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The Causal Roadmap

This course
Compatible with Target Trial Emulation Protocol (mostly)
1. Define: Causal 2. Model-independent
question, causal model & =P definition of the = 3. Observed Data
target population (causal) parameter

6. Statistical model

8. Interpretation €= 7.Sensitivity analysis |€= .
and estimator

A causal roadmap for generating high-quality real-world evidence
https://doi.org/10.1017/cts.2023.635
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The Causal Roadmap (summary of steps 1-3)

Step 1: Specifying the causal question(s) of interest, the study’s target
population, the exposure(s), outcomes(s), time period and context, as well as
the causal model (developed with input from subject experts) to describe
relationships amongst the variables.

Step 2: Define of the causal estimand, which is a mathematical
quantity representing the answer to the causal question(s)

Step 3: Observed data, assesses questions such as what is the baseline time
zero, are the required variables in the causal model of step 1 measured, or
measured differently in various data sources. If these essential

Ingredients are not recorded in the observed data, the causal question

In the first step may have to be adapted accordingly.



Causal theory and data

Disclaimer: In this course our focus is on steps 4-5. We then use simple
models to exemplify 6-7 (taking model assumptions as ‘true’),

i.e., we do not discuss valid statistical inference.

For causal/statistical inference please refer to the course:

Targeted Causal Learning (code: MATH11238).



Two main Frameworks for causal identifiablity

® Potential outcomes framework (Neyman-Rubin):

- Requires a given treatment-outcome pair (known directionality)
- For causal estimation
- More familiar to biomedical researchers (this is changing ...)

e Structural causal models (Pearl):

- Causal graphs

- Structuralequations = = f.(€;), t = fi(z, &), y = fy(x,t,€y)
- Algorithmic

- For causal estimation and discovery

Assumption: Independent noise terms: € Al e AL €y
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Why deriving causality from observational data is non-trivial.

® Lecture 2: Recap of probability theory, variables, events, conditional
probabilities, independence, law of total probability, Bayes’ rule

® Lecture 3: Recap of regression, multiple regression, graphs, SCM

® Lecture 4-20:

‘ Causality ‘
‘ Causal Effect Estimation ‘ ‘ Casual Discovery
‘ Obsv confounders ‘ ‘Unobsvconfounders Constraint- Score-
FCMs
based based
Regression || Propensity Front-door
. \Y/ .
Adjustment score criterion
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Lecture 2: Recap of probability theory



Causal theory and data

Defining causation:
A variable Xis a cause of avariable Y if Y in any way relies on X for its
value. (Intuitively: Xis a cause of Y if Y listens to X and decides its value in

response to what it hears)

Pre-requisites: Elementary concepts from probability theory, statistics,
graph theory

15



Basics of probability

Most causal statements are uncertain: “drinking causes liver disease”, does not
mean every person who consumes alcohol is certain to have liver disease

- Need language and laws of probability.

16 Causal Inference in Statistics, Pearl (2016)
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Basics of probability

Most causal statements are uncertain: “drinking causes liver disease”, does not
mean every person who consumes alcohol is certain to have liver disease

- Need language and laws of probability.

(Random) variables: Any property or descriptor that can take multiple values,
e.g., age (x=40), sex (x’=F), family history of disease (x’=0), ....

Events: An event is any assignment of a value or set of values to a variable or
set of variables.

Example: Individual > 40 and recovered from covid y=0, event is (x > 40,y=0).
So variables are ‘age’ and ‘recovery status’ with values > 40 and 0.

Can ask what is the probability of an event, e.g., what is P(x > 40,y=0)?



Basics of probability

Most causal statements are uncertain: “drinking causes liver disease”, does not
mean every person who consumes alcohol is certain to have liver disease

- Need language and laws of probability.

(Random) variables: Any property or descriptor that can take multiple values,
e.g., age (x=40), sex (x’=F), family history of disease (x’=0), ....

Events: An event is any assignment of a value or set of values to a variable or
set of variables.

Discrete (binary/categorical): Are being treated or not, have a disease or not,

Continuous (can take infinite set of values): age, weight, ...
Drug (yes/no) vs dose of drug (categorical). Sun intake (time is continuous)



Basics of probability

For probabilistic modelling (of a random experiment) we need to:

- Describe possible outcomes: sample space
- Event: A subset of sample space
- Describe beliefs about likelihood of these events: probability law

Probability
A Law
Event B
N P(B)
—
Experiment P(A)
Event A
Sample Space @ .
(Set of Outcomes A
Events

Figure from Tsitsiklis MIT Lecture Notes: Introduction to probability



Sample space

The sample space is the set of all possible outcomes of the experiment:

e.g. Rolling adice

Outcomes must be:
- Mutually Exclusive: If | tell you, after the experiment, that A;happened, then
it should not be possible that Ag also happened.

