

THE UNIVERSITY
of EDINBURGH

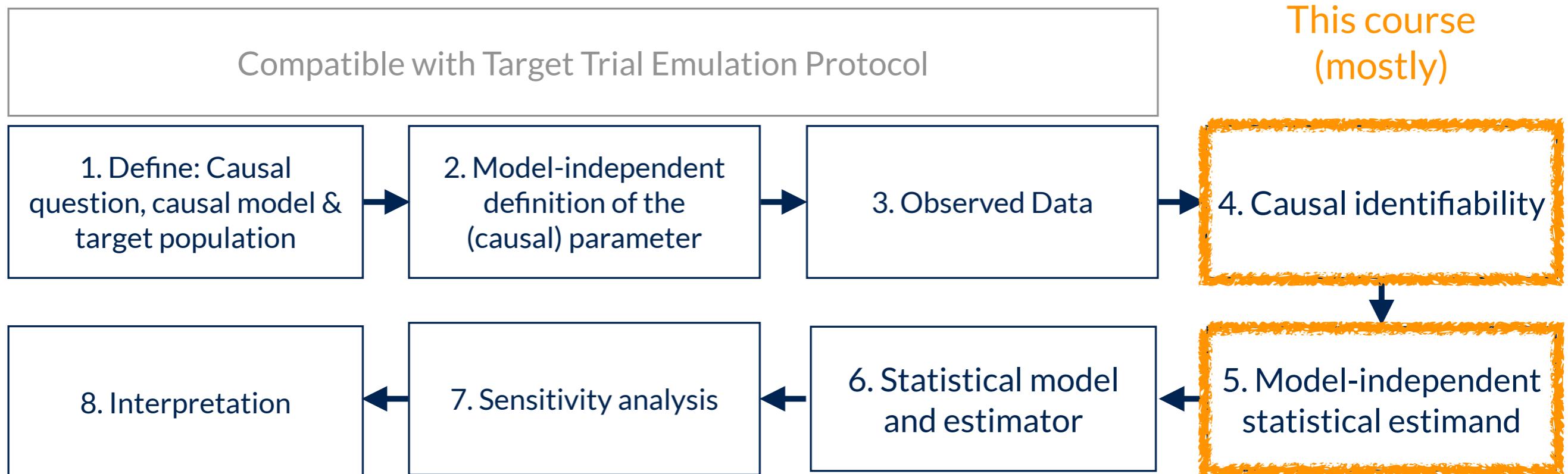
Methods for Causal Inference

Lecture 2: Basics of probability

Ava Khamseh

School of Informatics
2025-2026

The Causal Roadmap



The Causal Roadmap (summary of steps 1-3)

Step 1: Specifying the **causal question(s)** of interest, the study's target population, the exposure(s), outcomes(s), time period and context, as well as the **causal model** (developed with input from subject experts) to describe relationships amongst the variables.

Step 2: Define of the causal estimand, which is a mathematical quantity representing the answer to the causal question(s)

Step 3: Observed data, assesses questions such as what is the baseline time zero, are the required variables in the causal model of step 1 measured, or measured differently in various data sources. If these essential ingredients are not recorded in the observed data, the causal question in the first step may have to be adapted accordingly.

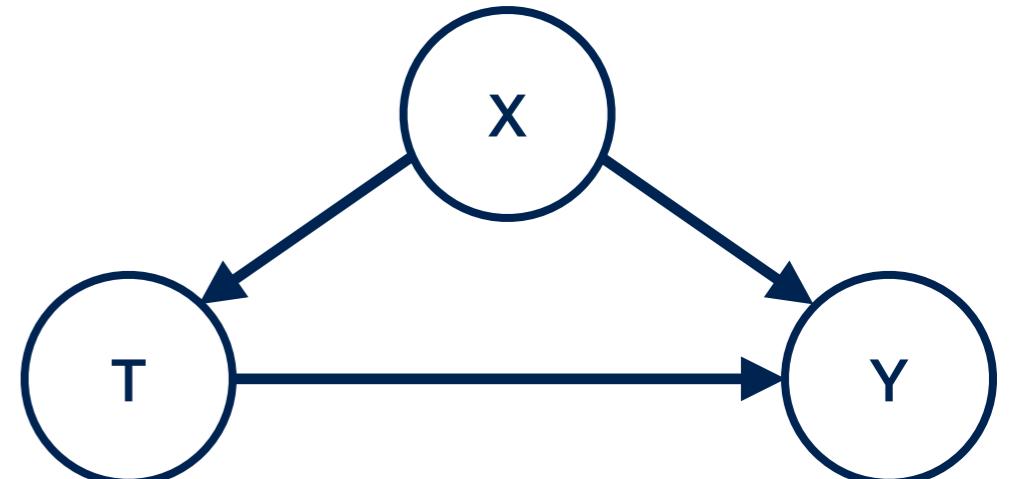
Causal theory and data

Disclaimer: In this course our focus is on steps 4-5. We then use simple models to exemplify 6-7 (taking model assumptions as ‘true’), i.e., we do not discuss valid **statistical inference**.

For causal/statistical inference please refer to the course:
Targeted Causal Learning (code: MATH11238).

Two main Frameworks for causal identifiability

- Potential outcomes framework (Neyman-Rubin):
 - Requires a given treatment-outcome pair (known directionality)
 - For causal estimation
 - More familiar to biomedical researchers (this is changing ...)
- Structural causal models (Pearl):
 - Causal graphs
 - Structural equations $x = f_x(\epsilon_x)$, $t = f_t(x, \epsilon_t)$, $y = f_y(x, t, \epsilon_y)$
 - Algorithmic
 - For causal estimation and discovery



Assumption: Independent noise terms: $\epsilon_x \perp\!\!\!\perp \epsilon_t \perp\!\!\!\perp \epsilon_y$

Overview of the course

- **Lecture 1: Introduction & Motivation, why do we care about causality?**
Why deriving causality from observational data is non-trivial.

Overview of the course

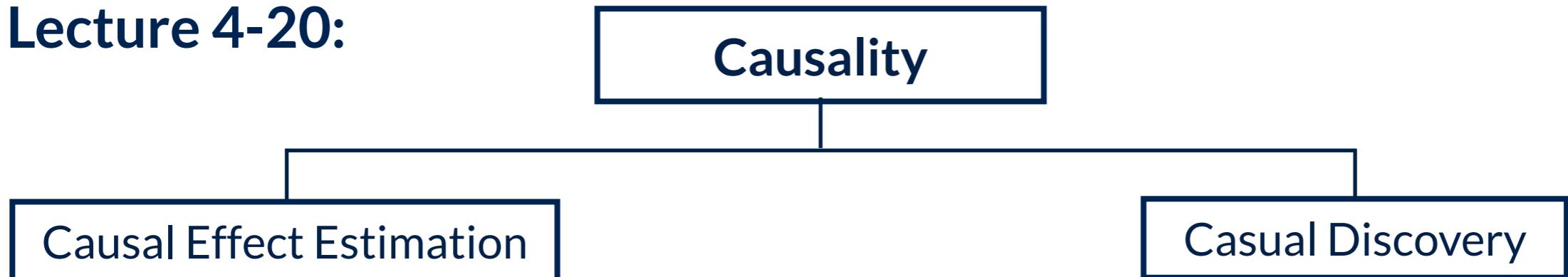
- **Lecture 1:** Introduction & Motivation, why do we care about causality?
Why deriving causality from observational data is non-trivial.
- **Lecture 2:** Recap of probability theory, variables, events, conditional probabilities, independence, law of total probability, Bayes' rule

Overview of the course

- **Lecture 1:** Introduction & Motivation, why do we care about causality?
Why deriving causality from observational data is non-trivial.
- **Lecture 2:** Recap of probability theory, variables, events, conditional probabilities, independence, law of total probability, Bayes' rule
- **Lecture 3:** Recap of regression, multiple regression, graphs, SCM

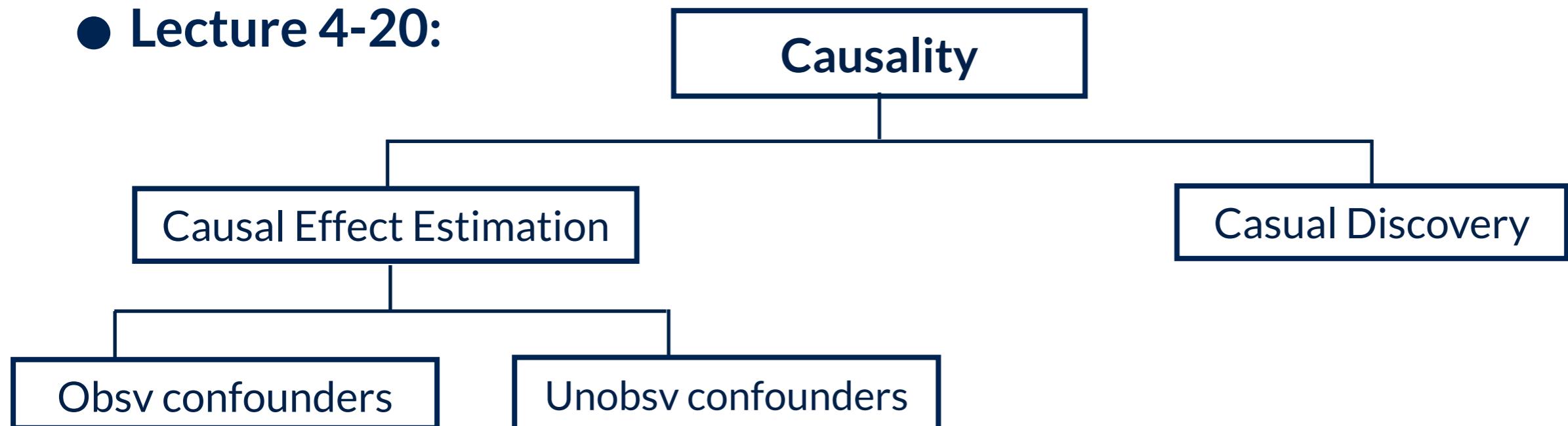
Overview of the course

- **Lecture 1:** Introduction & Motivation, why do we care about causality?
Why deriving causality from observational data is non-trivial.
- **Lecture 2:** Recap of probability theory, variables, events, conditional probabilities, independence, law of total probability, Bayes' rule
- **Lecture 3:** Recap of regression, multiple regression, graphs, SCM
- **Lecture 4-20:**



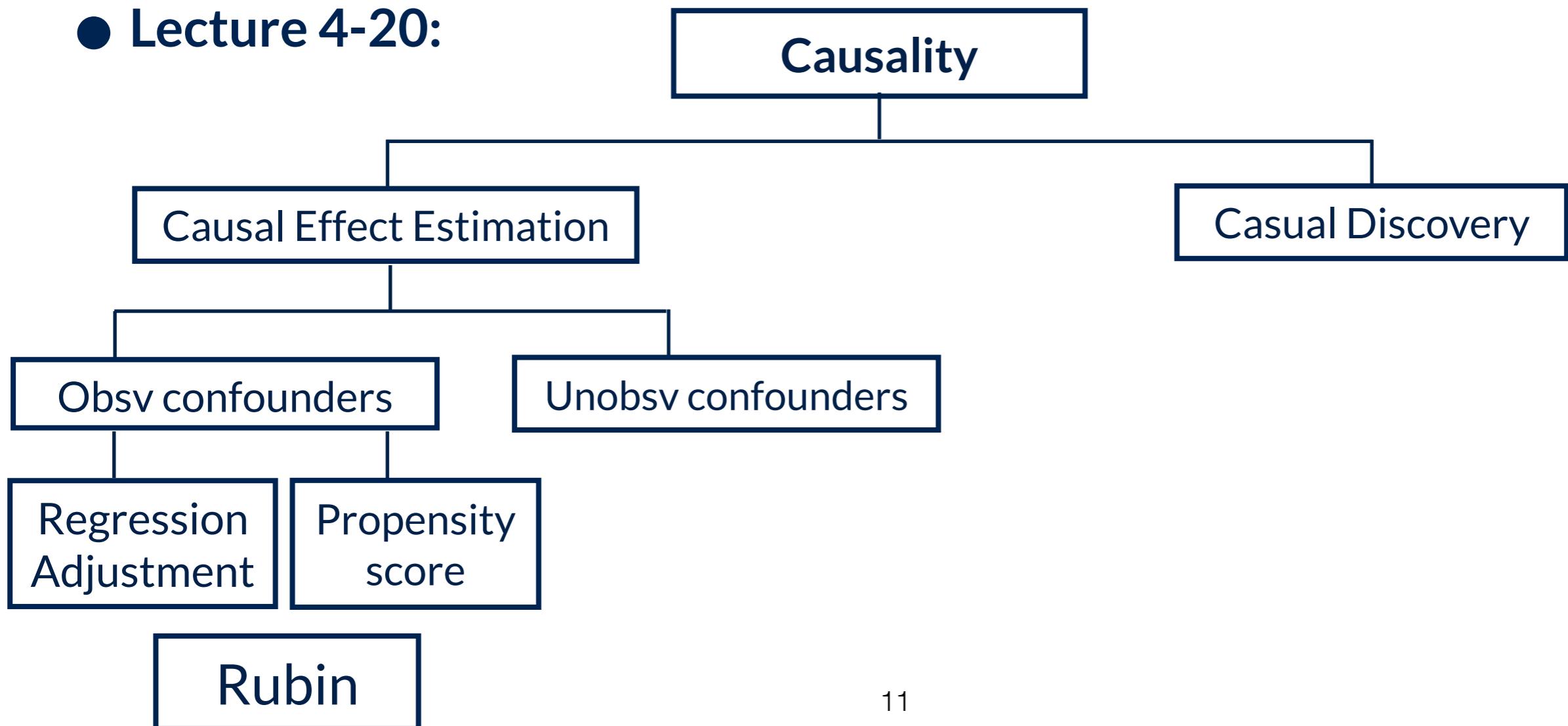
Overview of the course

- **Lecture 1:** Introduction & Motivation, why do we care about causality?
Why deriving causality from observational data is non-trivial.
- **Lecture 2:** Recap of probability theory, variables, events, conditional probabilities, independence, law of total probability, Bayes' rule
- **Lecture 3:** Recap of regression, multiple regression, graphs, SCM
- **Lecture 4-20:**



