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Algorithms and loss functions

• We saw how to think about the sample complexity 
• Why machine learning works with reasonably small amounts of data 
• Why we need to decide hypothesis classes for learning to work 

• Next: 
• How to find good models within the classes
• Common types of loss functions and their properties 
• Common algorithms

• Linear and polynomial predictors
• Loss functions – convex and non-convex



Learning algorithms

• Each hypothesis or model is described by vector 𝒘 of weights
• The length of 𝒘 is the dimension of the space of models

• We write bold 𝒘 or 𝒙 to indicate vectors.
• When writing by hand, it is perhaps best to write with an arrow 

overhead: 𝑤 since bold is tricky in handwriting 

• The weights 𝒘 are the parameters that determine the model
• So, an ML algorithm searches in the space of 𝒘 trying to find the best 

one



Two spaces: Models and Data  

• Eg. For classifiers given by 𝑦 ≤ 𝑚𝑥 + 𝑐, the space of models is all 
possible values of (𝑚, 𝑐), so it is 2 dimensional 
• A model that has k parameters will have a model space that is k-dim

Data 𝒙
Each point is a possible data point

Models 𝒘
Each point is a possible model



Linear predictors

• Popular class of models
• Easy to train
• Easy to interpret 



Halfspaces
• All the elements on one side of a straight line 
• Written as 𝑠𝑖𝑔𝑛( 𝒘, 𝒙 + 𝑏)

• Sign function returns +1 or -1 depending on sign
• 𝒘, 𝒙 is an inner product 𝒘, 𝒙 = ∑𝒊"𝟏𝒅 𝒘𝒊𝒙𝒊

• VC dimension of class of halfspaces is 𝑑 + 1
• Thus we should be able to learn the good halfspaces
• The realizable case for halfspaces is called separable
• LP can be used to solve the separable half space problem (omitted in 

class)



Perceptron

• A simple neuron denoting a half space classifier 

• The activation function is a threshold function

• Challenge: learn the weights 𝒘



Homogeneous coordinates

• Simplify 𝑠𝑖𝑔𝑛( 𝒘, 𝒙 + 𝑏)
• We can extend 
• 𝒘 = [𝑏,𝑤%, 𝑤&, … ]
• 𝒙 = 1, 𝑥%, 𝑥&, …

• Now we can write simply 𝑠𝑖𝑔𝑛( 𝒘, 𝒙 )



Perceptron algorithm

• Input: Training set 𝑥!, 𝑦! , 𝑥", 𝑦" , …
• Initialize 𝒘! = [0,… , 0]
• At each iteration 𝑡 = 1,2, …
• If there is a sample 𝒙𝒊 that is wrongly classified i.e. if 𝑦' 𝒘(, 𝒙𝒊 ≤ 0

• Update 𝑤!"# = 𝑤! + 𝑦$𝒙$
• Else 

• Output 𝒘!

• Perceptron algorithm produces a half space classifier. (Thm 9.1)
• In the separable case produces the correct solution/model



Linear regression 

• 𝒳 = ℝ) , 𝒴 = ℝ
• ℎ:𝒳 → 𝒴 should be linear 
• Loss ℓ ℎ, 𝒙, 𝑦 = ℎ 𝒙 − 𝑦 "

• Empirical risk 
• 𝐿)(ℎ) =

%
*∑ ℎ 𝒙' − 𝑦' &

• Note that the definition applies to any dimensional data 



Least squares – solution to linear regression

• Idea: When the risk is at a minimum, its gradient is 0

• That is: "
*
∑ 𝒘, 𝒙+ − 𝑦+ 𝒙+ = 0

• Solved using linear algebra (matrix) techniques 



Polynomial regression 

• Assume 𝒳 = ℝ,𝒴 = ℝ
• I.e, 1-D, non-linear problems 

• Define 𝜓 𝑥 = (1, 𝑥, 𝑥", … , 𝑥,)
• And

• And apply linear regression 
• That is, treat each degree term of 𝑥 as a different dimension, and 

apply multi-dimensional linear regression. 



