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Last time …

Language of probability: Variables, evens, samples space, probability law 

Probability axioms, (conditional) total law of probability, independence, 

Bayes’ rule 

Expected values, variance, correlation 



Anscombe’s Quartet

Group of 4 datasets with nearly identical simple descriptive statistical properties: 

- Mean and sample variance of X 

- Mean and sample variance of Y 

- Correlation between X and Y 

- Linear regression line (coefficient the same up to 2 or 3 decimal places) 

-       coefficient 

A note on         : A measure for goodness-of-fit 

If the fit y=f(x) is a perfect fit, the numerator is zero,                  , and 

                implies the fit f(x) is no better than baseline average      .  

Negative values corresponds to models worse than the baseline average. 
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ȳ



Anscombe’s Quartet

Group of 4 datasets with nearly identical simple descriptive statistical properties: 

- Mean and sample variance of X 

- Mean and sample variance of Y 

- Correlation between X and Y 

- Linear regression line (coefficient the same up to 2 or 3 decimal places) 

-       coefficient 

Yet, very different distributions, which can be observed by plotting the graphs 

Same Pearson correlation, but, 

different dependence structure 

(X causes Y, but in different ways) 
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Regression

Suppose we wish to predict the value of an outcome Y, based on the value of 

some input X. The best prediction of Y based on X is given by  

(‘best’: in terms of minimum loss function, on average, e.g. square loss) 

Wish to estimate                                 from data -> Regression 

Linear regression is a model that can be employed do this, but they are many 

other parametric (e.g. polynomial, GLMs) and non-parametric methods. 

Let              be the value of the line                                   at  

The least squares regression line minimises: 
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Regression

Suppose we wish to predict the value of an outcome Y, based on the value of 

some input X. The best prediction of Y based on X is given by  

(‘best’: in terms of minimum loss function, on average, e.g. square loss) 

Wish to estimate                                 from data -> Regression 

Linear regression is a model that can be employed do this, but they are many 

other parametric (e.g. polynomial, GLMs) and non-parametric methods. 

Let              be the value of the line                                   at  

The least squares regression line minimises: 

i.e. the sum of distances between  
the points and the line. 6
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Regression

Suppose we wish to predict the value of an outcome Y, based on the value of 

some input X. The best prediction of Y based on X is given by  

(‘best’: in terms of minimum loss function, on average, e.g. square loss) 

Wish to estimate                                 from data -> Regression 

Linear regression is a model that can be employed do this, but they are many 

other parametric (e.g. polynomial, GLMs) and non-parametric methods. 

Assumptions:  
1. Linearity: Y depends linearly on X 

2. Homoscedasticity: variance of residual is  

the same for any value of X 

Residual for every point: 
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Regression

Suppose we wish to predict the value of an outcome Y, based on the value of 

some input X. The best prediction of Y based on X is given by  

(‘best’: in terms of minimum loss function, on average, e.g. square loss) 

Wish to estimate                                 from data -> Regression 

Linear regression is a model that can be employed do this, but they are many 

other parametric (e.g. polynomial, GLMs) and non-parametric methods. 

Assumptions:  
1. Linearity: Y depends linearly on X 

2. Homoscedasticity: variance of residual is  

the same for any value of X

8

<latexit sha1_base64="IZl5dq/1zoA8mcAW3UKtifwMDGs=">AAAB+nicdVDLSgMxFM3UV62vVpdugkVwVTJlbOtCKIrgsoJ9yHQomTTThmYeJBm1TPspblwo4tYvceffmGkrqOiBwOGce7knx404kwqhDyOztLyyupZdz21sbm3v5Au7LRnGgtAmCXkoOi6WlLOANhVTnHYiQbHvctp2R+ep376lQrIwuFbjiDo+HgTMYwQrLfXyha6P1dB1k4upfTPpnN47vXwRlRCyqhUENTmp1WpVTcrHyEIImtpKUQQLNHr5924/JLFPA0U4ltI2UaScBAvFCKfTXDeWNMJkhAfU1jTAPpVOMos+hYda6UMvFPoFCs7U7xsJ9qUc+66eTIPK314q/uXZsfJqTsKCKFY0IPNDXsyhCmHaA+wzQYniY00wEUxnhWSIBSZKt5XTJXz9FP5PWuWSWSlZV1axfraoIwv2wQE4Aiaogjq4BA3QBATcgQfwBJ6NifFovBiv89GMsdjZAz9gvH0Cn6+UQw==</latexit>

E[Y |X = x]

<latexit sha1_base64="IZl5dq/1zoA8mcAW3UKtifwMDGs=">AAAB+nicdVDLSgMxFM3UV62vVpdugkVwVTJlbOtCKIrgsoJ9yHQomTTThmYeJBm1TPspblwo4tYvceffmGkrqOiBwOGce7knx404kwqhDyOztLyyupZdz21sbm3v5Au7LRnGgtAmCXkoOi6WlLOANhVTnHYiQbHvctp2R+ep376lQrIwuFbjiDo+HgTMYwQrLfXyha6P1dB1k4upfTPpnN47vXwRlRCyqhUENTmp1WpVTcrHyEIImtpKUQQLNHr5924/JLFPA0U4ltI2UaScBAvFCKfTXDeWNMJkhAfU1jTAPpVOMos+hYda6UMvFPoFCs7U7xsJ9qUc+66eTIPK314q/uXZsfJqTsKCKFY0IPNDXsyhCmHaA+wzQYniY00wEUxnhWSIBSZKt5XTJXz9FP5PWuWSWSlZV1axfraoIwv2wQE4Aiaogjq4BA3QBATcgQfwBJ6NifFovBiv89GMsdjZAz9gvH0Cn6+UQw==</latexit>

E[Y |X = x]



Regression

Suppose we wish to predict the value of an outcome Y, based on the value of 

some input X. The best prediction of Y based on X is given by  

(‘best’: in terms of minimum loss function, on average, e.g. square loss) 

Wish to estimate                                 from data -> Regression 

Linear regression is a model that can be employed do this, but they are many 

other parametric (e.g. polynomial, GLMs) and non-parametric methods. 

Assumptions:  
1. Linearity: Y depends linearly on X 

2. Homoscedasticity: variance of residual is  

the same for any value of X 

3. Independence of observations  

4. Normality: For any fixed value of X,  

Y is normally distributed 9

<latexit sha1_base64="IZl5dq/1zoA8mcAW3UKtifwMDGs=">AAAB+nicdVDLSgMxFM3UV62vVpdugkVwVTJlbOtCKIrgsoJ9yHQomTTThmYeJBm1TPspblwo4tYvceffmGkrqOiBwOGce7knx404kwqhDyOztLyyupZdz21sbm3v5Au7LRnGgtAmCXkoOi6WlLOANhVTnHYiQbHvctp2R+ep376lQrIwuFbjiDo+HgTMYwQrLfXyha6P1dB1k4upfTPpnN47vXwRlRCyqhUENTmp1WpVTcrHyEIImtpKUQQLNHr5924/JLFPA0U4ltI2UaScBAvFCKfTXDeWNMJkhAfU1jTAPpVOMos+hYda6UMvFPoFCs7U7xsJ9qUc+66eTIPK314q/uXZsfJqTsKCKFY0IPNDXsyhCmHaA+wzQYniY00wEUxnhWSIBSZKt5XTJXz9FP5PWuWSWSlZV1axfraoIwv2wQE4Aiaogjq4BA3QBATcgQfwBJ6NifFovBiv89GMsdjZAz9gvH0Cn6+UQw==</latexit>

E[Y |X = x]

<latexit sha1_base64="IZl5dq/1zoA8mcAW3UKtifwMDGs=">AAAB+nicdVDLSgMxFM3UV62vVpdugkVwVTJlbOtCKIrgsoJ9yHQomTTThmYeJBm1TPspblwo4tYvceffmGkrqOiBwOGce7knx404kwqhDyOztLyyupZdz21sbm3v5Au7LRnGgtAmCXkoOi6WlLOANhVTnHYiQbHvctp2R+ep376lQrIwuFbjiDo+HgTMYwQrLfXyha6P1dB1k4upfTPpnN47vXwRlRCyqhUENTmp1WpVTcrHyEIImtpKUQQLNHr5924/JLFPA0U4ltI2UaScBAvFCKfTXDeWNMJkhAfU1jTAPpVOMos+hYda6UMvFPoFCs7U7xsJ9qUc+66eTIPK314q/uXZsfJqTsKCKFY0IPNDXsyhCmHaA+wzQYniY00wEUxnhWSIBSZKt5XTJXz9FP5PWuWSWSlZV1axfraoIwv2wQE4Aiaogjq4BA3QBATcgQfwBJ6NifFovBiv89GMsdjZAz9gvH0Cn6+UQw==</latexit>

E[Y |X = x]



Regression

Suppose we wish to predict the value of an outcome Y, based on the value of 

some input X. The best prediction of Y based on X is given by  

(‘best’: in terms of minimum loss function, on average, e.g. square loss) 