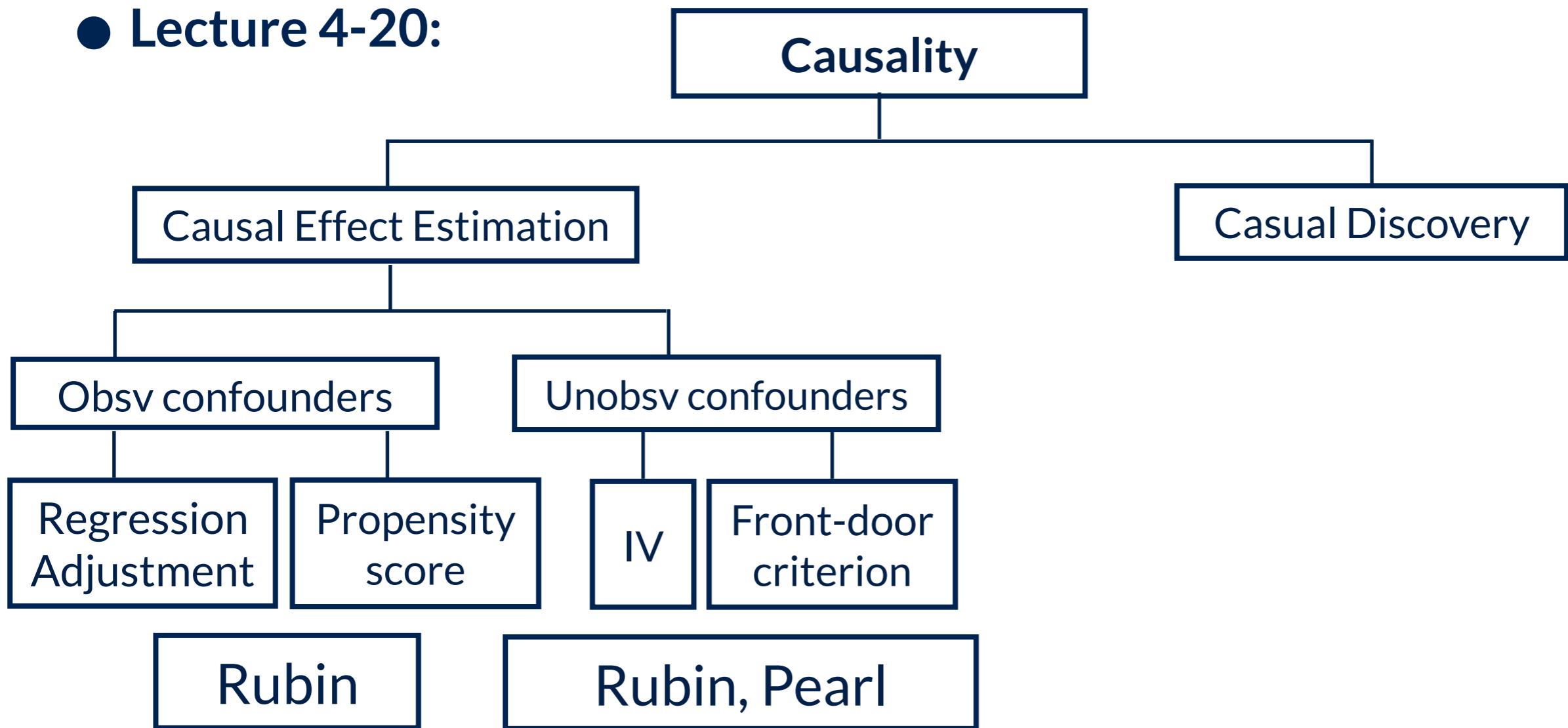
Overview of the course

- **Lecture 1:** Introduction & Motivation, why do we care about causality?
Why deriving causality from observational data is non-trivial.
- **Lecture 2:** Recap of probability theory, variables, events, conditional probabilities, independence, law of total probability, Bayes' rule
- **Lecture 3:** Recap of regression, multiple regression, graphs, SCM
- **Lecture 4-20:**



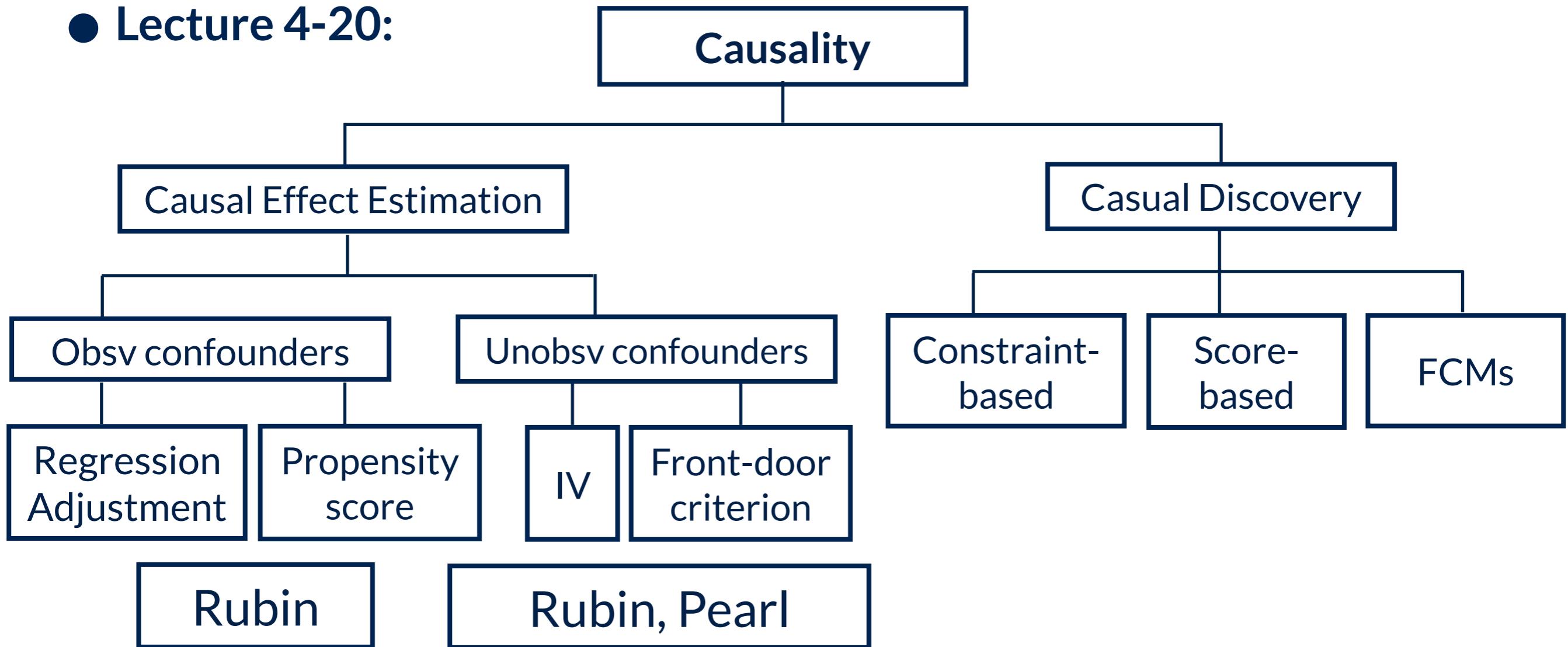
Overview of the course

- **Lecture 1:** Introduction & Motivation, why do we care about causality?
Why deriving causality from observational data is non-trivial.
- **Lecture 2:** Recap of probability theory, variables, events, conditional probabilities, independence, law of total probability, Bayes' rule
- **Lecture 3:** Recap of regression, multiple regression, graphs, SCM
- **Lecture 4-20:**



Overview of the course

- **Lecture 1:** Introduction & Motivation, why do we care about causality?
Why deriving causality from observational data is non-trivial.
- **Lecture 2:** Recap of probability theory, variables, events, conditional probabilities, independence, law of total probability, Bayes' rule
- **Lecture 3:** Recap of regression, multiple regression, graphs, SCM
- **Lecture 4-20:**



Lecture 2: Recap of probability theory

Causal theory and data

Defining causation:

A variable X is a **cause** of a variable Y if Y in any way relies on X for its value. (Intuitively: X is a cause of Y if Y listens to X and decides its value in response to what it hears)

Pre-requisites: Elementary concepts from probability theory, statistics, graph theory

Basics of probability

Most causal statements are uncertain: “drinking causes liver disease”, does not mean every person who consumes alcohol is certain to have liver disease

Need language and laws of probability.

Basics of probability

Most causal statements are uncertain: “drinking causes liver disease”, does not mean every person who consumes alcohol is certain to have liver disease

Need language and laws of probability.

(Random) variables: Any property or descriptor that can take multiple values, e.g., age ($x=40$), sex ($x'=F$), family history of disease ($x''=0$),

Basics of probability

Most causal statements are uncertain: “drinking causes liver disease”, does not mean every person who consumes alcohol is certain to have liver disease

Need language and laws of probability.

(Random) variables: Any property or descriptor that can take multiple values, e.g., age ($x=40$), sex ($x'=F$), family history of disease ($x''=0$),

Events: An event is any assignment of a **value or set of values** to a variable or set of variables.

Basics of probability

Most causal statements are uncertain: “drinking causes liver disease”, does not mean every person who consumes alcohol is certain to have liver disease

 Need language and laws of probability.

(Random) variables: Any property or descriptor that can take multiple values, e.g., age ($x=40$), sex ($x'=F$), family history of disease ($x''=0$),

Events: An event is any assignment of a **value or set of values** to a variable or set of variables.

Example: Individual > 40 and recovered from covid $y=0$, event is $(x > 40, y=0)$. So variables are ‘age’ and ‘recovery status’ with values > 40 and 0.

Can ask what is the probability of an event, e.g., what is $P(x > 40, y=0)$?

Basics of probability

Most causal statements are uncertain: “drinking causes liver disease”, does not mean every person who consumes alcohol is certain to have liver disease

 Need language and laws of probability.

(Random) variables: Any property or descriptor that can take multiple values, e.g., age ($x=40$), sex ($x'=F$), family history of disease ($x''=0$),

Events: An event is any assignment of a **value or set of values** to a variable or set of variables.

Discrete (binary/categorical): Are being treated or not, have a disease or not,

...