Loss functions

• Loss ℓ(𝒘, 𝒙) is a function of both data and models 
• For every model 𝒘, there is a function ℓ(𝒘,⋅) on data space that 

defines the loss at every point 
• For every data point 𝑥 there is a function ℓ(⋅, 𝒙) that gives a loss for 

each model

Data 𝒙 Model 𝒘



Loss functions

• We are usually interested in the average of ℓ(⋅, 𝒙) over all data points
• And want to find 𝒘 that minimizes the average 𝐿(𝒘, 𝒙)
• Call it 𝒘∗

Models 𝒘

𝒘∗



Convexity and convex learning 

• A set C is convex if for any 𝑢, 𝑣 ∈ 𝐶, the line segment connecting 𝒖, 𝒗
is in 𝐶. (Any intermediate point is in 𝐶)
• Can be written formally as: 
• For any 𝛼 ∈ 0,1 , it is true that 𝛼𝒖 + 1 − 𝛼 𝒗 ∈ 𝐶



Convex function

• For a convex 𝐶, a function 𝑓: 𝐶 → ℝ is convex if 
• 𝑓 𝛼𝒖 + 1 − 𝛼 𝒗 ≤ 𝛼𝑓 𝒖 + 1 − 𝛼 𝑓(𝒗)
• The graph of 𝑓 lies below the straight line connecting u and v



Properties of convex functions

• Every local minimum is also a global minimum
• Question: is the global minimum unique?

• For every 𝒘 the tangent at 𝒘 lies below 𝑓: 
• ∀𝒖, 𝑓 𝒖 ≥ 𝑓 𝒘 + ⟨∇𝑓 𝒘 , 𝒖 − 𝒘⟩

• If 𝑓:ℝ → ℝ is twice differentiable, then 
• 𝑓 is convex
• 𝑓! is monotone nondecreasing
• 𝑓′′ is nonnegative

• Are equivalent



Examples

• 𝑓 𝑥 = 𝑥"

• 𝑓 𝑥 = log 1 + 𝑒-



Convex and non-convex loss: The loss 
landscape

Space of models 𝒘
Each point is a 
model

Empirical Loss of the model
Over training data



Convex learning is easy!

• Start with any model 𝑤.
• Take a step in a direction that 

makes the loss smaller

• Repeat until we are at 𝒘∗ with 
smallest loss

• Gradient descent
𝑤"𝑤#𝑤$𝑤∗



Convex learning problems

• A learning problem (ℋ,𝒵, ℓ) is convex, if
• ℋis a convex set 
• For all 𝑧 ∈ 𝒵, the loss function ℓ ⋅, 𝑧 is a convex function. 

• E.g. linear regression with squared loss 



Combining convex functions

• If 𝑔 is convex, then 𝑓 𝒘 = 𝑔( 𝒘, 𝒙 + 𝑦) is convex 

• If 𝑓+ are convex functions

• 𝑔 𝑥 = max
+
𝑓+(𝑥) is convex

• 𝑔 𝑥 = ∑+𝑤+𝑓+ 𝑥 is convex 
• What is the consequence for loss functions? 



Other properties of loss functions



Strong Convexity 

• Function 𝑓 is 𝜆-strongly convex if 



Lipschitzness

• A function 𝑓 is 𝜌-Lipschitz if
• 𝑓 𝒘% − 𝑓 𝒘& ≤ 𝜌| 𝒘% −𝒘& |

• A function that does not change too fast
• If the derivative is bounded by 𝜌, then the function is 𝜌-Lipschitz 
• But Lipschitzness can be defined even if the derivative is not defined



Smoothness

• Gradient

• 𝑓 is 𝛽-smooth if ∇𝑓 is 𝛽-Lipschitz:
• ∇𝑓 𝒗 − ∇𝑓 𝒘 ≤ 𝛽| 𝒗 − 𝒘 |



Convex-Lipschitz-Bounded learning problems

• A learning problem ℋ,𝒵, ℓ where: 

• ℋis convex, ∀𝒘 ∈ ℋ, 𝒘 ≤ 𝐵
• ∀𝑧 ∈ 𝒵 the loss ℓ(⋅, 𝑧) is convex and 𝜌-Lipschitz 



Convex-smooth-bounded learning

• A learning problem ℋ,𝒵, ℓ where: 

• ℋis convex, ∀𝒘 ∈ ℋ, 𝒘 ≤ 𝐵
• ∀𝑧 ∈ 𝒵 the loss ℓ(⋅, 𝑧) is convex, nonnegative and 𝛽-smooth



Surrogate loss functions

• Some loss functions are hard to work with. E.g.
• They are not convex
• They are hard to optimize for 
• E.g. 0-1 loss in halfspace-based classification 

• Solution
• Use a “surrogate” loss function
• That is kind of similar, but easier to manage, e.g. convex 

• Usual rule for surrogate loss
• Should be convex
• Should upper bound (be larger than original loss.)