- Collectively Exhaustive: Collectively, all the outcomes in {2 exhaust all
possibilities.

22



Probability Axioms

® Non-negativity: P(A)>0 Q
® Normalisation: PQ) =1

@ For any two mutually exclusive events
(i.e. A and B cannot co-occur) we have:

P(A or B) = P(A) + P(B)

23 Tsitsiklis: Introduction to probability course, MIT



Probability Axioms

® Non-negativity: P(A) >0 Q
=1

® Normalisation: P(Q) ’

@ For any two mutually exclusive events
(i.e. A and B cannot co-occur) we have:

P(Aor B)=P(A)+ P(B)
As a consequence, take any two events A and B (they may overlap!), then:
P(A) = P(A and B) + P(A and ‘not B’)

Mutually exclusive: If Alis true, either “A and B” or “A and not B” must be true.

24 Tsitsiklis: Introduction to probability course, MIT



Probability Axioms

® Non-negativity: P(A) >0 Q
® Normalisation: PQ)=1 ‘B
ve

e For any two mutually exclusive events W
(i.e. A and B cannot co-occur) we have:

P(A or B) = P(A) + P(B)

Corollary: B1, B2, B3, are exclusive, and together form all of B. Then,

P(A and B) = P(A and B;) + P(A and B3) + P(A and Bj)

Generalise for (exhaustive, mutually exclusive) partitions of B:

P(A and B) = ZP(A and B;) where B; N B; =0,

1=1 1

B, =8B

n
=1
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Probability Axioms

® Non-negativity: P(A) >0 A Q
=1

® Normalisation: P(Q) “

@ For any two mutually exclusive events
(i.e. A and B cannot co-occur) we have:

P(A or B) = P(A) + P(B)

Corollary: Let B;, i=1, ...,n be mutually exclusive and exhaustive partitions of B,
and let A=B (complete overlap). Then,

P(A)=P(Aand A) = P(Aand B) =) P(Aand B;) where B;nB; =0, | |B; =B
1=1 1=1

Total Law of probability. See later: “marginalisation”

20



Intervals

Plage >4)=1-P(age<=4)=1-0.49=0.51

Figure 7.2: Age at adoption, Scotland, 2018
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https://www.nrscotland.gov.uk/files/statistics/rgar/2018/rgar18.pdf

Intervals

Plage >4)=1-P(age<=4)=1-0.49=0.51

P(4 < age <=12) = (43+30+34+25+13+14+5+12) /471 =0.37

Figure 7.2: Age at adoption, Scotland, 2018

100 -

90 1 49% of adoptions were of

80 - children aged 4 and below.

Total =471

Number of adoptions

National Records of Scotland 2018


https://www.nrscotland.gov.uk/files/statistics/rgar/2018/rgar18.pdf

Conditional Probability

The probability that event A occurs, given that we know some other event B has
occurred. (Think of filtering the data based on the value of some variable)

P(X =x) vs P(X = z|Y = y): The probability of X=x can drastically change
depending on the knowledge Y=y

29



Conditional Probability

The probability that event A occurs, given that we know some other event B has
occurred. (Think of filtering the data based on the value of some variable)

P(X =x) vs P(X = z|Y = y): The probability of X=x can drastically change
depending on the knowledge Y=y

Example: P(lung cancer | smoker) vs
P(lung cancer | smoker, socio-economic status)

Given that the patient is a smoker, does knowing their socio-economic status add
further information to the probability of lung cancer?

30



Conditional Probability

The probability that event A occurs, given that we know some other event B has
occurred. (Think of filtering the data based on the value of some variable)

P(X =x) vs P(X = z|Y = y): The probability of X=x can drastically change
depending on the knowledge Y=y

Example: P(lung cancer | smoker) vs
P(lung cancer | smoker, socio-economic status)

Given that the patient is a smoker, does knowing their socio-economic status add
further information to the probability of lung cancer?