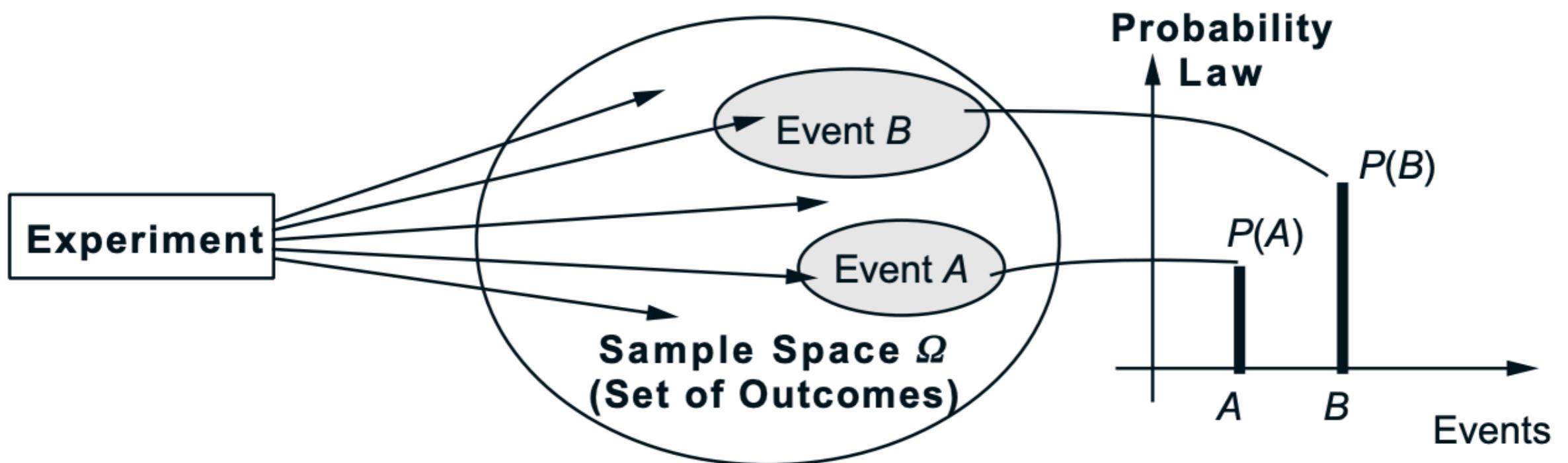
Continuous (can take infinite set of values): age, weight, ...

Drug (yes/no) vs dose of drug (categorical). Sun intake (time is continuous)

Basics of probability

For probabilistic modelling (of a random experiment) we need to:

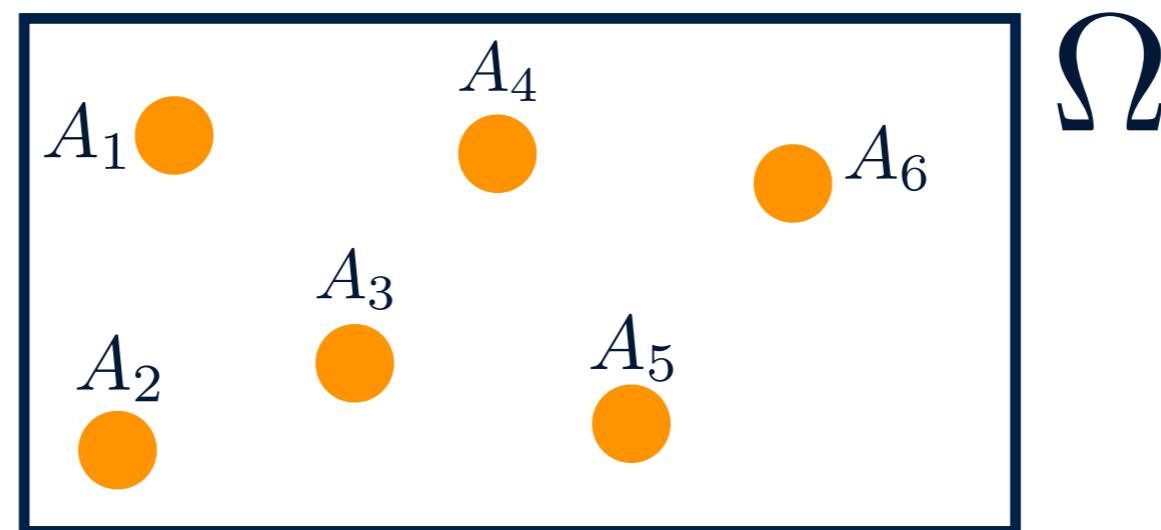
- Describe possible outcomes: **sample space**
- **Event**: A subset of sample space
- Describe beliefs about likelihood of these events: **probability law**



Sample space

The sample space is the set of all possible outcomes of the experiment:

e.g. Rolling a dice



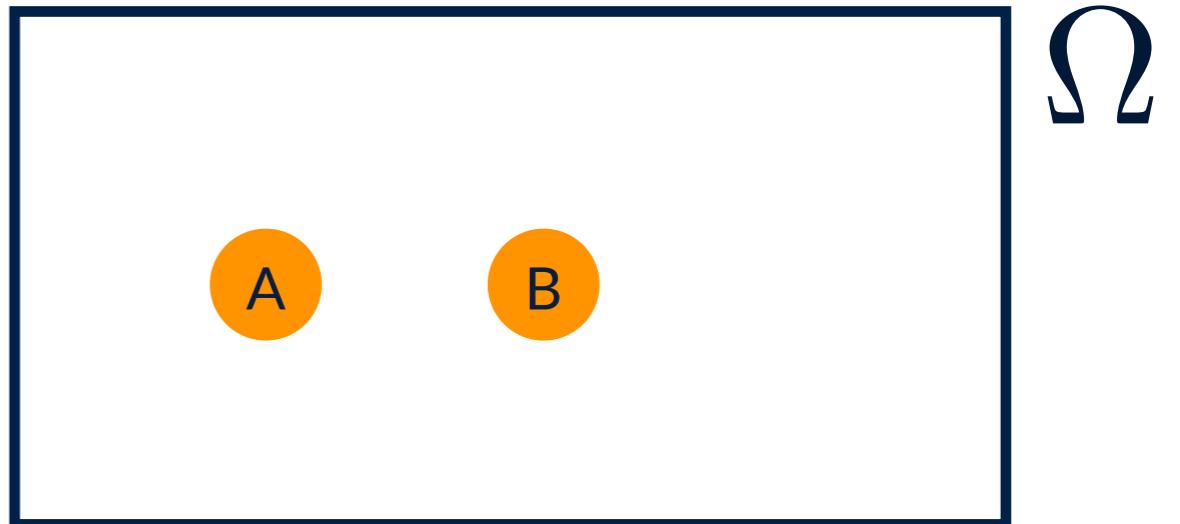
Outcomes must be:

- **Mutually Exclusive:** If I tell you, after the experiment, that A_1 happened, then it should not be possible that A_6 also happened.
- **Collectively Exhaustive:** Collectively, all the outcomes in Ω exhaust all possibilities.

Probability Axioms

- Non-negativity: $P(A) \geq 0$
- Normalisation: $P(\Omega) = 1$
- For any two **mutually exclusive events** (i.e. A and B cannot co-occur) we have:

$$P(A \text{ or } B) = P(A) + P(B)$$



Probability Axioms

- Non-negativity: $P(A) \geq 0$
- Normalisation: $P(\Omega) = 1$
- For any two **mutually exclusive events** (i.e. A and B cannot co-occur) we have:

$$P(A \text{ or } B) = P(A) + P(B)$$

As a consequence, take any two events A and B (they may overlap!), then:

$$P(A) = P(A \text{ and } B) + P(A \text{ and 'not } B)$$

Mutually exclusive: If A is true, either “A and B” or “A and not B” must be true.

Probability Axioms

- Non-negativity: $P(A) \geq 0$
- Normalisation: $P(\Omega) = 1$
- For any two **mutually exclusive events** (i.e. A and B cannot co-occur) we have:

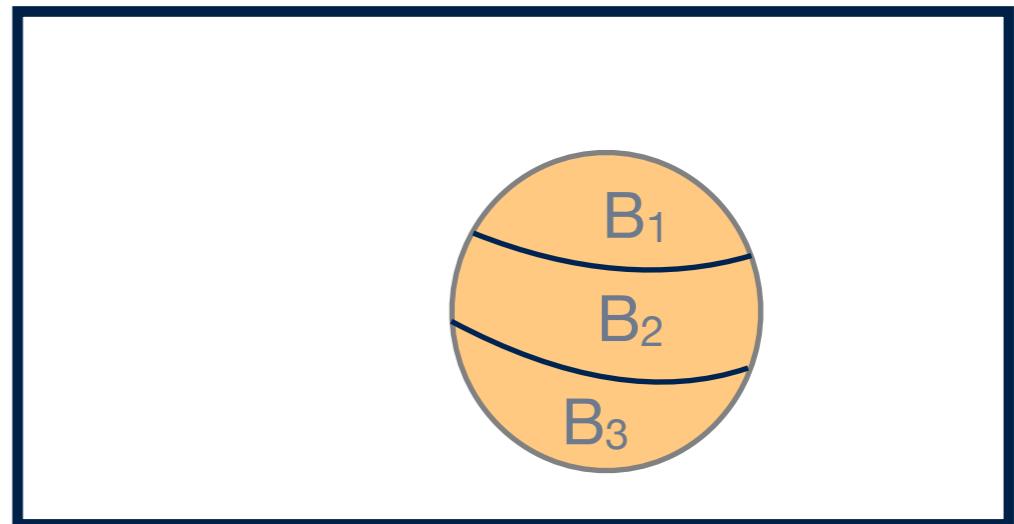
$$P(A \text{ or } B) = P(A) + P(B)$$

Corollary: B_1, B_2, B_3 , are exclusive, and together form all of B. Then,

$$P(A \text{ and } B) = P(A \text{ and } B_1) + P(A \text{ and } B_2) + P(A \text{ and } B_3)$$

Generalise for (exhaustive, mutually exclusive) **partitions** of B:

$$P(A \text{ and } B) = \sum_{i=1}^n P(A \text{ and } B_i) \quad \text{where } B_i \cap B_j = \emptyset, \bigcup_{i=1}^n B_i = B$$



Probability Axioms

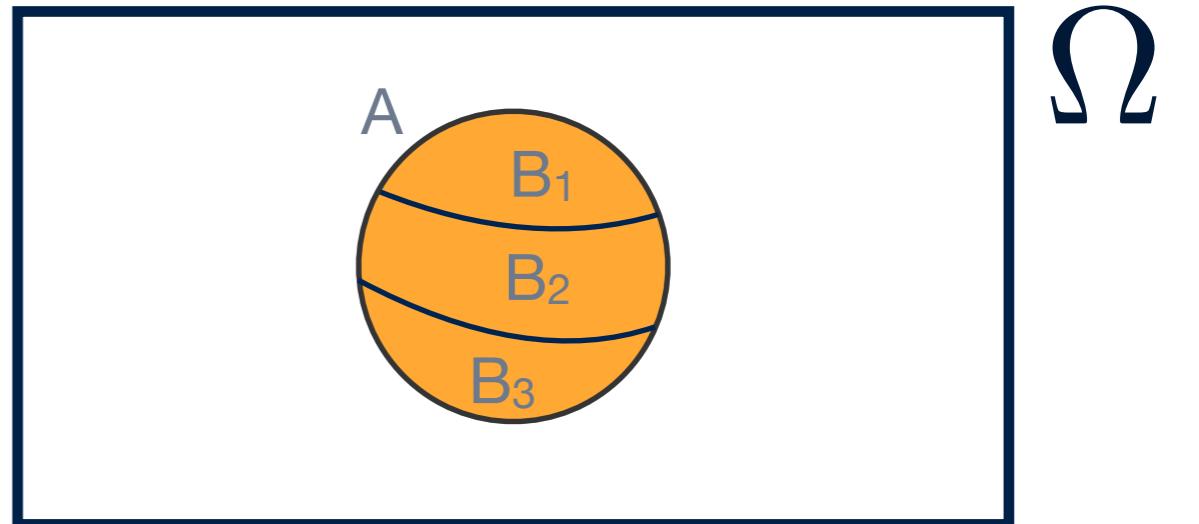
- Non-negativity: $P(A) \geq 0$
- Normalisation: $P(\Omega) = 1$
- For any two **mutually exclusive events** (i.e. A and B cannot co-occur) we have:

$$P(A \text{ or } B) = P(A) + P(B)$$

Corollary: Let $B_i, i=1, \dots, n$ be mutually exclusive and exhaustive partitions of B, and let $A=B$ (complete overlap). Then,

$$P(A) = P(A \text{ and } A) = P(A \text{ and } B) = \sum_{i=1}^n P(A \text{ and } B_i) \quad \text{where } B_i \cap B_j = \emptyset, \bigcup_{i=1}^n B_i = B$$

