Additional Topics

Machine Learning Theory (MLT)
Edinburgh
Rik Sarkar
Today

• Comments on coursework
• Comments on exam

• Additional discussion topics
 • Rademacher complexity
 • Privacy attacks on ML
Comments on coursework

• Marking getting closer to complete
• Expect marks end of next week
• Solutions a little earlier

• Comment: Some of you have written very long answers!
 • Instructions asked for short answers
 • Long answers suggest that you do not quite know the important point...
 • Avoid in exam!
Exam

• See past years’ papers. Similar structure
• Answer 2 questions out of 3.
• You are allowed 3 sheets (6 pages) of notes
 • In any form
• What is included
 • All slides except “additional topics”
 • Corresponding topics from book Understanding Machine Learning
 • Lecture notes
 • Tutorials
 • Coursework
 • Stability definitions from Bosquet et al.
 • Random Projections Section 23.2 in Understanding Machine Learning
• Review session for exam in revision week (April 22 -- 26)
Tips on preparing notes

• Prepare your own notes!
• Handwrite!
 • Ensures legibility
 • Good for memory and understanding
• Pay attention to differential privacy
Rademacher complexity

• Suppose we have a sample set S, loss function L and hypothesis class \mathcal{H}
• And suppose we want to estimate the worst case generalization gap:
 • $\sup_{h \in \mathcal{H}} |L_D(h) - L_S(h)|$
• One way to do that is, split S into $S_1 \cup S_2$, and compute
 • $\sup_{h \in \mathcal{H}} (L_{S_1}(h) - L_{S_2}(h))$
 • Taking multiple test and training splits and taking the max
 • Larger gap implies larger complexity of \mathcal{H}
Rademacher complexity

• Written more formally using:
 • A combination of loss and hypothesis: \(F = \ell \circ H : z \rightarrow \ell(h, z) \)
 • A selector vector \(\sigma = (\sigma_1, \ldots, \sigma_m) \in \{+1, -1\}^m \)
 • Decides \(S_1 \) vs \(S_2 \) for each sample

• Rademacher complexity \(R(F \circ S) \overset{\text{def}}{=} \frac{1}{m} \mathbb{E}_\sigma \left[\sup_{f \in F} \sum \sigma_i f(z_i) \right] \)

• A complexity measure in terms of both \(H \) and \(S \).
 • In contrast of VC dimension, which is only in terms of \(H \)
• $R(\mathcal{F} \circ S)$
 - Empirical Rademacher complexity – measured from data

• General Rademacher Complexity: Expectation over distribution
 - $\mathcal{R}(\mathcal{F}) = \mathbb{E}_{S \in \mathcal{D}}[R(\mathcal{F} \circ S)]$
Bounds using Rademacher complexity

- Assuming $\|x\|_2 \leq R$, $\|w\|_2 \leq B$, Loss ρ-Lipschitz

- Then we can get bounds of the form:
 - $L_D(w) \leq L_S(w) + \frac{2\rho BR}{\sqrt{m}} + c\sqrt{\frac{2 \ln^2 \delta}{m}}$
 - Observe: gap increases with B and R...
Privacy attacks

• Membership inference attacks

• Given a model M, can an attacker tell if data point x was used in training?

• Idea:
 • If datapoint x was used in training, model is more likely to get it right

• Simple strategy:
 • Set a threshold t. If $M(x)$ is correct, and with a confidence greater than t then output: “in training data”
 • Else, output ”not in training data”
More complex strategy

• Train a “shadow model”
 • E.g. using public data
• Compare prediction and confidence of $M(x)$
Why in membership inference important?

• If attacker can do membership inference correctly, they can derive values for completely unknown data points

• E.g. repeatedly make queries at successive values
 • E.g. follow gradient of loss...

• High probability outputs represent actual point values