Additional Topics

Machine Learning Theory (MLT) Edinburgh Rik Sarkar

Today

- Comments on coursework
- Comments on exam
- Additional discussion topics
 - Rademacher complexity
 - Privacy attacks on ML

Comments on coursework

- Marking getting closer to complete
- Expect marks end of next week
- Solutions a little earlier
- Comment: Some of you have written very long answers!
 - Instructions asked for short answers
 - Long answers suggest that you do not quite know the important point...
 - Avoid in exam!

Exam

- See past years' papers. Similar structure
- Answer 2 questions out of 3.
- You are allowed 3 sheets (6 pages) of notes
 - In any form
- What is included
 - All slides except "additional topics"
 - Corresponding topics from book Understanding Machine Learning
 - Lecture notes
 - Tutorials
 - Coursework
 - Stability definitions from Bosquet et al.
 - Random Projections Section 23.2 in Understanding Machine Learning
- Review session for exam in revision week (April 22 -- 26)

Tips on preparing notes

- Prepare your own notes!
- Handwrite!
 - Ensures legibility
 - Good for memory and understanding
- Pay attention to differential privacy

Rademacher complexity

- Suppose we have a sample set S, loss function L and hypothesis class \mathcal{H}
- And suppose we want to estimate the worst case generalization gap:
 - $\sup_{h\in\mathcal{H}}|L_{\mathcal{D}}(h) L_{S}(h)|$
- One way to do that is, split S into $S_1 \cup S_2$, and compute
 - $\sup_{h\in\mathcal{H}} (L_{S_1}(h) L_{S_2}(h))$
 - Taking multiple test and training splits and taking the max
 - Larger gap implies larger complexity of ${\mathcal H}$

Rademacher complexity

- Written more formally using:
 - A combination of loss and hypothesis: $\mathcal{F} = \ell \circ \mathcal{H}: z \to \ell(h, z)$
 - A selector vector $\boldsymbol{\sigma} = (\sigma_1, \ldots \sigma_m) \in \{+1, -1\}^m$
 - Decides S_1 vs S_2 for each sample
- Rademacher complexity $R(\mathcal{F} \circ S) \stackrel{\text{\tiny def}}{=} \frac{1}{m} \mathbb{E}_{\sigma}[\sup_{f \in \mathcal{F}} \sum \sigma_i f(z_i)]$
- A complexity measure in terms of both \mathcal{H} and S.
 - In contrast of VC dimension, which is only in terms of ${\mathcal H}$

- $R(\mathcal{F} \circ S)$
 - Empirical Rademacher complexity measured from data
- General Rademacher Complexity: Expectation over distribution • $\mathcal{R}(\mathcal{F}) = \mathbb{E}_{S \in \mathcal{D}}[R(\mathcal{F} \circ S)]$

Bounds using Rademacher complexity

- Asuming $||x||_2 \le R$, $||w||_2 \le B$, Loss ρ -Lipschitz
- Then we can get bounds of the form:

•
$$L_{\mathcal{D}}(w) \le L_{\mathcal{S}}(w) + \frac{2\rho BR}{\sqrt{m}} + c\sqrt{\frac{2\ln^2_{\overline{\delta}}}{m}}$$

• Observe: gap increases with B and R...

Privacy attacks

- Membership inference attacks
- Given a model *M*, can an attacker tell if data point *x* was used in training?
- Idea:
 - If datapoint x was used in training, model is more likely to get it right
- Simple strategy:
 - Set a threshold t. If M(x) is correct, and with a confidence greater than t then output: "in training data"
 - Else, output "not in training data"

More complex strategy

- Train a "shadow model"
 - E.g. using public data
- Compare prediction and confidence of M(x)

Why in membership inference important?

- If attacker can do membership inference correctly, they can derive values for completely unknown data points
- E.g. repeatedly make queries at successive values
 - E.g. follow gradient of loss...
- High probability outputs represent actual point values