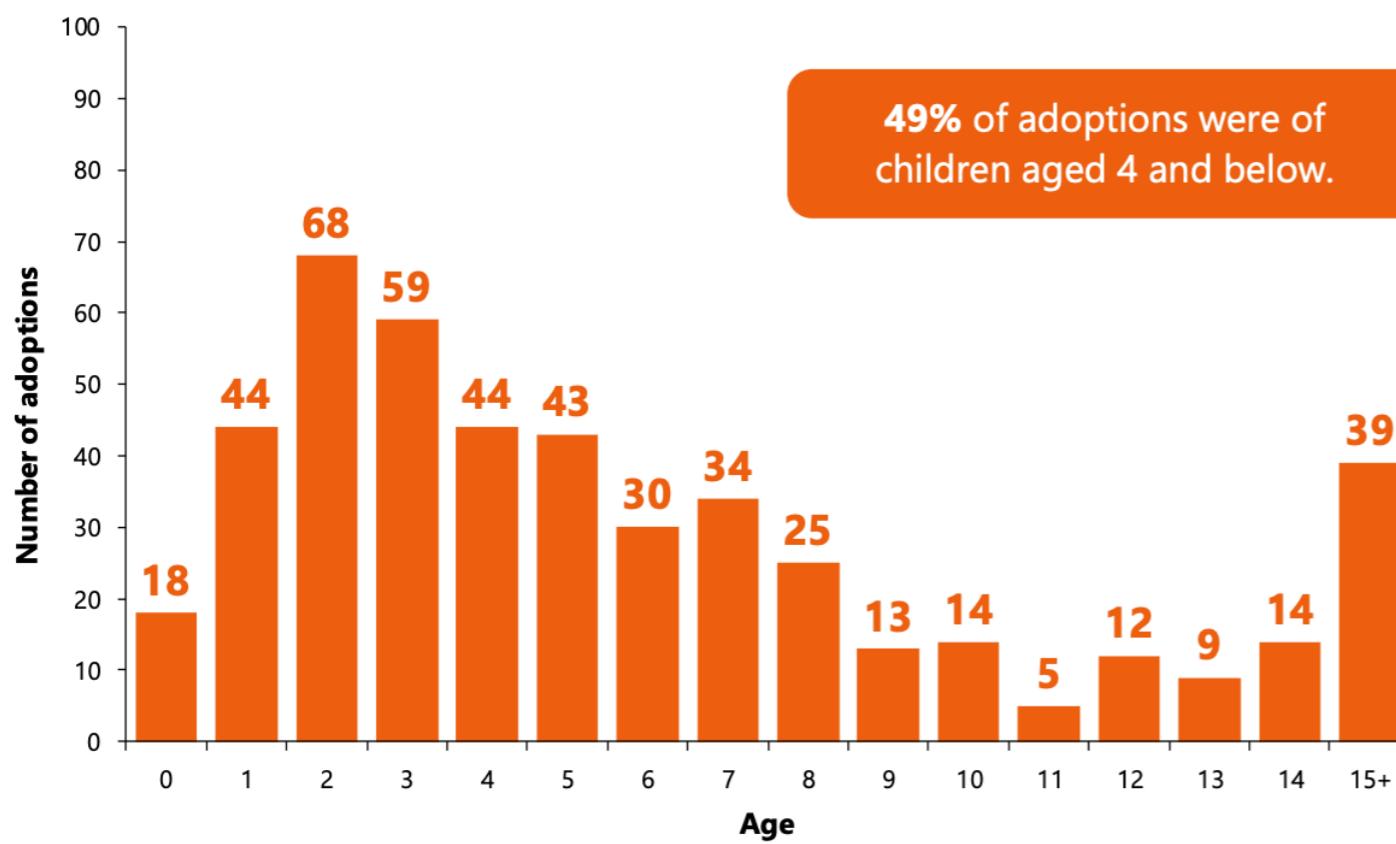
Total Law of probability. See later: “marginalisation”



Intervals

$$P(\text{age} > 4) = 1 - P(\text{age} \leq 4) = 1 - 0.49 = 0.51$$

Figure 7.2: Age at adoption, Scotland, 2018

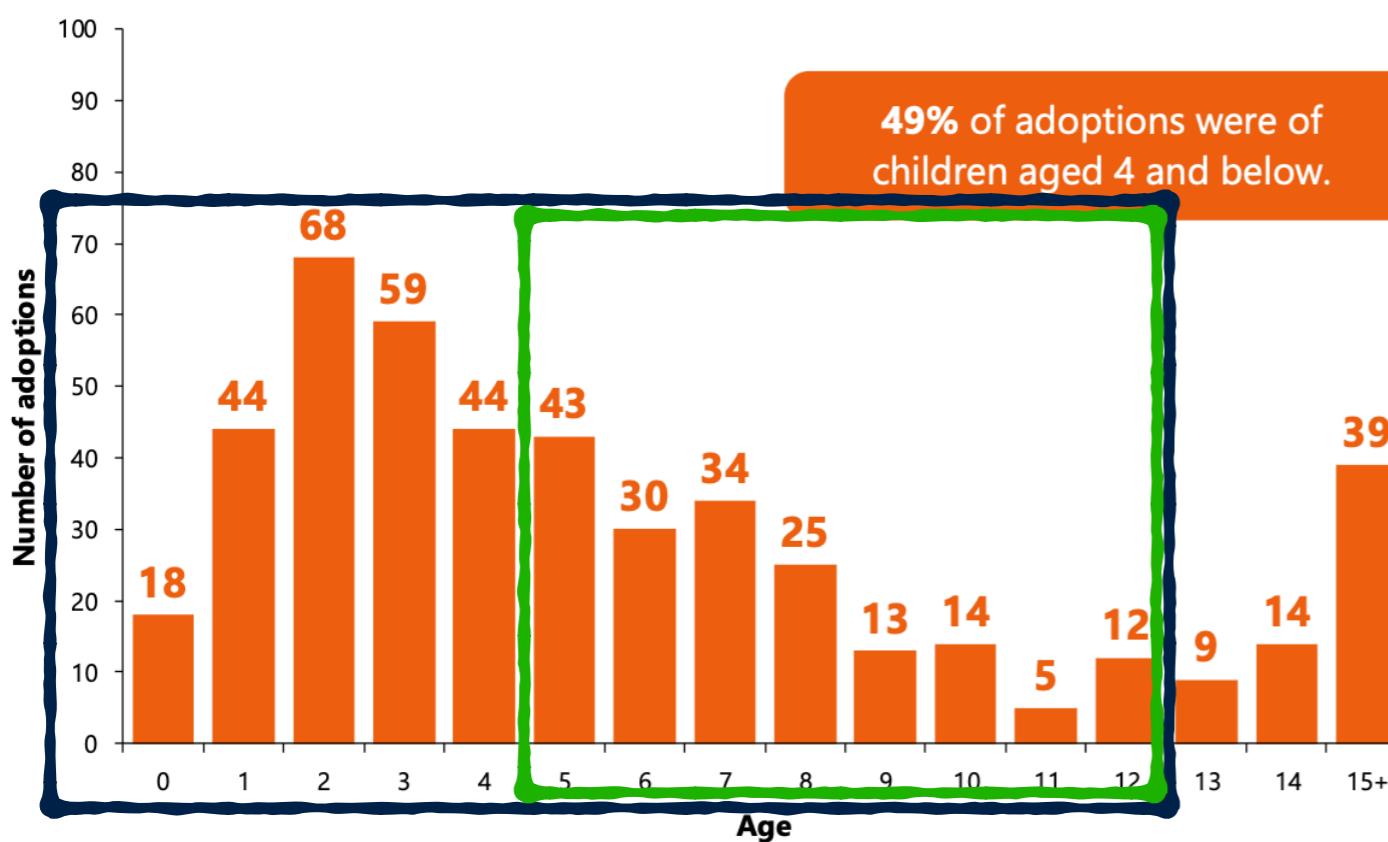


Intervals

$$P(\text{age} > 4) = 1 - P(\text{age} \leq 4) = 1 - 0.49 = 0.51$$

$$P(4 < \text{age} \leq 12) = (43+30+34+25+13+14+5+12) / 471 = 0.37$$

Figure 7.2: Age at adoption, Scotland, 2018



Total = 471

Conditional Probability

The probability that event A occurs, given that we know some other event B has occurred. (Think of filtering the data based on the value of some variable)

$P(X = x)$ vs $P(X = x|Y = y)$: The probability of $X=x$ can drastically change depending on the knowledge $Y=y$

Conditional Probability

The probability that event A occurs, given that we know some other event B has occurred. (Think of filtering the data based on the value of some variable)

$P(X = x)$ vs $P(X = x|Y = y)$: The probability of $X=x$ can drastically change depending on the knowledge $Y=y$

Example: $P(\text{lung cancer} | \text{smoker})$ vs
 $P(\text{lung cancer} | \text{smoker, socio-economic status})$

Given that the patient is a smoker, does knowing their socio-economic status add further information to the probability of lung cancer?

Conditional Probability

The probability that event A occurs, given that we know some other event B has occurred. (Think of filtering the data based on the value of some variable)

$P(X = x)$ vs $P(X = x|Y = y)$: The probability of $X=x$ can drastically change depending on the knowledge $Y=y$

Example: $P(\text{lung cancer} | \text{smoker})$ vs
 $P(\text{lung cancer} | \text{smoker, socio-economic status})$

Given that the patient is a smoker, does knowing their socio-economic status add further information to the probability of lung cancer?

Relation between “**joint**”, “**conditional**”, and “**marginal**” probabilities:

$$P(X, Y) = P(X|Y)P(Y)$$

Bayes' Rule

A_1, A_2, \dots, A_n are disjoint events forming a **partition** of the sample space and $P(A_i) > 0, \forall A_i$. Then, for any event B , $P(B) > 0$, Bayes' rule states:

$$P(A_i|B) = \frac{P(A_i \cap B)}{P(B)} = \frac{P(A_i)P(B|A_i)}{P(B)}$$

Bayes' Rule

A_1, A_2, \dots, A_n are disjoint events forming a **partition** of the sample space and $P(A_i) > 0, \forall A_i$. Then, for any event B , $P(B) > 0$, Bayes' rule states:

$$\begin{aligned} P(A_i|B) &= \frac{P(A_i \cap B)}{P(B)} = \frac{P(A_i)P(B|A_i)}{P(B)} \\ &= \frac{P(A_i)P(B|A_i)}{P(A_1 \cap B) + \dots + P(A_n \cap B)} \\ &= \frac{P(A_i)P(B|A_i)}{P(A_1)P(B|A_1) + \dots + P(A_n)P(B|A_n)} \end{aligned}$$

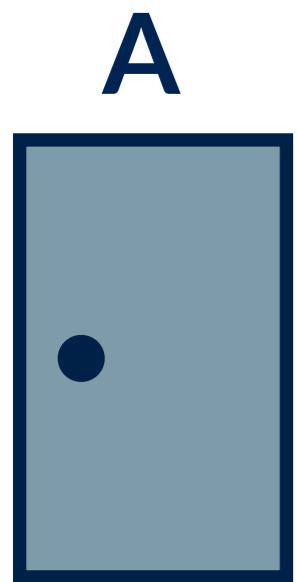
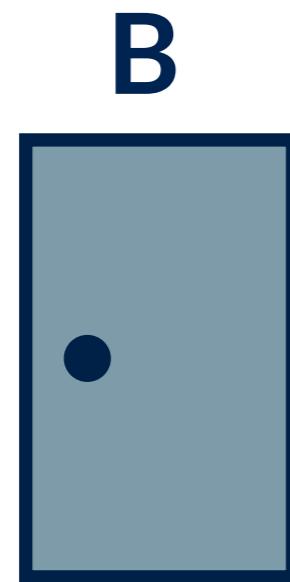
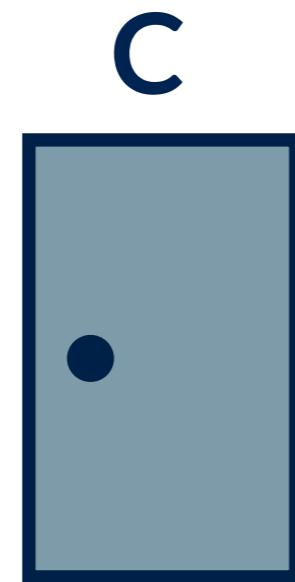
Bayes' Rule

A_1, A_2, \dots, A_n are disjoint events forming a **partition** of the sample space and $P(A_i) > 0, \forall A_i$. Then, for any event B , $P(B) > 0$, Bayes' rule states:

$$\begin{aligned} P(A_i|B) &= \frac{P(A_i \cap B)}{P(B)} = \frac{P(A_i)P(B|A_i)}{P(B)} \\ &= \frac{P(A_i)P(B|A_i)}{P(A_1 \cap B) + \dots + P(A_n \cap B)} \\ &= \frac{P(A_i)P(B|A_i)}{P(A_1)P(B|A_1) + \dots + P(A_n)P(B|A_n)} \end{aligned}$$

Note: For random variables, we often write $P(X, Y)$, instead of $P(X \cap Y)$

Monte Hall Problem & Application of Bayes' Rule

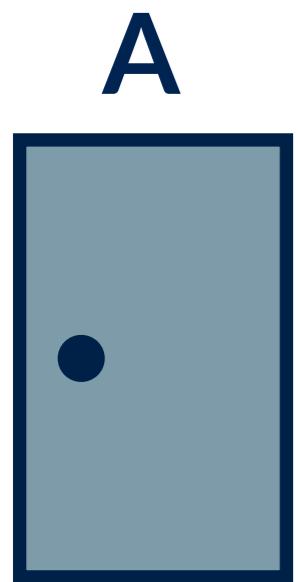
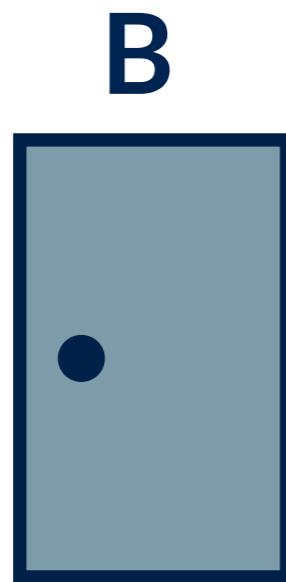