Relation between “joint”, “conditional”, and “marginal” probabilities:

P(X,Y) = P(X|Y)P(Y)

31



Bayes’ Rule

Al : AQ y evey An are disjoint events forming a partition of the sample space
and P(A;) > 0, VA, .Then,foranyevent B, P(B) > 0, Bayes' rule states:

_ P(ANB) _ P(4)P(BlA)
PAIB) = =pm) = PB)

32



Bayes’ Rule

Al : AQ y evey An are disjoint events forming a partition of the sample space
and P(A;) > 0, VA, .Then,foranyevent B, P(B) > 0, Bayes' rule states:

_ P(A;nB)  P(A;)P(BJA))
P(A;) P(B|A;)
P(A,NB)+ -+ P(A, N B)

P(A;) P(B|A;)

P(A1)P(B|A1) + -+ + P(An) P(B|Ay)
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Bayes’ Rule

Al : AQ y evey An are disjoint events forming a partition of the sample space
and P(A;) > 0, VA, .Then,foranyevent B, P(B) > 0, Bayes' rule states:

_ P(A;nB)  P(A;)P(BJA))
P(A;) P(B|A;)
P(A,NB)+ -+ P(A, N B)

P(A;) P(B|A;)

P(A1)P(B|A1) + -+ + P(An) P(B|Ay)

Note: For random variables, we often write P(X,Y"), instead of P(X NY")

34



Monte Hall Problem & Application of Bayes’ Rule
A B C

X = Door chosen by player

Y = Door hiding the car

/ = Door opened by host

35



Monte Hall Problem & Application of Bayes’ Rule

A B C
X = Door chosen by player
? Y = Door hiding the car
/ = Door opened by host

Prove that switching doors improves our chance of winning the car.
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Monte Hall Problem & Application of Bayes’ Rule

A B C
X = Door chosen by player
? Y = Door hiding the car
/ = Door opened by host

Prove that switching doors improves our chance of winning the car.

Note the assumptions:

1.

The host will not open the door we have chosen

2. The host will never open a door with a car behind
3.
4. Given no info, the car is equally likely to be behind any door

Given a choice of doors, the host will choose at random (whilst 2)

37



Monte Hall Problem & Application of Bayes’ Rule

A B C
X =
Y =
Nl
t

Door chosen by player
Door hiding the car

Door opened by host

Prove that switching doors improves our chance of winning the car.

Need to show (given the we have selected A and host has shown us C):

Py =A

Is the car more |i

X=A,2Z=0C)<P(Y =B

Kely to be behind B than A, i.e. switc

38
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Monte Hall Problem & Application of Bayes’ Rule

A B C
X = Door chosen by player
? Y = Door hiding the car
/ = Door opened by host

Z=C|X=AY = AP = A|X = A)
P(Z =C|X = A)

HYzMX:AZzCﬁJ%
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Monte Hall Problem & Application of Bayes’ Rule
A B C
X = Door chosen by player
l l M Y = Door hiding the car
' / = Door opened by host

Given we choose A (X=A), and the carisin A (Y=A), then the host is allowed
to choose either B or C, as neither has the car behind it.
Since the host choses randomly (assumption 3), we get 1/2.

40



Monte Hall Problem & Application of Bayes’ Rule

A B C
X = Door chosen by player
? Y = Door hiding the car
/ = Door opened by host

1/3

HY:mX:AZ:@%iﬂZ:ﬂX:AY:APW:AW:A)

P(Z =C|X = A)

Given we choose A (X=A), what is the probability that the car is behind A?
With no further information, this is equal to 1/3.

41



Monte Hall Problem & Application of Bayes’ Rule

X = Door chosen by player

Y = Door hiding the car

/ = Door opened by host

P(Z = C\X— /

PY=AX=A,Z=C) =

Total law of prob Product rule

P(Z=ClX=A)= Y PZ=CY=dX=A)= > PZ=ClX=AY=dPY =d
d=A.B.C d=A.B.C



Monte Hall Problem & Application of Bayes’ Rule

A B C
X = Door chosen by player
? Y = Door hiding the car
/ = Door opened by host

P(Z = C\X— /

PY=AX=A,Z=C) =

1/2
Total law of prob Product rule
P(Z=ClX=A)= Y PZ=CY=dX=A)= > PZ=ClX=AY=dPY =d
d=A,B,C d=A,B,C

:%(P(Z:C\X:A7Y:A)+P(Z:01X:A,Y:B)+P(Z:C\X:A,Y:C)>

1/2 as above 1: Given we chose A and car is behind O: Given we chose A and car is behind
B, host is forced to choose C C, the host cannot choose
(Assumption 2) C (Assumption 2)



Monte Hall Problem & Application of Bayes’ Rule

A B C
X = Door chosen by player
? Y = Door hiding the car
/ = Door opened by host

1/2 1/3

P(Z=C|X =AY = A)P(Y = A|X = A)
P(Z=C|X = A) 1/2

PY=AX=A,Z=0C)=



Monte Hall Problem & Application of Bayes’ Rule

A B C
X = Door chosen by player
? Y = Door hiding the car
/ = Door opened by host

1/2 1/3

Z=C|X=AY = AP = A|X = A)
P(Z=C|X = A) 1/2

HY:MX:AZzCﬁJ%

PY=B|X=A,Z=C)=1-PY =AX=A,Z=C)—PY =C|X=A,Z=C)

1
—1---0=2/3
3 /



Monte Hall Problem & Application of Bayes’ Rule

A B C
X = Door chosen by player
? Y = Door hiding the car
/ = Door opened by host

Importance: Incorporating knowledge about the process that generated the data.
The first step towards causal inference.

