatment-outcome pair (known directionality)
- For causal estimation
- More familiar to biomedical researchers (this is changing ...)

e Structural causal models (Pearl):

- Causal graphs

- Structuralequations = = f.(€;), t = fi(z, &), y = fy(x,t,€y)
- Algorithmic

- For causal estimation and discovery

Assumption: Independent noise terms: € Al e AL €y



Overview of the course

® Lecture 1: Introduction & Motivation, why do we care about causality?
Why deriving causality from observational data is non-trivial.
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Overview of the course

® Lecture 1: Introduction & Motivation, why do we care about causality?
Why deriving causality from observational data is non-trivial.

® Lecture 2: Recap of probability theory, variables, events, conditional
probabilities, independence, law of total probability, Bayes’ rule

® Lecture 3: Recap of regression, multiple regression, graphs, SCM

® Lecture 4-20:
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Causal Effect Estimation vs Causal Discovery

® How much would some variables change if we manipulate the value
of another variable?

- Have a prior causal knowledge (may be incomplete)

- Wish to estimate degrees of causal dependencies

® By modifying the value of which variables could we change the value
of another variable?

- Wish to discover the causal graph itself

- Many assumptions... difficult to get robust results that one can trust
without perturbation data (challenging even with perturbation data!)
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