X = Door chosen by player

Y = Door hiding the car

Z = Door opened by host

Monte Hall Problem & Application of Bayes' Rule



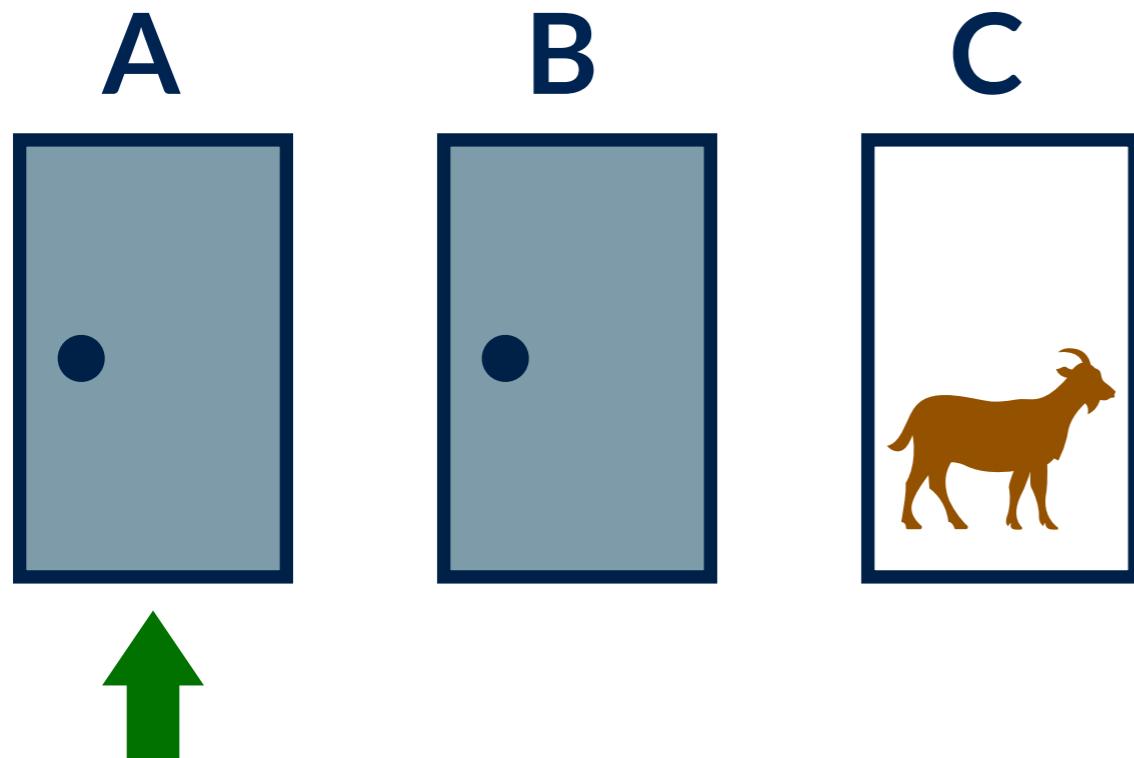
Prove that switching doors improves our chance of winning the car.

X = Door chosen by player

Y = Door hiding the car

Z = Door opened by host

Monte Hall Problem & Application of Bayes' Rule



X = Door chosen by player

Y = Door hiding the car

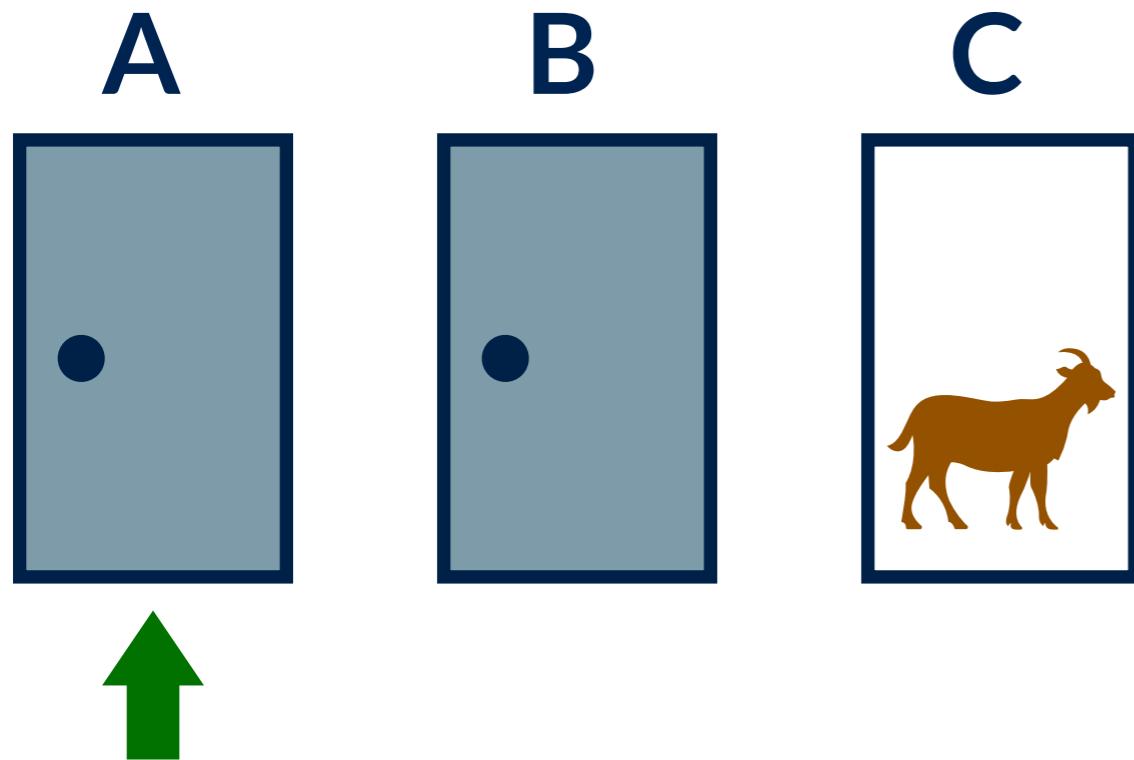
Z = Door opened by host

Prove that switching doors improves our chance of winning the car.

Note the assumptions:

1. The host will not open the door we have chosen
2. **The host will never open a door with a car behind**
3. Given a choice of doors, the host will choose at random (whilst 2)
4. Given no info, the car is equally likely to be behind any door

Monte Hall Problem & Application of Bayes' Rule



X = Door chosen by player

Y = Door hiding the car

Z = Door opened by host

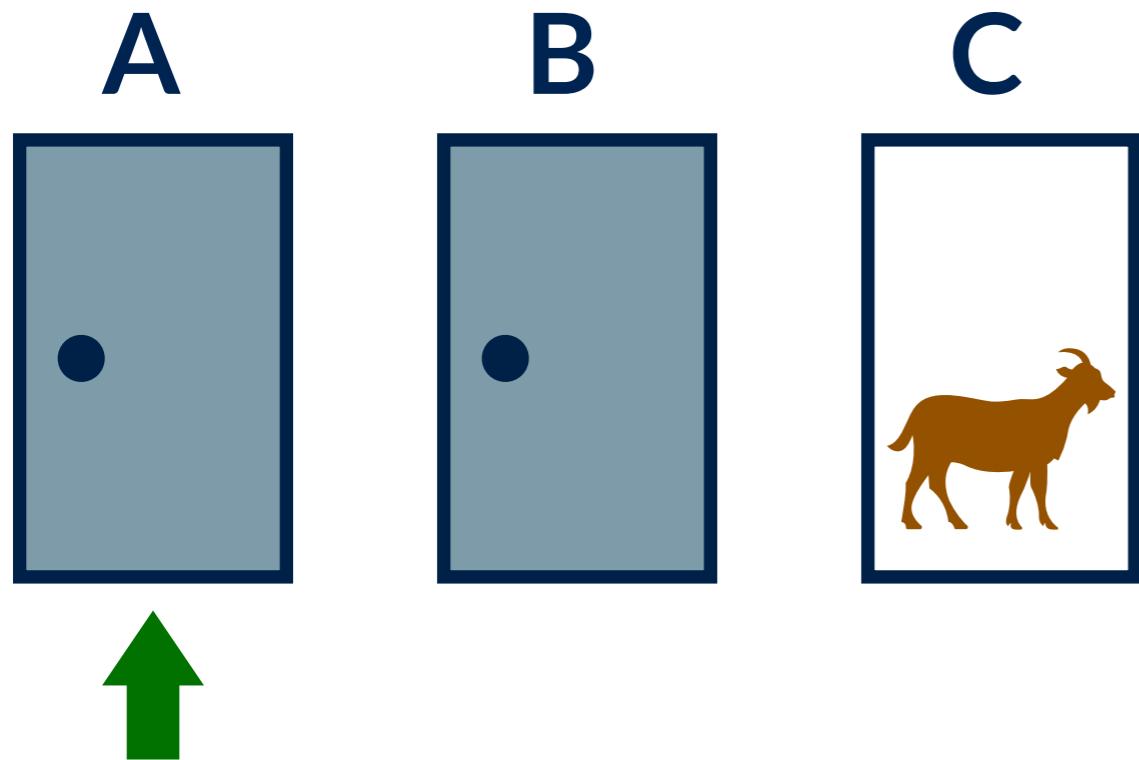
Prove that switching doors improves our chance of winning the car.

Need to show (given we have selected A and host has shown us C):

$$P(Y = A | X = A, Z = C) < P(Y = B | X = A, Z = C)$$

Is the car more likely to be behind B than A, i.e. switching improves our chance.