‘Host could have opened’, ‘he was forced to open’, ‘randomly opened’, ‘about to
open, ...
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Independence

X andY are independent events: P(X,Y) = P(X)P(Y)
Equivalently: P(X|Y) = P(X) (where P(Y) is non-zero, otherwise P(X|Y) not defined)

Conditional independence: P(X,Y|Z) = P(X|Z)P(Y|Z)
Equivalently: P(X]|Y,Z) = P(X|Z) (again, for P(Y,Z) non-zero)

Independence of several events:

Remark: Pairwise independence does not imply independence
Example: 2 independent fair coin tosses (p1, p2 = 0.5)
Consider 3 events:

H1 = first coinis a head
H2 = second coinis a head
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Independence

X andY are independent events: P(X,Y) = P(X)P(Y)
Equivalently: P(X|Y) = P(X) (where P(Y) is non-zero, otherwise P(X|Y) not defined)

Conditional independence: P(X,Y|Z) = P(X|Z)P(Y|Z)
Equivalently: P(X]|Y,Z) = P(X|Z) (again, for P(Y,Z) non-zero)

Independence of several events:
Remark: Pairwise independence does not imply independence
Example: 2 independent fair coin tosses (p1, p2 = 0.5)

H1 & H2: independent coin tosses
P(H1,H2) =P(H1|H2)P(H2) =0.5x0.5 = P(H1)P(H2)
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Independence

X andY are independent events: P(X,Y) = P(X)P(Y)
Equivalently: P(X|Y) = P(X) (where P(Y) is non-zero, otherwise P(X|Y) not defined)

Conditional independence: P(X,Y|Z) = P(X|Z)P(Y|Z)
Equivalently: P(X|Y,Z) = P(X|Z) (again, for P(Y,Z) non-zero)

Independence of several events:
Remark: Pairwise independence does not imply independence

Example: 2 independent fair coin tosses (p1, p2 = 0.5)
H1 & H2: independent coin tosses Frnumsnrn s nrna :
P(H1,J)=P(J|H1)P(H1) = :
Given H1, what is the probability of J
(i.e second toss also being a head)

So: P(J|H1)=0.5 T
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Independence

X andY are independent events: P(X,Y) = P(X)P(Y)
Equivalently: P(X|Y) = P(X) (where P(Y) is non-zero, otherwise P(X|Y) not defined)

Conditional independence: P(X,Y|Z) = P(X|Z)P(Y|Z)
Equivalently: P(X|Y,Z) = P(X|Z) (again, for P(Y,Z) non-zero)

Independence of several events:

Remark: Pairwise independence does not imply independence
Example: 2 independent fair coin tosses (p1, p2 = 0.5)

H1 & H2: independent coin tosses

P(H1,J)=P(J|H1)P(H1)=0.5x0.5=P(J)P(H1)
Given H1, what is the probability of J

(i.e second toss also being a head)
So:P(J|H1)=0.5 T
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Independence

X andY are independent events: P(X,Y) = P(X)P(Y)
Equivalently: P(X|Y) = P(X) (where P(Y) is non-zero, otherwise P(X|Y) not defined)

Conditional independence: P(X,Y|Z) = P(X|Z)P(Y|Z)
Equivalently: P(X]|Y,Z) = P(X|Z) (again, for P(Y,Z) non-zero)

Independence of several events:

Remark: Pairwise independence does not imply independence
Example: 2 independent fair coin tosses (p1, p2 = 0.5)

H1 & H2: independent coin tosses

P(H2,J)=P(J | H2)P(H2) =0.5x0.5=P(J)P(H2)
So pair-wise independent. BUT ...
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Independence

X andY are independent events: P(X,Y) = P(X)P(Y)
Equivalently: P(X|Y) = P(X) (where P(Y) is non-zero, otherwise P(X|Y) not defined)

Conditional independence: P(X,Y|Z) = P(X|Z)P(Y|Z)
Equivalently: P(X]|Y,Z) = P(X|Z) (again, for P(Y,Z) non-zero)