Wish to estimate                                 from data -> Regression 

Linear regression is a model that can be employed do this, but they are many 

other parametric (e.g. polynomial, GLMs) and non-parametric methods. 

i.e. non-symmetric: Slope of Y on X is different from X on Y. 
Positive correlation if           , negative correlation if            (dependent) 
No linear correlation if

10

<latexit sha1_base64="9P9m5o7RV5bJukyqA9cktGvWrto=">AAAB8HicdVDLSgMxFM3UV62vqks3wSK4KplS23EjRTcuK9iHtEPJpJk2NMkMSUYoQ7/CjQtF3Po57vwbM20FFT1w4XDOvdx7TxBzpg1CH05uZXVtfSO/Wdja3tndK+4ftHWUKEJbJOKR6gZYU84kbRlmOO3GimIRcNoJJleZ37mnSrNI3pppTH2BR5KFjGBjpbt+QA2GFxANiiVURqharyFoybnneXVLKmeoihB0rZWhBJZoDorv/WFEEkGlIRxr3XNRbPwUK8MIp7NCP9E0xmSCR7RnqcSCaj+dHzyDJ1YZwjBStqSBc/X7RIqF1lMR2E6BzVj/9jLxL6+XmNDzUybjxFBJFovChEMTwex7OGSKEsOnlmCimL0VkjFWmBibUcGG8PUp/J+0K2W3Vq7eVEuNy2UceXAEjsEpcEEdNMA1aIIWIECAB/AEnh3lPDovzuuiNecsZw7BDzhvn83Cj8c=</latexit>

� > 0
<latexit sha1_base64="yh9p31+CgUahB53aED0CuuxyLlU=">AAAB8XicdVDLSgNBEJyNrxhfUY9eBoPgKcyGmKzgIejFYwTzwGQJs5NJMmR2dpnpFcKSv/DiQRGv/o03/8bJQ1DRgoaiqpvuriCWwgAhH05mZXVtfSO7mdva3tndy+8fNE2UaMYbLJKRbgfUcCkUb4AAydux5jQMJG8F46uZ37rn2ohI3cIk5n5Ih0oMBKNgpbtuwIHiC0xwL18gRULK1QrBlpx7nle1pHRGyoRg11ozFNAS9V7+vduPWBJyBUxSYzouicFPqQbBJJ/muonhMWVjOuQdSxUNufHT+cVTfGKVPh5E2pYCPFe/T6Q0NGYSBrYzpDAyv72Z+JfXSWDg+alQcQJcscWiQSIxRHj2Pu4LzRnIiSWUaWFvxWxENWVgQ8rZEL4+xf+TZqnoVorlm3KhdrmMI4uO0DE6RS6qohq6RnXUQAwp9ICe0LNjnEfnxXldtGac5cwh+gHn7RMi3Y/v</latexit>

� < 0
<latexit sha1_base64="9ELqN1FxaU3Ewqu2zLSnBLiJMUc=">AAAB8XicdVDLSgNBEJyNrxhfUY9eBoPgKcyGmKwHIejFYwTzwGQJs5NJMmR2dpnpFcKSv/DiQRGv/o03/8bJQ1DRgoaiqpvuriCWwgAhH05mZXVtfSO7mdva3tndy+8fNE2UaMYbLJKRbgfUcCkUb4AAydux5jQMJG8F46uZ37rn2ohI3cIk5n5Ih0oMBKNgpbtuwIHiC0xwL18gRULK1QrBlpx7nle1pHRGyoRg11ozFNAS9V7+vduPWBJyBUxSYzouicFPqQbBJJ/muonhMWVjOuQdSxUNufHT+cVTfGKVPh5E2pYCPFe/T6Q0NGYSBrYzpDAyv72Z+JfXSWDg+alQcQJcscWiQSIxRHj2Pu4LzRnIiSWUaWFvxWxENWVgQ8rZEL4+xf+TZqnoVorlm3KhdrmMI4uO0DE6RS6qohq6RnXUQAwp9ICe0LNjnEfnxXldtGac5cwh+gHn7RMkZI/w</latexit>

� = 0

<latexit sha1_base64="j8fzMaf47zUuZqiqXVHjcsLCzTQ="></latexit>

y = ↵+ �x ) � =
Cov[X,Y ]

Var[X]

<latexit sha1_base64="IZl5dq/1zoA8mcAW3UKtifwMDGs=">AAAB+nicdVDLSgMxFM3UV62vVpdugkVwVTJlbOtCKIrgsoJ9yHQomTTThmYeJBm1TPspblwo4tYvceffmGkrqOiBwOGce7knx404kwqhDyOztLyyupZdz21sbm3v5Au7LRnGgtAmCXkoOi6WlLOANhVTnHYiQbHvctp2R+ep376lQrIwuFbjiDo+HgTMYwQrLfXyha6P1dB1k4upfTPpnN47vXwRlRCyqhUENTmp1WpVTcrHyEIImtpKUQQLNHr5924/JLFPA0U4ltI2UaScBAvFCKfTXDeWNMJkhAfU1jTAPpVOMos+hYda6UMvFPoFCs7U7xsJ9qUc+66eTIPK314q/uXZsfJqTsKCKFY0IPNDXsyhCmHaA+wzQYniY00wEUxnhWSIBSZKt5XTJXz9FP5PWuWSWSlZV1axfraoIwv2wQE4Aiaogjq4BA3QBATcgQfwBJ6NifFovBiv89GMsdjZAz9gvH0Cn6+UQw==</latexit>

E[Y |X = x]

<latexit sha1_base64="IZl5dq/1zoA8mcAW3UKtifwMDGs=">AAAB+nicdVDLSgMxFM3UV62vVpdugkVwVTJlbOtCKIrgsoJ9yHQomTTThmYeJBm1TPspblwo4tYvceffmGkrqOiBwOGce7knx404kwqhDyOztLyyupZdz21sbm3v5Au7LRnGgtAmCXkoOi6WlLOANhVTnHYiQbHvctp2R+ep376lQrIwuFbjiDo+HgTMYwQrLfXyha6P1dB1k4upfTPpnN47vXwRlRCyqhUENTmp1WpVTcrHyEIImtpKUQQLNHr5924/JLFPA0U4ltI2UaScBAvFCKfTXDeWNMJkhAfU1jTAPpVOMos+hYda6UMvFPoFCs7U7xsJ9qUc+66eTIPK314q/uXZsfJqTsKCKFY0IPNDXsyhCmHaA+wzQYniY00wEUxnhWSIBSZKt5XTJXz9FP5PWuWSWSlZV1axfraoIwv2wQE4Aiaogjq4BA3QBATcgQfwBJ6NifFovBiv89GMsdjZAz9gvH0Cn6+UQw==</latexit>

E[Y |X = x]



Multiple Regression

Regress      on multiple variables, e.g.,          and          : 

represents a plane in 3-dimensions. 

In 2D: The regression lines with slopes        and        . 
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<latexit sha1_base64="ObcoN3eoiC6MPxhU/5KIwmhLxuY=">AAAB6nicdVDLSgNBEOz1GeMr6tHLYBA8hdmwJust6MVjRPOAZAmzk9lkyOyDmVkhLPkELx4U8eoXefNvnE0iqGhBQ1HVTXeXnwiuNMYf1srq2vrGZmGruL2zu7dfOjhsqziVlLVoLGLZ9YligkespbkWrJtIRkJfsI4/ucr9zj2TisfRnZ4mzAvJKOIBp0Qb6bY7sAelMq5g7NRrGBly4bpu3ZDqOXYwRraxcpRhieag9N4fxjQNWaSpIEr1bJxoLyNScyrYrNhPFUsInZAR6xkakZApL5ufOkOnRhmiIJamIo3m6veJjIRKTUPfdIZEj9VvLxf/8nqpDlwv41GSahbRxaIgFUjHKP8bDblkVIupIYRKbm5FdEwkodqkUzQhfH2K/iftasWuVZwbp9y4XMZRgGM4gTOwoQ4NuIYmtIDCCB7gCZ4tYT1aL9bronXFWs4cwQ9Yb59Abo3N</latexit>

X1
<latexit sha1_base64="5WYrHTwWJcuAfos0aMQamGQqDU4=">AAAB6nicdVDLSgNBEOz1GeMr6tHLYBA8hdmwJust6MVjRPOAZAmzk9lkyOyDmVkhLPkELx4U8eoXefNvnE0iqGhBQ1HVTXeXnwiuNMYf1srq2vrGZmGruL2zu7dfOjhsqziVlLVoLGLZ9YligkespbkWrJtIRkJfsI4/ucr9zj2TisfRnZ4mzAvJKOIBp0Qb6bY7qA5KZVzB2KnXMDLkwnXduiHVc+xgjGxj5SjDEs1B6b0/jGkaskhTQZTq2TjRXkak5lSwWbGfKpYQOiEj1jM0IiFTXjY/dYZOjTJEQSxNRRrN1e8TGQmVmoa+6QyJHqvfXi7+5fVSHbhexqMk1Syii0VBKpCOUf43GnLJqBZTQwiV3NyK6JhIQrVJp2hC+PoU/U/a1Ypdqzg3TrlxuYyjAMdwAmdgQx0acA1NaAGFETzAEzxbwnq0XqzXReuKtZw5gh+w3j4BQfKNzg==</latexit>