Monte Hall Problem & Application of Bayes' Rule



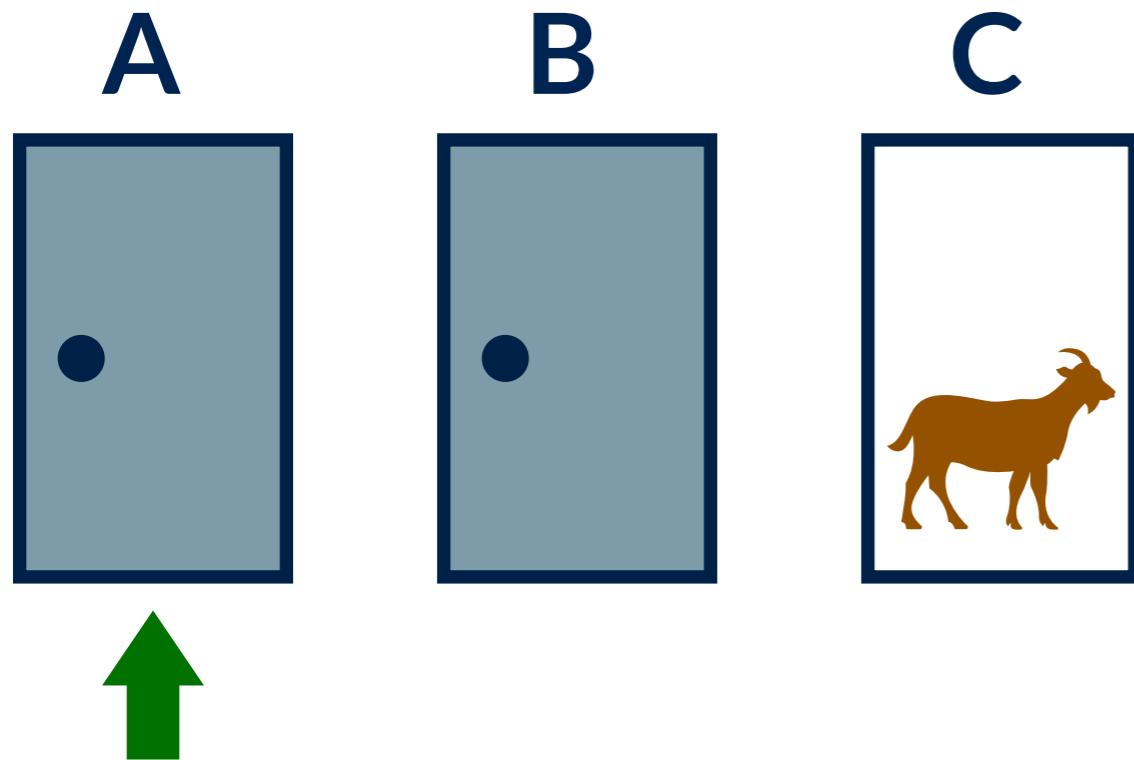
X = Door chosen by player

Y = Door hiding the car

Z = Door opened by host

$$P(Y = A|X = A, Z = C) = \frac{P(Z = C|X = A, Y = A)P(Y = A|X = A)}{P(Z = C|X = A)}$$

Monte Hall Problem & Application of Bayes' Rule



X = Door chosen by player

Y = Door hiding the car

Z = Door opened by host

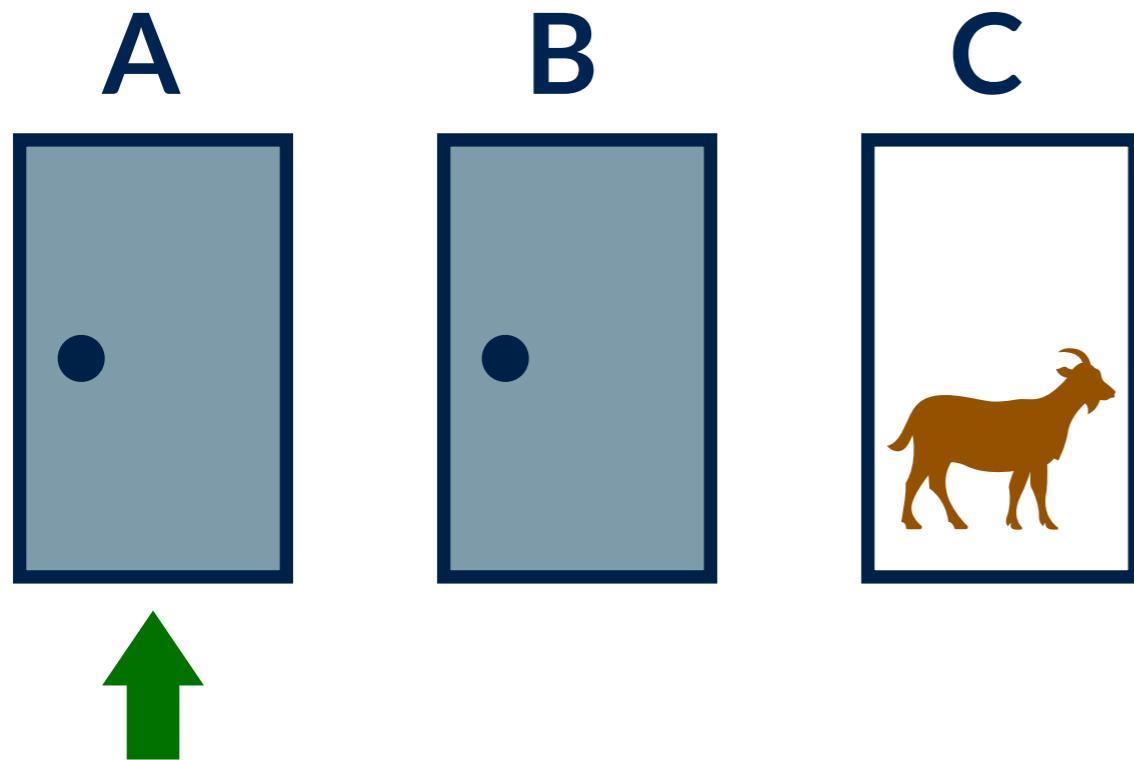
$$P(Y = A|X = A, Z = C) = \frac{P(Z = C|X = A, Y = A)P(Y = A|X = A)}{P(Z = C|X = A)}$$

$1/2$

Given we choose A ($X=A$), and the car is in A ($Y=A$), then the host is allowed to choose either B or C, as neither has the car behind it.

Since the host chooses randomly (assumption 3), we get 1/2.

Monte Hall Problem & Application of Bayes' Rule



X = Door chosen by player

Y = Door hiding the car

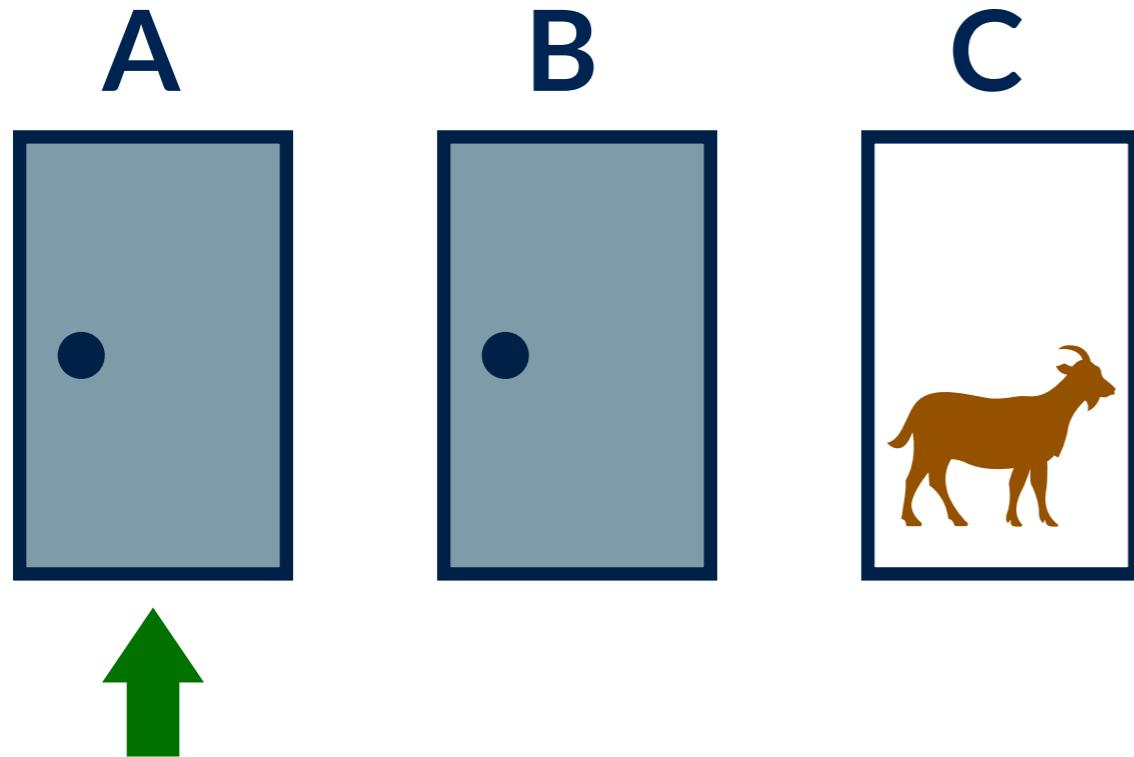
Z = Door opened by host

$$P(Y = A|X = A, Z = C) = \frac{P(Z = C|X = A, Y = A)P(Y = A|X = A)}{P(Z = C|X = A)}$$

1/3

Given we choose A ($X=A$), what is the probability that the car is behind A?
With no further information, this is equal to 1/3.

Monte Hall Problem & Application of Bayes' Rule



X = Door chosen by player

Y = Door hiding the car

Z = Door opened by host

$$P(Y = A|X = A, Z = C) = \frac{P(Z = C|X = A, Y = A)P(Y = A|X = A)}{P(Z = C|X = A) \boxed{1/2}}$$

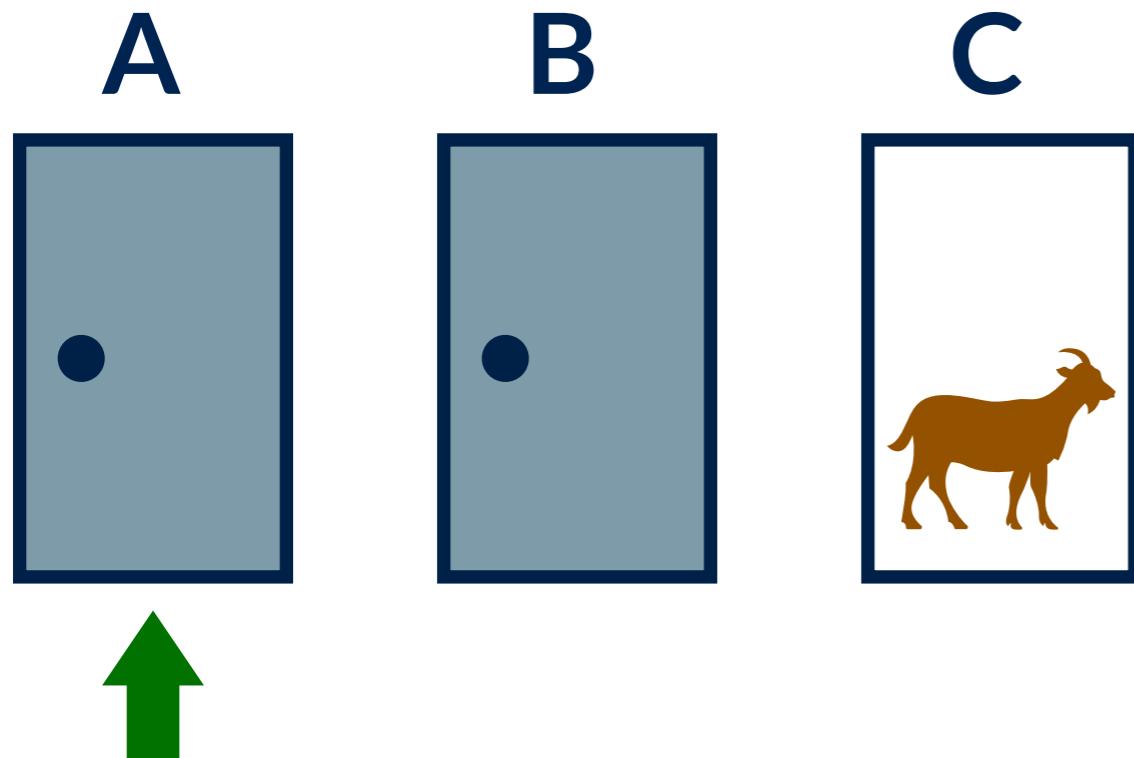
Total law of prob

$$P(Z = C|X = A) = \sum_{d=A,B,C} P(Z = C, Y = d|X = A)$$

Product rule

$$P(Z = C|X = A, Y = d)P(Y = d)$$

Monte Hall Problem & Application of Bayes' Rule



X = Door chosen by player

Y = Door hiding the car

Z = Door opened by host

$$P(Y = A|X = A, Z = C) = \frac{P(Z = C|X = A, Y = A)P(Y = A|X = A)}{P(Z = C|X = A) \boxed{1/2}}$$

Total law of prob

$$P(Z = C|X = A) = \sum_{d=A,B,C} P(Z = C, Y = d|X = A) = \sum_{d=A,B,C} P(Z = C|X = A, Y = d)P(Y = d)$$

$$= \frac{1}{3} \left(P(Z = C|X = A, Y = A) + P(Z = C|X = A, Y = B) + P(Z = C|X = A, Y = C) \right)$$

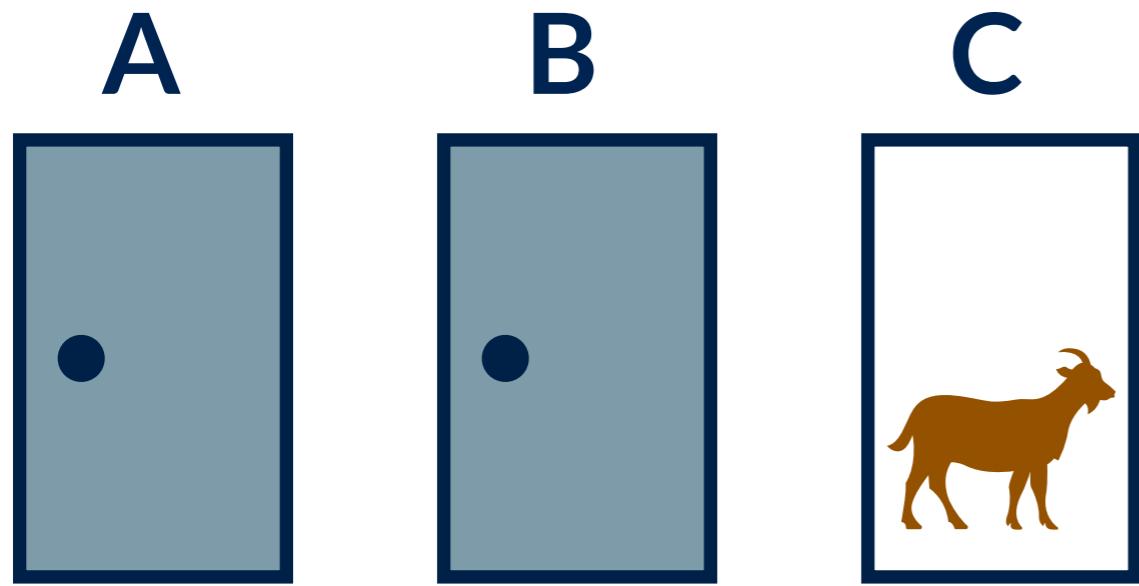
1/2 as above

1: Given we chose A and car is behind B, host is **forced** to choose C
(Assumption 2)