Independence of several events:
Remark: Pairwise independence does not imply independence
Example: 2 independent fair coin tosses (p1, p2 = 0.5)

H1 & H2: independent coin tosses
P(H1,H2,J)=P(H1|H2J)P(H2,J)=1x0.25=0.25
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Independence

X andY are independent events: P(X,Y) = P(X)P(Y)
Equivalently: P(X|Y) = P(X) (where P(Y) is non-zero, otherwise P(X|Y) not defined)

Conditional independence: P(X,Y|Z) = P(X|Z)P(Y|Z)
Equivalently: P(X]|Y,Z) = P(X|Z) (again, for P(Y,Z) non-zero)

Independence of several events:

Remark: Pairwise independence does not imply independence
Example: 2 independent fair coin tosses (p1, p2 = 0.5)

H1 & H2: independent coin tosses

D(H1,H2,J) = P(H1 | H2,J) P(H2,J) = 1x 0.25 = 0.25
However, P(H1)P(H2)P(J)=0.5x0.5x0.5=0.125 £ :

l.e. not jointly independent
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Expected values

The probability distribution of a random variable X provides us with probabilities
of all possible values of X.

Summarise information, with some loss of information, represented by:
The expected value or mean:

i[X] =) z P(X =ux)

For adice: (1x1/6) + (2x1/6) + (3x1/6) + (4x1/6) + (5x1/6) + (6x1/6) = 3.5
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Expected values

The probability distribution of a random variable X provides us with probabilities
of all possible values of X.

Summarise information, with some loss of information, represented by:
The expected value or mean:

i[X] =) z P(X =ux)

For adice: (1x1/6) + (2x1/6) + (3x1/6) + (4x1/6) + (5x1/6) + (6x1/6) = 3.5

The expected value of any function of X, e.g. g(x):

i[g(X)] =) g(x) P(X =ux)

Dice: (1x1/6) + (4x1/6) + (9x1/6) + (16x1/6) + (25x1/6) + (36x1/6) = 15.17
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Expected values

The probability distribution of a random variable X provides us with probabilities
of all possible values of X.

Summarise information, with some loss of information, represented by:
The expected value or mean:

2(X] = / v P(x)da

for a continuous variable X.
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Variance

The variance of a random variable X, denoted Var(X) or (7%(:

var(X) = E[(X — E[X])"]

and can be calculated as

var(X) = S (X — E[X])*px ()

T

(Integral of continuous variables ), and measure how “spread out” the values of X in

a dataset are relative to their mean.

The standard deviation 0 x (has the same units as X).

For a normal distribution, ~2/3 of the population values
of X fall withinone o x, 95% fall between 2 0 x, etc.

57
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Covariance

The degree to which two random variables X and Y co-vary (degree associated):

oxy = E|(X — E[X])(Y —E[Y])]

and measures a specific way X and Y co-vary, i.e., linearly. When normalised, it
yields the correlation coefficient (Pearson correlation):

OXY

PXY —
OX0Y

a dimensionless quantity between -1 and 1.



Covariance

The degree to which two random variables X and Y co-vary (degree associated):

oxy = E|(X — E[X])(Y —E[Y])]

and measures a specific way X and Y co-vary, i.e., linearly. When normalised, it
yields the correlation coefficient (Pearson correlation):

OXY

PXY —
OX0Y

a dimensionless quantity between -1 and 1.

When X and Y are independent, then pxy = 0

The reverse is not true!

(e.g. pxy may be zero, but not linear-correlation, hence dependence exists.
This requires more complex methods of demonstrating if P(Y|X) = P(Y))



Anscombe’s Quartet

Group of 4 datasets with nearly identical simple descriptive statistical properties:
- Mean and sample variance of X

- Mean and sample variance of Y
- Correlation between Xand Y

- Linear regression line (coefficient the same up to 2 or 3 decimal places)
- R?coefficient

A note on R?: A measure for goodness-of-fit

S g v =S

(2

If the fit y=f(x) is a perfect fit, the numerator is zero, R? = 1, and
R? = 0 implies the fit f(x) is no better than baseline average .
Negative values corresponds to models worse than the baseline average.



Anscombe’s Quartet

Group of 4 datasets with nearly identical simple descriptive statistical properties:

- Mean and sample variance of X

- Mean and sample variance of Y

- Correlation between XandY

- Linear regression line (coefficient the same up to 2 or 3 decimal places)

- R’coefficient

Yet, very different distributions, which can be observed by plotting the graphs

Same Pearson correlation, but,
different dependence structure
(X causes Y, but in different ways)

Figure from WikiPedia
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