X2
<latexit sha1_base64="aYxRIWjsV5S7UFBi8zFosg5xhS4=">AAAB6HicdVDLSgNBEOz1GeMr6tHLYBA8hdkQk/UW9OIxAfOQZAmzk9lkzOyDmVkhLPkCLx4U8eonefNvnE0iqGhBQ1HVTXeXFwuuNMYf1srq2vrGZm4rv72zu7dfODhsqyiRlLVoJCLZ9YhigoespbkWrBtLRgJPsI43ucr8zj2TikfhjZ7GzA3IKOQ+p0QbqXk7KBRxCeNKrYqRIReO49QMKZ/jCsbINlaGIizRGBTe+8OIJgELNRVEqZ6NY+2mRGpOBZvl+4liMaETMmI9Q0MSMOWm80Nn6NQoQ+RH0lSo0Vz9PpGSQKlp4JnOgOix+u1l4l9eL9G+46Y8jBPNQrpY5CcC6QhlX6Mhl4xqMTWEUMnNrYiOiSRUm2zyJoSvT9H/pF0u2dVSpVkp1i+XceTgGE7gDGyoQR2uoQEtoMDgAZ7g2bqzHq0X63XRumItZ47gB6y3TxzKjSo=</latexit>

Y
<latexit sha1_base64="5EiAko/XuoEyPQRgpmwu9yXMnYQ="></latexit>

Y = ↵+ �1X1 + �2X2

<latexit sha1_base64="NcM7A2RrjUt0MXZsQX0dq7Bg/28=">AAAB7nicdVDLSgNBEJyNrxhfUY9eBoPgKcyGNVlvQS8eI5gHJEuYnfQmQ2YfzMwKYclHePGgiFe/x5t/42wSQUULGoqqbrq7/ERwpQn5sApr6xubW8Xt0s7u3v5B+fCoo+JUMmizWMSy51MFgkfQ1lwL6CUSaOgL6PrT69zv3oNUPI7u9CwBL6TjiAecUW2k7sAHTYf2sFwhVUKcRp1gQy5d120YUrsgDiHYNlaOClqhNSy/D0YxS0OINBNUqb5NEu1lVGrOBMxLg1RBQtmUjqFvaERDUF62OHeOz4wywkEsTUUaL9TvExkNlZqFvukMqZ6o314u/uX1Ux24XsajJNUQseWiIBVYxzj/HY+4BKbFzBDKJDe3YjahkjJtEiqZEL4+xf+TTq1q16vOrVNpXq3iKKITdIrOkY0aqIluUAu1EUNT9ICe0LOVWI/Wi/W6bC1Yq5lj9APW2ydR24+V</latexit>

�1
<latexit sha1_base64="CJCB0ODRFSK9/GxZFcUJ9TK2ufg=">AAAB7nicdVDLSgNBEOyNrxhfUY9eBoPgKcyGNVlvQS8eI5gHJEuYncwmQ2YfzMwKYclHePGgiFe/x5t/42wSQUULGoqqbrq7/ERwpTH+sApr6xubW8Xt0s7u3v5B+fCoo+JUUtamsYhlzyeKCR6xtuZasF4iGQl9wbr+9Dr3u/dMKh5Hd3qWMC8k44gHnBJtpO7AZ5oMa8NyBVcxdhp1jAy5dF23YUjtAjsYI9tYOSqwQmtYfh+MYpqGLNJUEKX6Nk60lxGpORVsXhqkiiWETsmY9Q2NSMiUly3OnaMzo4xQEEtTkUYL9ftERkKlZqFvOkOiJ+q3l4t/ef1UB66X8ShJNYvoclGQCqRjlP+ORlwyqsXMEEIlN7ciOiGSUG0SKpkQvj5F/5NOrWrXq86tU2lereIowgmcwjnY0IAm3EAL2kBhCg/wBM9WYj1aL9brsrVgrWaO4Qest09TX4+W</latexit>

�2



Multiple Regression

Regress      on multiple variables, e.g.,          and          : 

represents a plane in 3-dimensions. 

In 2D: The regression lines with slopes        and        . 

        is positively correlated with    , irrespective of         , since 
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<latexit sha1_base64="5EiAko/XuoEyPQRgpmwu9yXMnYQ="></latexit>

Y = ↵+ �1X1 + �2X2

<latexit sha1_base64="NcM7A2RrjUt0MXZsQX0dq7Bg/28=">AAAB7nicdVDLSgNBEJyNrxhfUY9eBoPgKcyGNVlvQS8eI5gHJEuYnfQmQ2YfzMwKYclHePGgiFe/x5t/42wSQUULGoqqbrq7/ERwpQn5sApr6xubW8Xt0s7u3v5B+fCoo+JUMmizWMSy51MFgkfQ1lwL6CUSaOgL6PrT69zv3oNUPI7u9CwBL6TjiAecUW2k7sAHTYf2sFwhVUKcRp1gQy5d120YUrsgDiHYNlaOClqhNSy/D0YxS0OINBNUqb5NEu1lVGrOBMxLg1RBQtmUjqFvaERDUF62OHeOz4wywkEsTUUaL9TvExkNlZqFvukMqZ6o314u/uX1Ux24XsajJNUQseWiIBVYxzj/HY+4BKbFzBDKJDe3YjahkjJtEiqZEL4+xf+TTq1q16vOrVNpXq3iKKITdIrOkY0aqIluUAu1EUNT9ICe0LOVWI/Wi/W6bC1Yq5lj9APW2ydR24+V</latexit>

�1
<latexit sha1_base64="CJCB0ODRFSK9/GxZFcUJ9TK2ufg=">AAAB7nicdVDLSgNBEOyNrxhfUY9eBoPgKcyGNVlvQS8eI5gHJEuYncwmQ2YfzMwKYclHePGgiFe/x5t/42wSQUULGoqqbrq7/ERwpTH+sApr6xubW8Xt0s7u3v5B+fCoo+JUUtamsYhlzyeKCR6xtuZasF4iGQl9wbr+9Dr3u/dMKh5Hd3qWMC8k44gHnBJtpO7AZ5oMa8NyBVcxdhp1jAy5dF23YUjtAjsYI9tYOSqwQmtYfh+MYpqGLNJUEKX6Nk60lxGpORVsXhqkiiWETsmY9Q2NSMiUly3OnaMzo4xQEEtTkUYL9ftERkKlZqFvOkOiJ+q3l4t/ef1UB66X8ShJNYvoclGQCqRjlP+ORlwyqsXMEEIlN7ciOiGSUG0SKpkQvj5F/5NOrWrXq86tU2lereIowgmcwjnY0IAm3EAL2kBhCg/wBM9WYj1aL9brsrVgrWaO4Qest09TX4+W</latexit>

�2

<latexit sha1_base64="ObcoN3eoiC6MPxhU/5KIwmhLxuY=">AAAB6nicdVDLSgNBEOz1GeMr6tHLYBA8hdmwJust6MVjRPOAZAmzk9lkyOyDmVkhLPkELx4U8eoXefNvnE0iqGhBQ1HVTXeXnwiuNMYf1srq2vrGZmGruL2zu7dfOjhsqziVlLVoLGLZ9YligkespbkWrJtIRkJfsI4/ucr9zj2TisfRnZ4mzAvJKOIBp0Qb6bY7sAelMq5g7NRrGBly4bpu3ZDqOXYwRraxcpRhieag9N4fxjQNWaSpIEr1bJxoLyNScyrYrNhPFUsInZAR6xkakZApL5ufOkOnRhmiIJamIo3m6veJjIRKTUPfdIZEj9VvLxf/8nqpDlwv41GSahbRxaIgFUjHKP8bDblkVIupIYRKbm5FdEwkodqkUzQhfH2K/iftasWuVZwbp9y4XMZRgGM4gTOwoQ4NuIYmtIDCCB7gCZ4tYT1aL9bronXFWs4cwQ9Yb59Abo3N</latexit>

X1
<latexit sha1_base64="aYxRIWjsV5S7UFBi8zFosg5xhS4=">AAAB6HicdVDLSgNBEOz1GeMr6tHLYBA8hdkQk/UW9OIxAfOQZAmzk9lkzOyDmVkhLPkCLx4U8eonefNvnE0iqGhBQ1HVTXeXFwuuNMYf1srq2vrGZm4rv72zu7dfODhsqyiRlLVoJCLZ9YhigoespbkWrBtLRgJPsI43ucr8zj2TikfhjZ7GzA3IKOQ+p0QbqXk7KBRxCeNKrYqRIReO49QMKZ/jCsbINlaGIizRGBTe+8OIJgELNRVEqZ6NY+2mRGpOBZvl+4liMaETMmI9Q0MSMOWm80Nn6NQoQ+RH0lSo0Vz9PpGSQKlp4JnOgOix+u1l4l9eL9G+46Y8jBPNQrpY5CcC6QhlX6Mhl4xqMTWEUMnNrYiOiSRUm2zyJoSvT9H/pF0u2dVSpVkp1i+XceTgGE7gDGyoQR2uoQEtoMDgAZ7g2bqzHq0X63XRumItZ47gB6y3TxzKjSo=</latexit>