Product rule

0: Given we chose A and car is behind C, the host cannot choose C (Assumption 2)

Monte Hall Problem & Application of Bayes' Rule



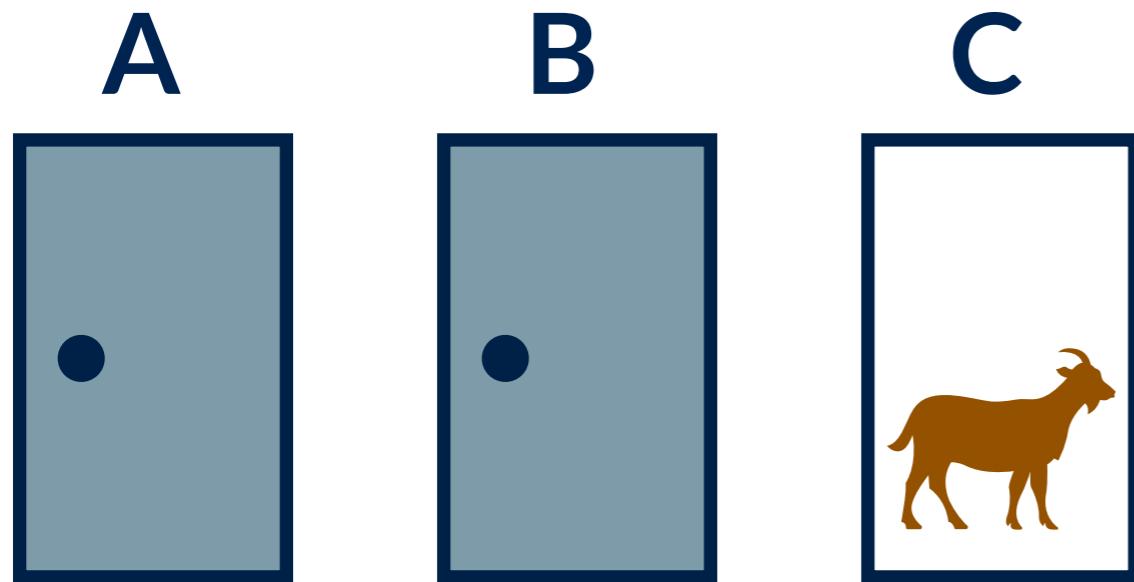
X = Door chosen by player

Y = Door hiding the car

Z = Door opened by host

$$P(Y = A|X = A, Z = C) = \frac{P(Z = C|X = A, Y = A)P(Y = A|X = A)}{P(Z = C|X = A) \quad 1/2}$$

Monte Hall Problem & Application of Bayes' Rule



X = Door chosen by player

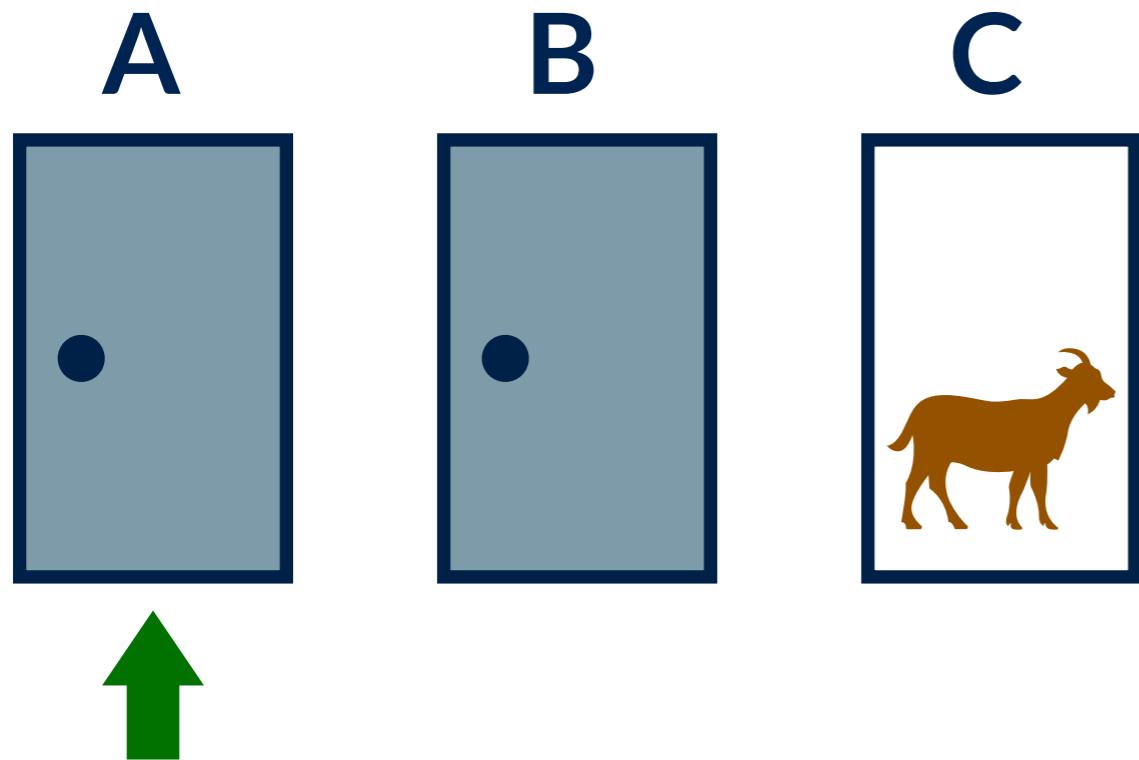
Y = Door hiding the car

Z = Door opened by host

$$P(Y = A|X = A, Z = C) = \frac{P(Z = C|X = A, Y = A)P(Y = A|X = A)}{P(Z = C|X = A) \quad 1/2}$$

$$\begin{aligned} P(Y = B|X = A, Z = C) &= 1 - P(Y = A|X = A, Z = C) - P(Y = C|X = A, Z = C) \\ &= 1 - \frac{1}{3} - 0 = 2/3 \end{aligned}$$

Monte Hall Problem & Application of Bayes' Rule



X = Door chosen by player

Y = Door hiding the car

Z = Door opened by host

Importance: Incorporating knowledge about the process that generated the data.
The first step towards **causal inference**.

‘Host could have opened’, ‘he was forced to open’, ‘randomly opened’, ‘about to open’, ...

Independence

X and Y are independent events: $P(X,Y) = P(X)P(Y)$

Equivalently: $P(X|Y) = P(X)$ (where $P(Y)$ is non-zero, otherwise $P(X|Y)$ not defined)

Conditional independence: $P(X,Y|Z) = P(X|Z)P(Y|Z)$

Equivalently: $P(X|Y,Z) = P(X|Z)$ (again, for $P(Y,Z)$ non-zero)

Independence of several events:

Remark: Pairwise independence does not imply independence

Example: 2 independent fair coin tosses ($p_1, p_2 = 0.5$)

Consider 3 events:

H_1 = first coin is a head

H_2 = second coin is a head

J = the two tosses have the same results

	H	T
H		
T		

Independence

X and Y are independent events: $P(X,Y) = P(X)P(Y)$

Equivalently: $P(X|Y) = P(X)$ (where $P(Y)$ is non-zero, otherwise $P(X|Y)$ not defined)

Conditional independence: $P(X,Y|Z) = P(X|Z)P(Y|Z)$

Equivalently: $P(X|Y,Z) = P(X|Z)$ (again, for $P(Y,Z)$ non-zero)

Independence of several events:

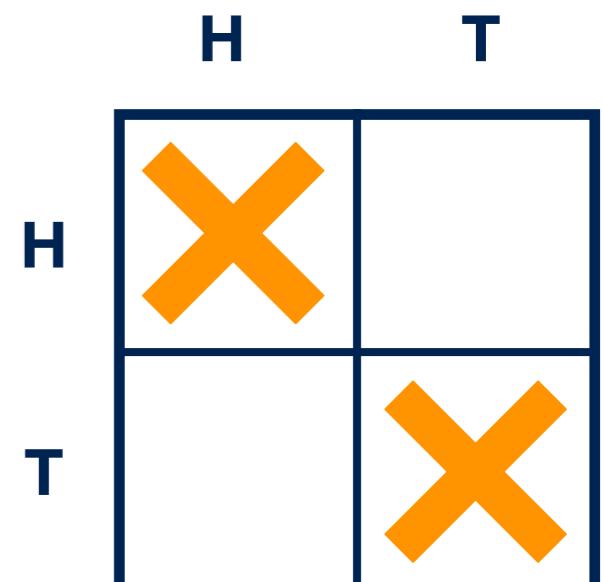
Remark: Pairwise independence does not imply independence

Example: 2 independent fair coin tosses ($p_1, p_2 = 0.5$)

H1 & H2: independent coin tosses

$$P(H1,H2) = P(H1|H2)P(H2) = 0.5 \times 0.5 = P(H1)P(H2)$$

	H	T
H		
T		



Independence

X and Y are independent events: $P(X,Y) = P(X)P(Y)$

Equivalently: $P(X|Y) = P(X)$ (where $P(Y)$ is non-zero, otherwise $P(X|Y)$ not defined)

Conditional independence: $P(X,Y|Z) = P(X|Z)P(Y|Z)$

Equivalently: $P(X|Y,Z) = P(X|Z)$ (again, for $P(Y,Z)$ non-zero)

Independence of several events:

Remark: Pairwise independence does not imply independence

Example: 2 independent fair coin tosses ($p_1, p_2 = 0.5$)

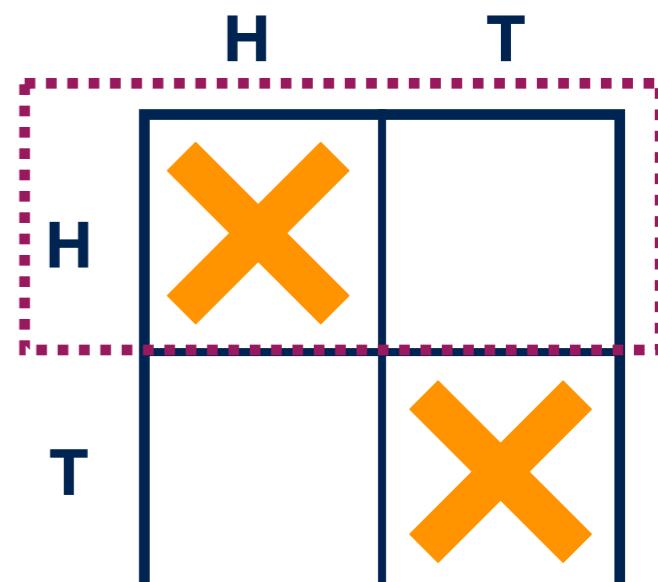
H_1 & H_2 : independent coin tosses

$P(H_1, J) = P(J | H_1)P(H_1) =$

Given H_1 , what is the probability of J

(i.e second toss also being a head)

So: $P(J | H_1) = 0.5$



Independence

X and Y are independent events: $P(X,Y) = P(X)P(Y)$

Equivalently: $P(X|Y) = P(X)$ (where $P(Y)$ is non-zero, otherwise $P(X|Y)$ not defined)

Conditional independence: $P(X,Y|Z) = P(X|Z)P(Y|Z)$

Equivalently: $P(X|Y,Z) = P(X|Z)$ (again, for $P(Y,Z)$ non-zero)

Independence of several events:

Remark: Pairwise independence does not imply independence

Example: 2 independent fair coin tosses ($p_1, p_2 = 0.5$)

H1 & H2: independent coin tosses

$$P(H1,J) = P(J | H1)P(H1) = 0.5 \times 0.5 = P(J)P(H1)$$

Given H1, what is the probability of J

(i.e second toss also being a head)

$$\text{So: } P(J | H1) = 0.5$$

	H	T
H		
T		

Independence

X and Y are independent events: $P(X,Y) = P(X)P(Y)$

Equivalently: $P(X|Y) = P(X)$ (where $P(Y)$ is non-zero, otherwise $P(X|Y)$ not defined)

Conditional independence: $P(X,Y|Z) = P(X|Z)P(Y|Z)$

Equivalently: $P(X|Y,Z) = P(X|Z)$ (again, for $P(Y,Z)$ non-zero)

Independence of several events:

Remark: Pairwise independence does not imply independence

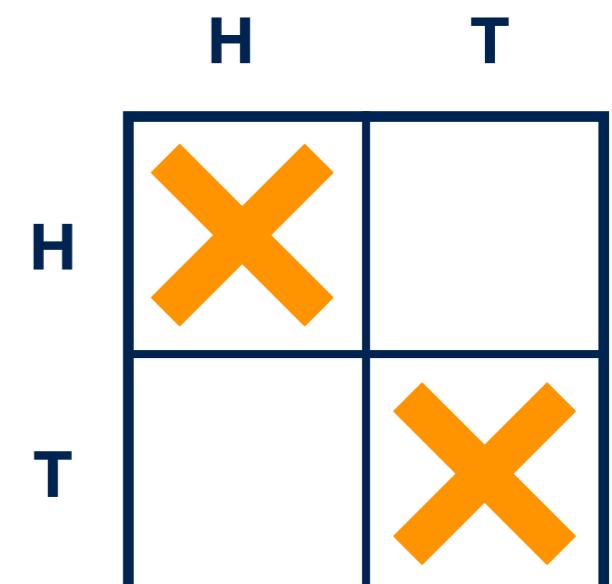
Example: 2 independent fair coin tosses ($p_1, p_2 = 0.5$)

H1 & H2: independent coin tosses

$$P(H_2, J) = P(J | H_2)P(H_2) = 0.5 \times 0.5 = P(J)P(H_2)$$

So pair-wise independent. BUT ...