Example: Hinge loss 



Regularization 

• Instead of the pure loss, minimize loss with a regularization term: 

• Commonly used: 𝑅 𝒘 = 𝜆 𝒘 "

• Called Tikhonov regularization 



Try yourself: 

Go to wolfram alpha and plot a polynomial: 𝑦 = 𝑎0𝑥0 + 𝑎1𝑥1 +
𝑎2𝑥2 + 𝑎"𝑥" + 𝑎!𝑥 + 𝑎.

• With numbers of your choice in place of coefficients  𝑎+
• Now scale the coefficients: multiply all the coefficients with the same 

number (may be fractions too). What do you see? 



Ridge regression 

• Linear regression with Tikhonov regularization 



• 𝑅 𝒘 = 𝜆 𝒘
"

is 2𝜆-strongly convex 
• If 𝑓 is 𝜆-strongly convex and g is convex, then 𝑓 + 𝑔 is 𝜆-strongly 

convex 

• Thus, Ridge regression is strongly convex 
• Strongly convex loss implies stability 
• Why else do we like strongly convex losses? 



Stability 

• Intuitively: A learning algorithm is stable if
• A small change to training set does not cause a big change to the output 

(model or hypothesis)

• This is a desirable property because…



Stability 

• Intuitively: A learning algorithm is stable if
• A small change to training set does not cause a big change to the output 

(model or hypothesis)

• This is a desirable property because
• It implies that it is not too sensitive to specific S. does not overfit
• If we continue to use it, it will not abruptly change behavior 



• Suppose in 𝑆, we replace 𝑧+ with 𝑧3 ∼ 𝒟
• Let us write this as 𝑆+

• A good algorithm 𝐴 should have small value for 
• ℓ 𝐴 𝑆' , 𝑧' − ℓ(𝐴(𝑆), 𝑧')

• The loss on 𝑧+ does not depend too much on it being in the sample



Generalisation

• Empirical or training loss: 𝐿4 ℎ
• Generalisation loss or ture loss : 𝐿𝒟(ℎ)



Generalisation gap

• 𝐿𝒟 ℎ − 𝐿4 ℎ
• A measure of overfitting



Stability definition and result

• Algorithm 𝐴 is on-average-replace-one-stable with rate 𝜖(𝑚)
• If
• 𝔼 ℓ 𝐴 𝑆' , 𝑧' − ℓ 𝐴 𝑆 , 𝑧' ≤ 𝜖(𝑚)



Stability definition and result

• Algorithm 𝐴 is on-average-replace-one-stable with rate 𝜖(𝑚)
• If
• 𝔼 ℓ 𝐴 𝑆' , 𝑧' − ℓ 𝐴 𝑆 , 𝑧' ≤ 𝜖(𝑚)

• Theorem: 
• 𝔼 𝐿𝒟 𝐴 𝑆 − 𝐿) 𝐴 𝑆 = 𝔼 ℓ 𝐴 𝑆' , 𝑧' − ℓ 𝐴 𝑆 , 𝑧'

• The generalization gap is bounded by the stability 



Gradient descent 

• Gradient is

• Gradient represents the direction in which 𝑓 increases fastest 
• Gradient Descent: At every step 𝑡 : 
• 𝑤(/% = 𝑤( − 𝜂∇𝑓(𝑤()

• (Move in the direction that 𝑓 decreases fastest With a step scale of 𝜂)

• After T steps, output the average vector f𝒘 = !
8
∑9:!8 𝒘9

• When 𝑓 is the empirical risk, gradient is computed using loss of all 
data points



Theorem (14.2 in book)

• For convex lipschitz bounded learning 

• Setting 𝜂 = ;!

<!8

• We can get 

• Alternatively, to achieve 𝑓 f𝒘 − 𝑓 𝒘∗ ≤ 𝜖 the number of rounds is: 



Stochastic gradient descent

• Computing the gradient of empirical loss is expensive 
• Because empirical loss depends on all training data 

• Idea: Instead of computing gradient on the entire dataset each time, 
compute them on small samples: like single data points.
• (Each i.i.d data point is treated like a tiny sample of data)



Stochastic gradient descent 



GD vs SGD



Theorem (14.8 )

• Similar result to deterministic GD: 



Practical modifications 

• Mini batching:
• Instead of one data item at time, take them in batches of a few at a time. 
• Faster, and fewer unhelpful moves

• Run in epochs. In each epoch
• Order the data points in a random permutation 
• For each data point (or mini-batch)

• Compute the gradient and move the model