Y
<latexit sha1_base64="5WYrHTwWJcuAfos0aMQamGQqDU4=">AAAB6nicdVDLSgNBEOz1GeMr6tHLYBA8hdmwJust6MVjRPOAZAmzk9lkyOyDmVkhLPkELx4U8eoXefNvnE0iqGhBQ1HVTXeXnwiuNMYf1srq2vrGZmGruL2zu7dfOjhsqziVlLVoLGLZ9YligkespbkWrJtIRkJfsI4/ucr9zj2TisfRnZ4mzAvJKOIBp0Qb6bY7qA5KZVzB2KnXMDLkwnXduiHVc+xgjGxj5SjDEs1B6b0/jGkaskhTQZTq2TjRXkak5lSwWbGfKpYQOiEj1jM0IiFTXjY/dYZOjTJEQSxNRRrN1e8TGQmVmoa+6QyJHqvfXi7+5fVSHbhexqMk1Syii0VBKpCOUf43GnLJqBZTQwiV3NyK6JhIQrVJp2hC+PoU/U/a1Ypdqzg3TrlxuYyjAMdwAmdgQx0acA1NaAGFETzAEzxbwnq0XqzXReuKtZw5gh+w3j4BQfKNzg==</latexit>

X2
<latexit sha1_base64="26yTnEx4yAxR9CsZZDS4sf/j6SY=">AAACA3icdVDLSgMxFM3UV62vqjvdRIvgqmRKbcdd0Y3LCvYBnWHIpGkbmskMSUYoQ8GNv+LGhSJu/Ql3/o2ZtoKKnhA4Oedebu4JYs6URujDyi0tr6yu5dcLG5tb2zvF3b22ihJJaItEPJLdACvKmaAtzTSn3VhSHAacdoLxZeZ3bqlULBI3ehJTL8RDwQaMYG0kv3jQ9W3oxlTG0D3KzuLR9St+sYTKCFXrNQQNOXccp25I5QxVEYK2sTKUwAJNv/ju9iOShFRowrFSPRvF2kux1IxwOi24iaIxJmM8pD1DBQ6p8tLZDlN4YpQ+HETSXKHhTP3ekeJQqUkYmMoQ65H67WXiX14v0QPHS5mIE00FmQ8aJBzqCGaBwD6TlGg+MQQTycxfIRlhiYk2sRVMCF+bwv9Ju1K2a+XqdbXUuFjEkQeH4BicAhvUQQNcgSZoAQLuwAN4As/WvfVovViv89KctejZBz9gvX0CFJmV6g==</latexit>

X1 ?? X2

<latexit sha1_base64="ObcoN3eoiC6MPxhU/5KIwmhLxuY=">AAAB6nicdVDLSgNBEOz1GeMr6tHLYBA8hdmwJust6MVjRPOAZAmzk9lkyOyDmVkhLPkELx4U8eoXefNvnE0iqGhBQ1HVTXeXnwiuNMYf1srq2vrGZmGruL2zu7dfOjhsqziVlLVoLGLZ9YligkespbkWrJtIRkJfsI4/ucr9zj2TisfRnZ4mzAvJKOIBp0Qb6bY7sAelMq5g7NRrGBly4bpu3ZDqOXYwRraxcpRhieag9N4fxjQNWaSpIEr1bJxoLyNScyrYrNhPFUsInZAR6xkakZApL5ufOkOnRhmiIJamIo3m6veJjIRKTUPfdIZEj9VvLxf/8nqpDlwv41GSahbRxaIgFUjHKP8bDblkVIupIYRKbm5FdEwkodqkUzQhfH2K/iftasWuVZwbp9y4XMZRgGM4gTOwoQ4NuIYmtIDCCB7gCZ4tYT1aL9bronXFWs4cwQ9Yb59Abo3N</latexit>

X1
<latexit sha1_base64="5WYrHTwWJcuAfos0aMQamGQqDU4=">AAAB6nicdVDLSgNBEOz1GeMr6tHLYBA8hdmwJust6MVjRPOAZAmzk9lkyOyDmVkhLPkELx4U8eoXefNvnE0iqGhBQ1HVTXeXnwiuNMYf1srq2vrGZmGruL2zu7dfOjhsqziVlLVoLGLZ9YligkespbkWrJtIRkJfsI4/ucr9zj2TisfRnZ4mzAvJKOIBp0Qb6bY7qA5KZVzB2KnXMDLkwnXduiHVc+xgjGxj5SjDEs1B6b0/jGkaskhTQZTq2TjRXkak5lSwWbGfKpYQOiEj1jM0IiFTXjY/dYZOjTJEQSxNRRrN1e8TGQmVmoa+6QyJHqvfXi7+5fVSHbhexqMk1Syii0VBKpCOUf43GnLJqBZTQwiV3NyK6JhIQrVJp2hC+PoU/U/a1Ypdqzg3TrlxuYyjAMdwAmdgQx0acA1NaAGFETzAEzxbwnq0XqzXReuKtZw5gh+w3j4BQfKNzg==</latexit>

X2
<latexit sha1_base64="aYxRIWjsV5S7UFBi8zFosg5xhS4=">AAAB6HicdVDLSgNBEOz1GeMr6tHLYBA8hdkQk/UW9OIxAfOQZAmzk9lkzOyDmVkhLPkCLx4U8eonefNvnE0iqGhBQ1HVTXeXFwuuNMYf1srq2vrGZm4rv72zu7dfODhsqyiRlLVoJCLZ9YhigoespbkWrBtLRgJPsI43ucr8zj2TikfhjZ7GzA3IKOQ+p0QbqXk7KBRxCeNKrYqRIReO49QMKZ/jCsbINlaGIizRGBTe+8OIJgELNRVEqZ6NY+2mRGpOBZvl+4liMaETMmI9Q0MSMOWm80Nn6NQoQ+RH0lSo0Vz9PpGSQKlp4JnOgOix+u1l4l9eL9G+46Y8jBPNQrpY5CcC6QhlX6Mhl4xqMTWEUMnNrYiOiSRUm2zyJoSvT9H/pF0u2dVSpVkp1i+XceTgGE7gDGyoQR2uoQEtoMDgAZ7g2bqzHq0X63XRumItZ47gB6y3TxzKjSo=</latexit>

Y



Multiple Regression

Regress      on multiple variables, e.g.,          and          : 

represents a plane in 3-dimensions. 

In 2D: The regression lines with slopes        and        . 

        is positively correlated with    , irrespective of         , since  

But when                           it is possible for 

        to be positively correlated with       overall, 

but for fixed           be negatively correlated with   

Example: Simpson’s paradox

13

<latexit sha1_base64="aYxRIWjsV5S7UFBi8zFosg5xhS4=">AAAB6HicdVDLSgNBEOz1GeMr6tHLYBA8hdkQk/UW9OIxAfOQZAmzk9lkzOyDmVkhLPkCLx4U8eonefNvnE0iqGhBQ1HVTXeXFwuuNMYf1srq2vrGZm4rv72zu7dfODhsqyiRlLVoJCLZ9YhigoespbkWrBtLRgJPsI43ucr8zj2TikfhjZ7GzA3IKOQ+p0QbqXk7KBRxCeNKrYqRIReO49QMKZ/jCsbINlaGIizRGBTe+8OIJgELNRVEqZ6NY+2mRGpOBZvl+4liMaETMmI9Q0MSMOWm80Nn6NQoQ+RH0lSo0Vz9PpGSQKlp4JnOgOix+u1l4l9eL9G+46Y8jBPNQrpY5CcC6QhlX6Mhl4xqMTWEUMnNrYiOiSRUm2zyJoSvT9H/pF0u2dVSpVkp1i+XceTgGE7gDGyoQR2uoQEtoMDgAZ7g2bqzHq0X63XRumItZ47gB6y3TxzKjSo=</latexit>