	H	T
H		
T		



Independence

X and Y are independent events: $P(X,Y) = P(X)P(Y)$

Equivalently: $P(X|Y) = P(X)$ (where $P(Y)$ is non-zero, otherwise $P(X|Y)$ not defined)

Conditional independence: $P(X,Y|Z) = P(X|Z)P(Y|Z)$

Equivalently: $P(X|Y,Z) = P(X|Z)$ (again, for $P(Y,Z)$ non-zero)

Independence of several events:

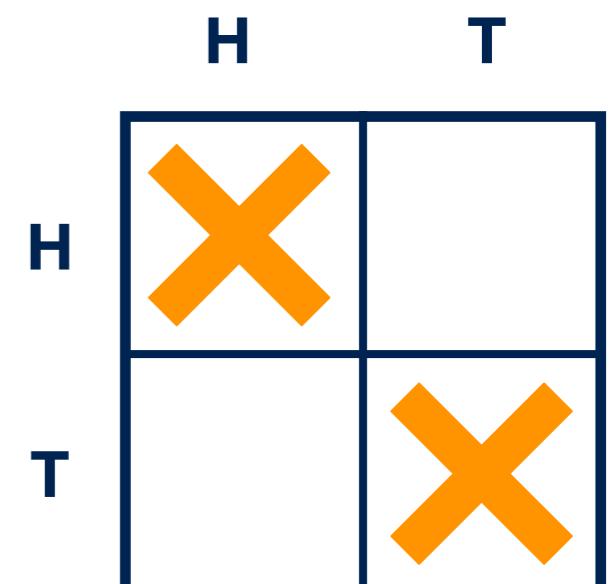
Remark: Pairwise independence does not imply independence

Example: 2 independent fair coin tosses ($p_1, p_2 = 0.5$)

H1 & H2: independent coin tosses

$$P(H1, H2, J) = P(H1 | H2, J) P(H2, J) = 1 \times 0.25 = 0.25$$

	H	T
H		
T		



Independence

X and Y are independent events: $P(X,Y) = P(X)P(Y)$

Equivalently: $P(X|Y) = P(X)$ (where $P(Y)$ is non-zero, otherwise $P(X|Y)$ not defined)

Conditional independence: $P(X,Y|Z) = P(X|Z)P(Y|Z)$

Equivalently: $P(X|Y,Z) = P(X|Z)$ (again, for $P(Y,Z)$ non-zero)

Independence of several events:

Remark: Pairwise independence does not imply independence

Example: 2 independent fair coin tosses ($p_1, p_2 = 0.5$)

H1 & H2: independent coin tosses

$$P(H1, H2, J) = P(H1 | H2, J) P(H2, J) = 1 \times 0.25 = 0.25$$

$$\text{However, } P(H1)P(H2)P(J) = 0.5 \times 0.5 \times 0.5 = 0.125 \quad \neq$$

i.e. not jointly independent

	H	T
H		
T		

Expected values

The probability distribution of a random variable X provides us with probabilities of all possible values of X .

Summarise information, with some loss of information, represented by:

The **expected value** or **mean**:

$$\mathbb{E}[X] = \sum_x x P(X = x)$$

For a dice: $(1 \times 1/6) + (2 \times 1/6) + (3 \times 1/6) + (4 \times 1/6) + (5 \times 1/6) + (6 \times 1/6) = 3.5$

Expected values

The probability distribution of a random variable X provides us with probabilities of all possible values of X .

Summarise information, with some loss of information, represented by:

The **expected value** or **mean**:

$$\mathbb{E}[X] = \sum_x x P(X = x)$$

For a dice: $(1 \times 1/6) + (2 \times 1/6) + (3 \times 1/6) + (4 \times 1/6) + (5 \times 1/6) + (6 \times 1/6) = 3.5$

The expected value of any function of X , e.g. $g(x)$:

$$\mathbb{E}[g(X)] = \sum_x g(x) P(X = x)$$

Dice: $(1 \times 1/6) + (4 \times 1/6) + (9 \times 1/6) + (16 \times 1/6) + (25 \times 1/6) + (36 \times 1/6) = 15.17$

Expected values

The probability distribution of a random variable X provides us with probabilities of all possible values of X .

Summarise information, with some loss of information, represented by:

The **expected value** or **mean**:

$$\mathbb{E}[X] = \int x \ P(x)dx$$

for a continuous variable X .

Variance

The **variance** of a random variable X , denoted $\text{Var}(X)$ or σ_X^2 :

$$\text{var}(X) = \mathbb{E}[(X - \mathbb{E}[X])^2]$$

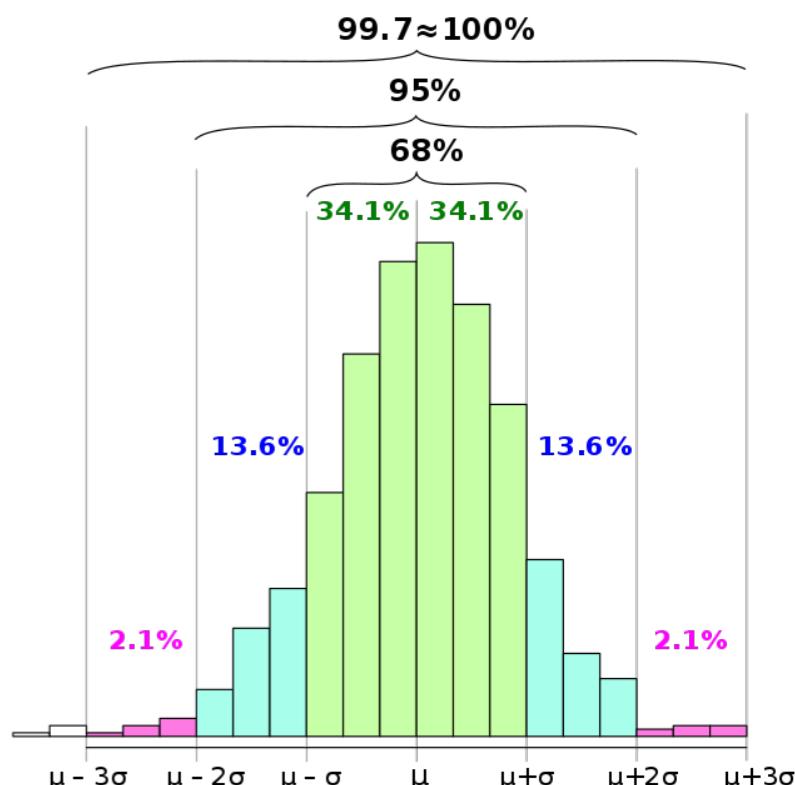
and can be calculated as

$$\text{var}(X) = \sum_x (X - \mathbb{E}[X])^2 p_X(x)$$

(Integral of continuous variables), and measure how “spread out” the values of X in a data set are relative to their mean.

The **standard deviation** σ_X (has the same units as X).

For a normal distribution, $\sim 2/3$ of the population values of X fall within one σ_X , 95% fall between $2 \sigma_X$, etc.



Covariance

The degree to which two random variables X and Y co-vary (degree associated):

$$\sigma_{XY} = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$

and measures a specific way X and Y co-vary, i.e., linearly. When normalised, it yields the correlation coefficient (Pearson correlation):

$$\rho_{XY} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}$$

a dimensionless quantity between -1 and 1.

Covariance

The degree to which two random variables X and Y co-vary (degree associated):

$$\sigma_{XY} = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$

and measures a specific way X and Y co-vary, i.e., linearly. When normalised, it yields the correlation coefficient (**Pearson correlation**):

$$\rho_{XY} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}$$

a dimensionless quantity between -1 and 1.

When X and Y are independent, then $\rho_{XY} = 0$

The reverse is not true!

(e.g. ρ_{XY} may be zero, but not linear-correlation, hence dependence exists.
This requires more complex methods of demonstrating if $P(Y|X) = P(Y)$)

Anscombe's Quartet

Group of 4 datasets with nearly identical simple descriptive statistical properties:

- Mean and sample variance of X
- Mean and sample variance of Y
- Correlation between X and Y
- Linear regression line (coefficient the same up to 2 or 3 decimal places)
- R^2 coefficient

A note on R^2 : A measure for goodness-of-fit

$$R^2 = 1 - \frac{\sum_i (y_i - f_i)^2}{\sum_i (y_i - \bar{y})^2} , \quad y_i = f(x_i) , \quad \bar{y} = \frac{1}{n} \sum_i y_i$$

If the fit $y=f(x)$ is a perfect fit, the numerator is zero, $R^2 = 1$, and

$R^2 = 0$ implies the fit $f(x)$ is no better than baseline average \bar{y} .

Negative values corresponds to models worse than the baseline average.

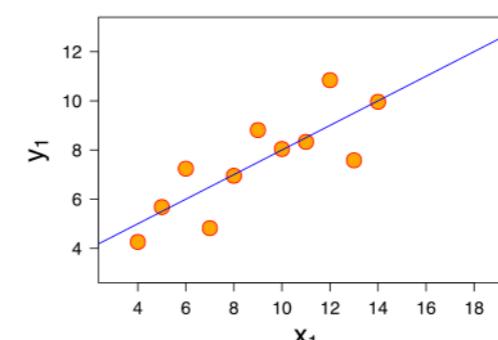
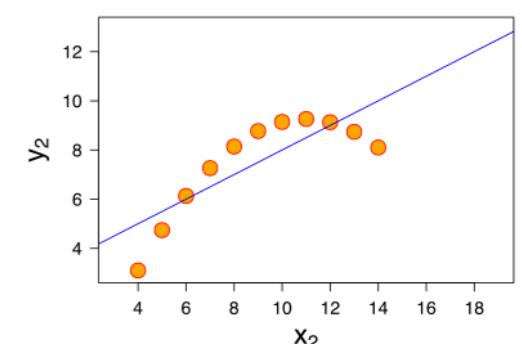
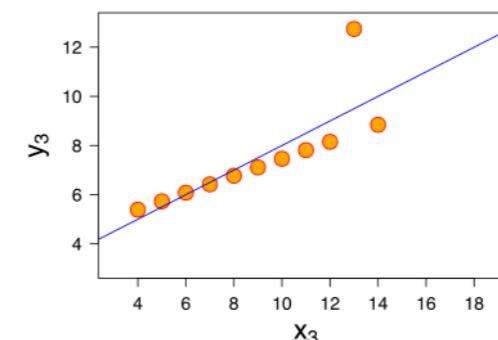
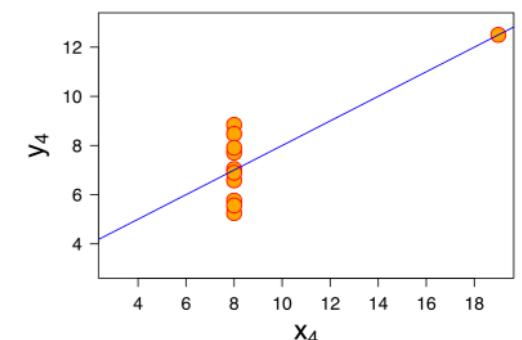
Anscombe's Quartet

Group of 4 datasets with nearly identical simple descriptive statistical properties:

- Mean and sample variance of X
- Mean and sample variance of Y
- Correlation between X and Y
- Linear regression line (coefficient the same up to 2 or 3 decimal places)
- R^2 coefficient

Yet, very different distributions, which can be observed by plotting the graphs

Same Pearson correlation, but,
different dependence structure
(X causes Y, but in different ways)



THE UNIVERSITY
of EDINBURGH

Methods for Causal Inference

Lecture 2: Basics of probability

Ava Khamseh

School of Informatics
2025-2026