Y

<latexit sha1_base64="ObcoN3eoiC6MPxhU/5KIwmhLxuY=">AAAB6nicdVDLSgNBEOz1GeMr6tHLYBA8hdmwJust6MVjRPOAZAmzk9lkyOyDmVkhLPkELx4U8eoXefNvnE0iqGhBQ1HVTXeXnwiuNMYf1srq2vrGZmGruL2zu7dfOjhsqziVlLVoLGLZ9YligkespbkWrJtIRkJfsI4/ucr9zj2TisfRnZ4mzAvJKOIBp0Qb6bY7sAelMq5g7NRrGBly4bpu3ZDqOXYwRraxcpRhieag9N4fxjQNWaSpIEr1bJxoLyNScyrYrNhPFUsInZAR6xkakZApL5ufOkOnRhmiIJamIo3m6veJjIRKTUPfdIZEj9VvLxf/8nqpDlwv41GSahbRxaIgFUjHKP8bDblkVIupIYRKbm5FdEwkodqkUzQhfH2K/iftasWuVZwbp9y4XMZRgGM4gTOwoQ4NuIYmtIDCCB7gCZ4tYT1aL9bronXFWs4cwQ9Yb59Abo3N</latexit>

X1

<latexit sha1_base64="cUqkfuBxWEZs7YbOrLC+bsWYrfE=">AAACCHicdVDLSgMxFM3UV62vqksXRovgqmTK2NZd0Y3LCvYBnWHIpGkbmskMSUYoQ5du/BU3LhRx6ye482/MtBVU9ITAyTn3cnNPEHOmNEIfVm5peWV1Lb9e2Njc2t4p7u61VZRIQlsk4pHsBlhRzgRtaaY57caS4jDgtBOMLzO/c0ulYpG40ZOYeiEeCjZgBGsj+cXDrm9DV0QaujGVMXSPsrN4dP2KXyyhMkJOrYqgIef1er1mSOUMOQhB21gZSmCBpl98d/sRSUIqNOFYqZ6NYu2lWGpGOJ0W3ETRGJMxHtKeoQKHVHnpbJEpPDFKHw4iaa7QcKZ+70hxqNQkDExliPVI/fYy8S+vl+hB3UuZiBNNBZkPGiQc6ghmqcA+k5RoPjEEE8nMXyEZYYmJNtkVTAhfm8L/SbtStqtl59opNS4WceTBATgGp8AGNdAAV6AJWoCAO/AAnsCzdW89Wi/W67w0Zy169sEPWG+fummX6Q==</latexit>

X1 6?? X2

<latexit sha1_base64="5WYrHTwWJcuAfos0aMQamGQqDU4=">AAAB6nicdVDLSgNBEOz1GeMr6tHLYBA8hdmwJust6MVjRPOAZAmzk9lkyOyDmVkhLPkELx4U8eoXefNvnE0iqGhBQ1HVTXeXnwiuNMYf1srq2vrGZmGruL2zu7dfOjhsqziVlLVoLGLZ9YligkespbkWrJtIRkJfsI4/ucr9zj2TisfRnZ4mzAvJKOIBp0Qb6bY7qA5KZVzB2KnXMDLkwnXduiHVc+xgjGxj5SjDEs1B6b0/jGkaskhTQZTq2TjRXkak5lSwWbGfKpYQOiEj1jM0IiFTXjY/dYZOjTJEQSxNRRrN1e8TGQmVmoa+6QyJHqvfXi7+5fVSHbhexqMk1Syii0VBKpCOUf43GnLJqBZTQwiV3NyK6JhIQrVJp2hC+PoU/U/a1Ypdqzg3TrlxuYyjAMdwAmdgQx0acA1NaAGFETzAEzxbwnq0XqzXReuKtZw5gh+w3j4BQfKNzg==</latexit>

X2

<latexit sha1_base64="aYxRIWjsV5S7UFBi8zFosg5xhS4=">AAAB6HicdVDLSgNBEOz1GeMr6tHLYBA8hdkQk/UW9OIxAfOQZAmzk9lkzOyDmVkhLPkCLx4U8eonefNvnE0iqGhBQ1HVTXeXFwuuNMYf1srq2vrGZm4rv72zu7dfODhsqyiRlLVoJCLZ9YhigoespbkWrBtLRgJPsI43ucr8zj2TikfhjZ7GzA3IKOQ+p0QbqXk7KBRxCeNKrYqRIReO49QMKZ/jCsbINlaGIizRGBTe+8OIJgELNRVEqZ6NY+2mRGpOBZvl+4liMaETMmI9Q0MSMOWm80Nn6NQoQ+RH0lSo0Vz9PpGSQKlp4JnOgOix+u1l4l9eL9G+46Y8jBPNQrpY5CcC6QhlX6Mhl4xqMTWEUMnNrYiOiSRUm2zyJoSvT9H/pF0u2dVSpVkp1i+XceTgGE7gDGyoQR2uoQEtoMDgAZ7g2bqzHq0X63XRumItZ47gB6y3TxzKjSo=</latexit>

Y

<latexit sha1_base64="5EiAko/XuoEyPQRgpmwu9yXMnYQ="></latexit>

Y = ↵+ �1X1 + �2X2

<latexit sha1_base64="NcM7A2RrjUt0MXZsQX0dq7Bg/28=">AAAB7nicdVDLSgNBEJyNrxhfUY9eBoPgKcyGNVlvQS8eI5gHJEuYnfQmQ2YfzMwKYclHePGgiFe/x5t/42wSQUULGoqqbrq7/ERwpQn5sApr6xubW8Xt0s7u3v5B+fCoo+JUMmizWMSy51MFgkfQ1lwL6CUSaOgL6PrT69zv3oNUPI7u9CwBL6TjiAecUW2k7sAHTYf2sFwhVUKcRp1gQy5d120YUrsgDiHYNlaOClqhNSy/D0YxS0OINBNUqb5NEu1lVGrOBMxLg1RBQtmUjqFvaERDUF62OHeOz4wywkEsTUUaL9TvExkNlZqFvukMqZ6o314u/uX1Ux24XsajJNUQseWiIBVYxzj/HY+4BKbFzBDKJDe3YjahkjJtEiqZEL4+xf+TTq1q16vOrVNpXq3iKKITdIrOkY0aqIluUAu1EUNT9ICe0LOVWI/Wi/W6bC1Yq5lj9APW2ydR24+V</latexit>

�1
<latexit sha1_base64="CJCB0ODRFSK9/GxZFcUJ9TK2ufg=">AAAB7nicdVDLSgNBEOyNrxhfUY9eBoPgKcyGNVlvQS8eI5gHJEuYncwmQ2YfzMwKYclHePGgiFe/x5t/42wSQUULGoqqbrq7/ERwpTH+sApr6xubW8Xt0s7u3v5B+fCoo+JUUtamsYhlzyeKCR6xtuZasF4iGQl9wbr+9Dr3u/dMKh5Hd3qWMC8k44gHnBJtpO7AZ5oMa8NyBVcxdhp1jAy5dF23YUjtAjsYI9tYOSqwQmtYfh+MYpqGLNJUEKX6Nk60lxGpORVsXhqkiiWETsmY9Q2NSMiUly3OnaMzo4xQEEtTkUYL9ftERkKlZqFvOkOiJ+q3l4t/ef1UB66X8ShJNYvoclGQCqRjlP+ORlwyqsXMEEIlN7ciOiGSUG0SKpkQvj5F/5NOrWrXq86tU2lereIowgmcwjnY0IAm3EAL2kBhCg/wBM9WYj1aL9brsrVgrWaO4Qest09TX4+W</latexit>

�2

<latexit sha1_base64="ObcoN3eoiC6MPxhU/5KIwmhLxuY=">AAAB6nicdVDLSgNBEOz1GeMr6tHLYBA8hdmwJust6MVjRPOAZAmzk9lkyOyDmVkhLPkELx4U8eoXefNvnE0iqGhBQ1HVTXeXnwiuNMYf1srq2vrGZmGruL2zu7dfOjhsqziVlLVoLGLZ9YligkespbkWrJtIRkJfsI4/ucr9zj2TisfRnZ4mzAvJKOIBp0Qb6bY7sAelMq5g7NRrGBly4bpu3ZDqOXYwRraxcpRhieag9N4fxjQNWaSpIEr1bJxoLyNScyrYrNhPFUsInZAR6xkakZApL5ufOkOnRhmiIJamIo3m6veJjIRKTUPfdIZEj9VvLxf/8nqpDlwv41GSahbRxaIgFUjHKP8bDblkVIupIYRKbm5FdEwkodqkUzQhfH2K/iftasWuVZwbp9y4XMZRgGM4gTOwoQ4NuIYmtIDCCB7gCZ4tYT1aL9bronXFWs4cwQ9Yb59Abo3N</latexit>

X1
<latexit sha1_base64="5WYrHTwWJcuAfos0aMQamGQqDU4=">AAAB6nicdVDLSgNBEOz1GeMr6tHLYBA8hdmwJust6MVjRPOAZAmzk9lkyOyDmVkhLPkELx4U8eoXefNvnE0iqGhBQ1HVTXeXnwiuNMYf1srq2vrGZmGruL2zu7dfOjhsqziVlLVoLGLZ9YligkespbkWrJtIRkJfsI4/ucr9zj2TisfRnZ4mzAvJKOIBp0Qb6bY7qA5KZVzB2KnXMDLkwnXduiHVc+xgjGxj5SjDEs1B6b0/jGkaskhTQZTq2TjRXkak5lSwWbGfKpYQOiEj1jM0IiFTXjY/dYZOjTJEQSxNRRrN1e8TGQmVmoa+6QyJHqvfXi7+5fVSHbhexqMk1Syii0VBKpCOUf43GnLJqBZTQwiV3NyK6JhIQrVJp2hC+PoU/U/a1Ypdqzg3TrlxuYyjAMdwAmdgQx0acA1NaAGFETzAEzxbwnq0XqzXReuKtZw5gh+w3j4BQfKNzg==</latexit>

X2
<latexit sha1_base64="26yTnEx4yAxR9CsZZDS4sf/j6SY=">AAACA3icdVDLSgMxFM3UV62vqjvdRIvgqmRKbcdd0Y3LCvYBnWHIpGkbmskMSUYoQ8GNv+LGhSJu/Ql3/o2ZtoKKnhA4Oedebu4JYs6URujDyi0tr6yu5dcLG5tb2zvF3b22ihJJaItEPJLdACvKmaAtzTSn3VhSHAacdoLxZeZ3bqlULBI3ehJTL8RDwQaMYG0kv3jQ9W3oxlTG0D3KzuLR9St+sYTKCFXrNQQNOXccp25I5QxVEYK2sTKUwAJNv/ju9iOShFRowrFSPRvF2kux1IxwOi24iaIxJmM8pD1DBQ6p8tLZDlN4YpQ+HETSXKHhTP3ekeJQqUkYmMoQ65H67WXiX14v0QPHS5mIE00FmQ8aJBzqCGaBwD6TlGg+MQQTycxfIRlhiYk2sRVMCF+bwv9Ju1K2a+XqdbXUuFjEkQeH4BicAhvUQQNcgSZoAQLuwAN4As/WvfVovViv89KctejZBz9gvX0CFJmV6g==</latexit>

X1 ?? X2

<latexit sha1_base64="ObcoN3eoiC6MPxhU/5KIwmhLxuY=">AAAB6nicdVDLSgNBEOz1GeMr6tHLYBA8hdmwJust6MVjRPOAZAmzk9lkyOyDmVkhLPkELx4U8eoXefNvnE0iqGhBQ1HVTXeXnwiuNMYf1srq2vrGZmGruL2zu7dfOjhsqziVlLVoLGLZ9YligkespbkWrJtIRkJfsI4/ucr9zj2TisfRnZ4mzAvJKOIBp0Qb6bY7sAelMq5g7NRrGBly4bpu3ZDqOXYwRraxcpRhieag9N4fxjQNWaSpIEr1bJxoLyNScyrYrNhPFUsInZAR6xkakZApL5ufOkOnRhmiIJamIo3m6veJjIRKTUPfdIZEj9VvLxf/8nqpDlwv41GSahbRxaIgFUjHKP8bDblkVIupIYRKbm5FdEwkodqkUzQhfH2K/iftasWuVZwbp9y4XMZRgGM4gTOwoQ4NuIYmtIDCCB7gCZ4tYT1aL9bronXFWs4cwQ9Yb59Abo3N</latexit>

X1
<latexit sha1_base64="5WYrHTwWJcuAfos0aMQamGQqDU4=">AAAB6nicdVDLSgNBEOz1GeMr6tHLYBA8hdmwJust6MVjRPOAZAmzk9lkyOyDmVkhLPkELx4U8eoXefNvnE0iqGhBQ1HVTXeXnwiuNMYf1srq2vrGZmGruL2zu7dfOjhsqziVlLVoLGLZ9YligkespbkWrJtIRkJfsI4/ucr9zj2TisfRnZ4mzAvJKOIBp0Qb6bY7qA5KZVzB2KnXMDLkwnXduiHVc+xgjGxj5SjDEs1B6b0/jGkaskhTQZTq2TjRXkak5lSwWbGfKpYQOiEj1jM0IiFTXjY/dYZOjTJEQSxNRRrN1e8TGQmVmoa+6QyJHqvfXi7+5fVSHbhexqMk1Syii0VBKpCOUf43GnLJqBZTQwiV3NyK6JhIQrVJp2hC+PoU/U/a1Ypdqzg3TrlxuYyjAMdwAmdgQx0acA1NaAGFETzAEzxbwnq0XqzXReuKtZw5gh+w3j4BQfKNzg==</latexit>

X2
<latexit sha1_base64="aYxRIWjsV5S7UFBi8zFosg5xhS4=">AAAB6HicdVDLSgNBEOz1GeMr6tHLYBA8hdkQk/UW9OIxAfOQZAmzk9lkzOyDmVkhLPkCLx4U8eonefNvnE0iqGhBQ1HVTXeXFwuuNMYf1srq2vrGZm4rv72zu7dfODhsqyiRlLVoJCLZ9YhigoespbkWrBtLRgJPsI43ucr8zj2TikfhjZ7GzA3IKOQ+p0QbqXk7KBRxCeNKrYqRIReO49QMKZ/jCsbINlaGIizRGBTe+8OIJgELNRVEqZ6NY+2mRGpOBZvl+4liMaETMmI9Q0MSMOWm80Nn6NQoQ+RH0lSo0Vz9PpGSQKlp4JnOgOix+u1l4l9eL9G+46Y8jBPNQrpY5CcC6QhlX6Mhl4xqMTWEUMnNrYiOiSRUm2zyJoSvT9H/pF0u2dVSpVkp1i+XceTgGE7gDGyoQR2uoQEtoMDgAZ7g2bqzHq0X63XRumItZ47gB6y3TxzKjSo=</latexit>

Y

<latexit sha1_base64="aYxRIWjsV5S7UFBi8zFosg5xhS4=">AAAB6HicdVDLSgNBEOz1GeMr6tHLYBA8hdkQk/UW9OIxAfOQZAmzk9lkzOyDmVkhLPkCLx4U8eonefNvnE0iqGhBQ1HVTXeXFwuuNMYf1srq2vrGZm4rv72zu7dfODhsqyiRlLVoJCLZ9YhigoespbkWrBtLRgJPsI43ucr8zj2TikfhjZ7GzA3IKOQ+p0QbqXk7KBRxCeNKrYqRIReO49QMKZ/jCsbINlaGIizRGBTe+8OIJgELNRVEqZ6NY+2mRGpOBZvl+4liMaETMmI9Q0MSMOWm80Nn6NQoQ+RH0lSo0Vz9PpGSQKlp4JnOgOix+u1l4l9eL9G+46Y8jBPNQrpY5CcC6QhlX6Mhl4xqMTWEUMnNrYiOiSRUm2zyJoSvT9H/pF0u2dVSpVkp1i+XceTgGE7gDGyoQR2uoQEtoMDgAZ7g2bqzHq0X63XRumItZ47gB6y3TxzKjSo=</latexit>

Y



Improving estimate via ensemble learning [non-examinable]

• Do we need the additivity assumption? 

• In fact, ignoring covariate-treatment interaction can be a source of bias 

• Data driven approach: 

• V-fold cross-validation using an ensemble learning, e.g. super-learner 

• Appropriate choice of loss function, e.g., L1 for conditional median, L2 for 

conditional mean, log loss for binary outcome, … 

14

<latexit sha1_base64="iGKFOf9X5YGM5TqZab+sef4rxb0="></latexit>

E0 (Y |T,X) = �0 + �XX + �TT + �XT
<latexit sha1_base64="zBGxxKSGX4WGwCHXoDIHqlltUQ0="></latexit>

E0 (Y |T,X) = �0 + �XX + �TT + �XT + �0
XX2

<latexit sha1_base64="3UxCkw6fZMaCC4wPzjleB2lxZ3E="></latexit>

E0 (Y |T,X) = �0 + �XX + �TT + �XT + �0
XX2 + �0X2T



Continuous Super Learner [non-examinable]

15

Input data  
+ 

Library of Algorithms

1

2

V

1

2

V

1

2

V

1. V-fold split

2. Training on (V-1) fold

Eric Polley, Mark van der Laan, Sherri Rose 2011



Continuous Super Learner [non-examinable]
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Input data  
+ 

Library of Algorithms

1

2

V

1

2

V

1

2

V

GLM 
XGBoost 

HAL …

GLM 
XGBoost 

HAL …

GLM 
XGBoost 

HAL …

1. V-fold split

2. Training on (V-1) fold

Eric Polley, Mark van der Laan, Sherri Rose 2011



Continuous Super Learner [non-examinable]

17

Input data  
+ 

Library of Algorithms

1

2

V

1

2

V

1

2

V

GLM 
XGBoost 

HAL …

GLM 
XGBoost 

HAL …

GLM 
XGBoost 

HAL …

1. V-fold split

2. Training on (V-1) fold

1 Z1,GLM Z1,XGB

3. Predict on remaining test fold

YV=1

Predicted outcome YPred Obs YObs

Z1,HAL

2 Z2,GLM Z2,XGB YV=2Z2,HAL

V ZV,GLM ZV,XGB YV=VZV,HAL

Eric Polley, Mark van der Laan, Sherri Rose 2011



Continuous Super Learner [non-examinable]
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Input data  
+ 

Library of Algorithms

1

2

V

1

2

V

1

2

V

GLM 
XGBoost 

HAL …

GLM 
XGBoost 

HAL …

GLM 
XGBoost 

HAL …

1. V-fold split

2. Training on (V-1) fold

1 Z1,GLM Z1,XGB

3. Predict on remaining test fold

YV=1

Predicted outcome YPred Obs YObs

Z1,HAL

2 Z2,GLM Z2,XGB YV=2Z2,HAL

V ZV,GLM ZV,XGB YV=VZV,HAL

+ verify goodness-of-fit

4. Fit the weight ⍺ 
for each algorithm5. Train each algorithm  

on entire dataset combined  
with fitted weights

<latexit sha1_base64="LLigNXb89Nxozp2828JN7elx0Ug="></latexit>

E[YObs|YPred] =

↵1YGLM + ↵2YHAL + ↵3YXGB + · · ·

Eric Polley, Mark van der Laan, Sherri Rose 2011



Discrete Super Learner [non-examinable]

Smaller mean squared error = better performance

Simulation by Olivier Labayle Pabet



Discrete Super Learner [non-examinable]

Theorem (Van der Laan, Polley, Hubbard; 2007) 

Asymptotically, the stack always wins

Simulation by Olivier Labayle Pabet
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Basics of Graphs

Simpson’s paradox: concrete example of why data alone is not enough!  

Need to represent causal knowledge as part of a graph                      Graph theory 

Graph: A collection of nodes (vertices) and edges.  

Adjacent nodes: If there is an edge connecting them: A and B, B and C 

Complete graph: There exist an edge between every pair of nodes (not above) 

Path: sequences of nodes beginning with node X and ending with X’, e.g., 

There is a path from A to C because A is connected to B and B is connected to C. 

A B C
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Basics of Graphs

Simpson’s paradox: concrete example of why data alone is not enough!  

Need to represent causal knowledge as part of a graph                      Graph theory 

Graph: A collection of nodes (vertices) and edges.  

Adjacent nodes: If there is an edge connecting them: A and B, B and C 

Complete graph: There exist an edge between every pair of nodes (not above) 

Path: sequences of nodes beginning with node X and ending with X’, e.g., 

There is a path from A to C because A is connected to B and B is connected to C. 

i.e., not this:

A B C

B CA



23

Basics of Graphs

Simpson’s paradox: concrete example of why data alone is not enough!  

Need to represent causal knowledge as part of a graph                      Graph theory 

Graph: A collection of nodes (vertices) and edges.  

Adjacent nodes: If there is an edge connecting them: A and B, B and C 

Complete graph: There exist an edge between every pair of nodes (not above) 

Path: sequences of nodes beginning with node X and ending with X’, e.g., 

Directed/Undirected: If the edges have in/out arrows 

The node that a directed edge starts from: parent 

The node a directed edge goes into: child of the node the edge comes from

A B CUndirected 

Directed A B C
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Directed Graphs

The node that a directed edge starts from: parent 

The node a directed edge goes into: child of the node the edge comes from 

E.g., A is the parent of B, B is the parent of C.  

B is a child of A and C is a child of B

A B C
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Directed Graphs

The node that a directed edge starts from: parent 

The node a directed edge goes into: child of the node the edge comes from 

Directed Path: If the path can be traced along the arrows, i.e., A to B to C above. 

Not: 

and

Not: 

A B C

A B C

A B C
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Directed Graphs

A B C

The node that a directed edge starts from: parent 

The node a directed edge goes into: child of the node the edge comes from 

Directed Path: If the path can be traced along the arrows, i.e., A to B to C above. 

Two nodes connected by a direct path, first node (A) is the ancestor of every 
node in the path (B and C) and every node on the path is a descendant of it.
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Directed Graphs

A B C

The node that a directed edge starts from: parent 

The node a directed edge goes into: child of the node the edge comes from 

Directed Path: If the path can be traced along the arrows, i.e., A to B to C above. 

Two nodes connected by a direct path, first node (A) is the ancestor of every 
node in the path (B and C) and every node on the path is a descendant of it.

Cyclic: When a directed path exists from a node to itself (complicates things!!) 

A direct graph with no cycles is acyclic.

A

B C

A

B C

Acyclic Cyclic
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Directed Graphs

A B C

The node that a directed edge starts from: parent 

The node a directed edge goes into: child of the node the edge comes from 

Directed Path: If the path can be traced along the arrows, i.e., A to B to C above. 

Two nodes connected by a direct path, first node (A) is the ancestor of every 
node in the path (B and C) and every node on the path is a descendant of it.

Cyclic: When a directed path exists from a node to itself (complicates things!!) 

A direct graph with no cycles is acyclic.

A

B C

Acyclic

Directed Acyclic Graphs (DAGs)
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A Brief Introduction to Structural Casual Models (SCMs)

Causality: Need to formally state our assumptions about the causal model, 

the relevant features of the data, the role they play, how they relate to each other. 
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A Brief Introduction to Structural Casual Models (SCMs)

Causality: Need to formally state our assumptions about the causal model, 

the relevant features of the data, the role they play, how they relate to each other. 

SCM: Consists of 2 sets of variables U and V, and a set of functions f.  

f assigns each variable in V a value based on other variables in U and V. 
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A Brief Introduction to Structural Casual Models (SCMs)

Causality: Need to formally state our assumptions about the causal model, 

the relevant features of the data, the role they play, how they relate to each other. 

SCM: Consists of 2 sets of variables U and V, and a set of functions f.  

f assigns each variable in V a value based on other variables in U and V.  

“A variable X is a direct cause of variable Y if X appears in the function that assigns Y’s 

value.  

X is a cause of Y if it is a direct cause of Y or of any cause of Y.”

U: exogenous variables ‘external to the model’, e.g. noise or we simply do not 
explain how they are caused. Not descendants of any other variables. Roots.
V: endogenous variable which is a descendant of at least one exogenous variable
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A Brief Introduction to Structural Casual Models (SCMs)

M: Exam Marks 

E: Experience with coding 

I: Internship funding 

For causality need both the SCM and the graph 

<latexit sha1_base64="BPSUF5u2BlYzPXOX4wwm2qaBiYY="></latexit>

V = {M,E, I}
U = {UM , UE , UI}

fM : M = UM

fE : E = UE

fI : I = 2M + 3E + UI

M

I

E

UEUM

UI



Product Decomposition Rule

Graphical models: Express joint distributions very efficiently

The joint distributions of the variables given by the product of conditional 
probability distributions: 
 
 
where          denote the parents of       . 
(Discussed in later lectures in more detail). Example: 
 
 
 

Graph assumptions: High-dim estimation           Few lower-dim probabilities  
Graph simplifies the estimation problem and implies more precise estimators   
(can draw the graph without necessarily needing the functional form)

<latexit sha1_base64="S1D7pooIuID/c86jVMan2JMnT/w=">AAAB63icdVBNS8NAEJ3Ur1q/qh69LBbBU0napsZb0YvHCvYD2lA22227dDcJuxuhhP4FLx4U8eof8ua/cdNWUNEHA4/3ZpiZF8ScKW3bH1ZubX1jcyu/XdjZ3ds/KB4etVWUSEJbJOKR7AZYUc5C2tJMc9qNJcUi4LQTTK8zv3NPpWJReKdnMfUFHodsxAjWmRTjARsUS3bZtt1q3UOGXFY8zzWk4ri1qoscY2UowQrNQfG9P4xIImioCcdK9Rw71n6KpWaE03mhnygaYzLFY9ozNMSCKj9d3DpHZ0YZolEkTYUaLdTvEykWSs1EYDoF1hP128vEv7xeokeen7IwTjQNyXLRKOFIRyh7HA2ZpETzmSGYSGZuRWSCJSbaxFMwIXx9iv4n7UrZqZdrt7VS42oVRx5O4BTOwYELaMANNKEFBCbwAE/wbAnr0XqxXpetOWs1cww/YL19Antyjo4=</latexit>pai
<latexit sha1_base64="dbQzRHXLqfJv1IHDaEWuOiZDriM=">AAAB6nicdVBNS8NAEJ3Ur1q/qh69LBbBU0napsZb0YvHirYW2lA22027dLMJuxuhlP4ELx4U8eov8ua/cdNWUNEHA4/3ZpiZFyScKW3bH1ZuZXVtfSO/Wdja3tndK+4ftFWcSkJbJOax7ARYUc4EbWmmOe0kkuIo4PQuGF9m/t09lYrF4lZPEupHeChYyAjWRrrp9Fm/WLLLtu1W6x4y5Lziea4hFcetVV3kGCtDCZZo9ovvvUFM0ogKTThWquvYifanWGpGOJ0VeqmiCSZjPKRdQwWOqPKn81Nn6MQoAxTG0pTQaK5+n5jiSKlJFJjOCOuR+u1l4l9eN9Wh50+ZSFJNBVksClOOdIyyv9GASUo0nxiCiWTmVkRGWGKiTToFE8LXp+h/0q6UnXq5dl0rNS6WceThCI7hFBw4gwZcQRNaQGAID/AEzxa3Hq0X63XRmrOWM4fwA9bbJ521jgs=</latexit>

Xi

X Y Z

<latexit sha1_base64="twGB1pIZIdR0t2AGmCRXrr9dLyM="></latexit>

P (X = x, Y = y, Z = z) = P (X = x)P (Y = y|X = x)P (Z = z|Y = y)

<latexit sha1_base64="AQ4l03KchaL3F+3+ZPK6ibpiBjI="></latexit>

P (x1, x2, · · · , xn) =
nY

i=1

P (xi|pai)



Product Decomposition Rule

p(clouds, no-rain, dry-pavement, slippery pavement ) = ?  

Causal Inference in Statistics, Pearl (2016)

Cloud/
not

Rain/
not

Dry 
pavement/

not

Slippery/
not



Product Decomposition Rule

p(clouds, no-rain, dry-pavement, slippery pavement ) = ’5% or 10% or 15%?’ 

Causal Inference in Statistics, Pearl (2016)

Cloud/
not

Rain/
not

Dry 
pavement/

not

Slippery/
not



Product Decomposition Rule

p(clouds, no-rain, dry-pavement, slippery pavement ) = ’5% or 10% or 15%?’ 

p(clouds)p(no rain | clouds)p(dry pavement | no rain) x 

p(slippery pavement | dry pavement) ~   

0.6 x 0.7 x 0.9 x 0.05 ~ 0.02

Causal Inference in Statistics, Pearl (2016)

Cloud/
not

Rain/
not

Dry 
pavement/

not

Slippery/
not



Product Decomposition Rule

p(clouds, no-rain, dry-pavement, slippery pavement ) = ’5% or 10% or 15%?’ 

p(clouds)p(no rain | clouds)p(dry pavement | no rain) x 

p(slippery pavement | dry pavement) ~   

0.6 x 0.7 x 0.9 x 0.05 ~ 0.02 

Combinations: 24 - 1 = 15
Suppose we have 45 data points of these 4 observations
Approx, 45/15 = 3 observations per outcome, some may get 2 or 1 or empty. 

Need far more data to estimate the joint distribution as compared to each of 
the conditional distributions.

Causal Inference in Statistics, Pearl (2016)

Cloud/
not

Rain/
not

Dry 
pavement/

not

Slippery/
not



SCM for the Monty Hall Problem

The player can choose any door with p = 1/3 

The car can be behind any door with p = 1/3  

A B C X = Door chosen by player

Y = Door hiding the car

Z = Door opened by host



SCM for the Monty Hall Problem

A B C X = Door chosen by player

Y = Door hiding the car

Z = Door opened by host

Z needs to use 2 pieces of information:  

(1) not be the door chosen by player 

(2) not be the door that hides the car  



SCM for the Monty Hall Problem

A B C X = Door chosen by player

Y = Door hiding the car

Z = Door opened by host

Z needs to use 2 pieces of information:  

(1) not be the door chosen by player 

(2) not be the door that hides the car  

Z

X Y

UX UY

Uz

<latexit sha1_base64="pj7d+mftF5cYSfKsHhoJLFnCKN0=">AAACH3icdZDLSgMxFIYz9VbrrerSTbBYXJQy05t1IRQFcVnBqa2dMmTSTBuauZBkhDL0Tdz4Km5cKCLu+jam0woqeuDAz/efQ3J+J2RUSF2faqml5ZXVtfR6ZmNza3snu7vXEkHEMTFxwALedpAgjPrElFQy0g45QZ7DyK0zupj5t/eECxr4N3Ickp6HBj51KUZSITtby8MWPINW3C50CnfWBFpWJg/NBJl2u2DaHdXKSPhlwl1rYmdzelHXq+VaHSpxWqrXq0qUjGqlXIWGsmaVA4tq2tkPqx/gyCO+xAwJ0TX0UPZixCXFjEwyViRIiPAIDUhXSR95RPTi5L4JPFKkD92Aq/YlTOj3jRh5Qow9R016SA7Fb28G//K6kXTrvZj6YSSJj+cPuRGDMoCzsGCfcoIlGyuBMKfqrxAPEUdYqkgzKoSvS+H/olUqGrVi5bqSa5wv4kiDA3AIjoEBTkADXIEmMAEGD+AJvIBX7VF71t609/loSlvs7IMfpU0/AVhxnlA=</latexit>

V = {X,Y, Z}
U = {UX , UY , UZ}
F = {f}

<latexit sha1_base64="AluSSzH/SveHePFT/6g6b6r+PUY="></latexit>

X = UX

Y = UY

Z = f(X,Y ) + UZ



SCM for the Monty Hall Problem

A B C X = Door chosen by player

Y = Door hiding the car

Z = Door opened by host

Z

X Y

UX UY

Uz

The joint probability: 
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P (X,Y, Z) = P (Z|X,Y )P (Y )P (X)



SCM for the Monty Hall Problem

A B C X = Door chosen by player

Y = Door hiding the car

Z = Door opened by host

Z

X Y

UX UY

Uz

The joint probability: 
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P (X,Y, Z) = P (Z|X,Y )P (Y )P (X)

<latexit sha1_base64="iiPJvtgyb1DgmmLVQ3h/4/2lX1E="></latexit>

P (Z|X,Y ) =

8
><

>:

0.5 for x = y 6= z

1 for x 6= y 6= z

0 for z = x or z = y

1/3 1/3



43

Conventions

• Variable to be manipulated: treatment (T), e.g. medication 

• Variable we observe as response: outcome (Y),  

e.g. success/failure of medication 

• Other observable variables that can affect treatment and outcome 

causally and we wish to correct for: confounders (X),  

e.g. age, sex, socio-economic status, … 

• Unobservable confounder (U)

T Y

X
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Conventions

• Variable to be manipulated: treatment (T), e.g. medication 

• Variable we observe as response: outcome (Y),  

e.g. success/failure of medication 

• Other observable variables that can affect treatment and outcome 

causally and we wish to correct for: confounders (X),  

e.g. age, sex, socio-economic status, … 

• Unobservable confounder (U)

T Y

X

UX

UT UY

For simplicity drop Ui’s from graphs if:

<latexit sha1_base64="iHIt4cM46SpKhRb/nyRa7u5XE+g=">AAACGnicdVDLTgIxFO3gC/E16tJNlZi4IjPA4LgjunGJCQMYhkw6pUBD55G2Y0ImfIcbf8WNC41xZ9z4N3YAEzV4mian59yb23v8mFEhDeNTy62srq1v5DcLW9s7u3v6/kFLRAnHxMERi3jHR4IwGhJHUslIJ+YEBT4jbX98lfntO8IFjcKmnMSkF6BhSAcUI6kkTzcdrwndmPAYusfZWTwcr7NcvvX0olEyDKtSs6EiF2XbthQpm1a1YkFTWRmKYIGGp7+7/QgnAQklZkiIrmnEspciLilmZFpwE0FihMdoSLqKhiggopfOVpvCU6X04SDi6oYSztSfHSkKhJgEvqoMkByJv14mLvO6iRzYvZSGcSJJiOeDBgmDMoJZTrBPOcGSTRRBmFP1V4hHiCMsVZoFFcL3pvB/0iqXzFqpelMt1i8XceTBETgBZ8AE56AOrkEDOACDe/AInsGL9qA9aa/a27w0py16DsEvaB9fxYWeQw==</latexit>

UT ?? UX ?? UY
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Conventions

• Variable to be manipulated: treatment (T), e.g. medication 

• Variable we observe as response: outcome (Y),  

e.g. success/failure of medication 

• Other observable variables that can affect treatment and outcome 

causally and we wish to correct for: confounders (X),  

e.g. age, sex, socio-economic status, … 

• Unobservable confounder (U)

T Y

X

U

A different story when Us are dependent 
or a confounder: See IV
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Causal Identification vs Estimation 

Causal Identification problem: Is it possible to express a causal quantity in terms 

of the probability distribution of the observed data, and if so, how?

Estimation problem: How to estimate the functional relationship between 

treatment T and outcome Y, given other variables X in the system. 

For example: 
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E[Y |T,X] = f(T,X)



Overview of the course

• Lecture 1: Introduction & Motivation, why do we care about causality? 

Why deriving causality from observational data is non-trivial. 

• Lecture 2: Recap of probability theory, variables, events, conditional 

probabilities, independence, law of total probability, Bayes’ rule 

• Lecture 3: Recap of regression, multiple regression, graphs, SCM  

• Lecture 4-20: Causality

Causal Effect Estimation Casual Discovery

Obsv confounders Unobsv confounders

Regression 
Adjustment

Propensity 
score 

Rubin

IV
Front-door 

criterion

Rubin, Pearl

Constraint-
based

Score-
based

FCMs


