Algorithms and Loss functions

Machine Learning Theory (MLT) Edinburgh Rik Sarkar

Algorithms and loss functions

- We saw how to think about the sample complexity
 - Why machine learning works with reasonably small amounts of data
 - Why we need to decide hypothesis classes for learning to work
- Next:
 - How to find good models within the classes
 - Common types of loss functions and their properties
 - Common algorithms
 - Linear and polynomial predictors
 - Loss functions convex and non-convex

Learning algorithms

- Each hypothesis or model is described by vector w of weights
 - The length of *w* is the dimension of the space of models
- We write bold *w* or *x* to indicate vectors.
- When writing by hand, it is perhaps best to write with an arrow overhead: \vec{w} since bold is tricky in handwriting
- The weights *w* are the parameters that determine the model
- So, an ML algorithm searches in the space of w trying to find the best one

Two spaces: Models and Data

- Eg. For classifiers given by $y \le mx + c$, the space of models is all possible values of (m, c), so it is 2 dimensional
- A model that has k parameters will have a model space that is k-dim

Models **w** Each point is a possible model

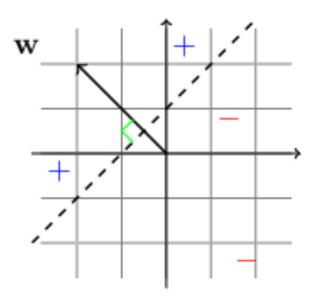
Data \boldsymbol{x} Each point is a possible data point

Linear predictors

- Popular class of models
- Easy to train
- Easy to interpret

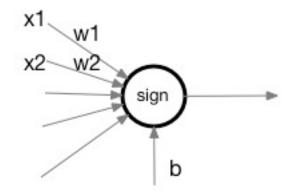
Halfspaces

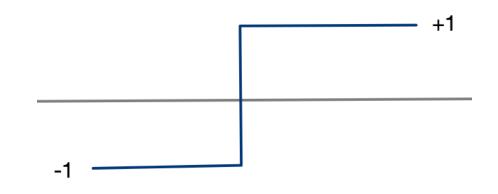
- All the elements on one side of a straight line
- Written as $sign(\langle w, x \rangle + b)$
 - Sign function returns +1 or -1 depending on sign
 - $\langle w, x \rangle$ is an inner product $\langle w, x \rangle = \sum_{i=1}^{d} w_i x_i$
- VC dimension of class of halfspaces is d + 1
- Thus we should be able to learn the good halfspaces
- The realizable case for halfspaces is called separable
- LP can be used to solve the separable half space problem (omitted in class)



Perceptron

- A simple neuron denoting a half space classifier
- The activation function is a threshold function
- Challenge: learn the weights $oldsymbol{w}$





Homogeneous coordinates

- Simplify $sign(\langle w, x \rangle + b)$
- We can extend
 - $w = [b, w_1, w_2, ...]$
 - $x = [1, x_1, x_2, ...]$
- Now we can write simply $sign(\langle w, x \rangle)$

Perceptron algorithm

- Input: Training set $(x_1, y_1), (x_2, y_2), ...$
- Initialize $w^1 = [0, \dots, 0]$
- At each iteration t = 1, 2, ...
 - If there is a sample x_i that is wrongly classified i.e. if $y_i \langle w^t, x_i \rangle \leq 0$
 - Update $w^{t+1} = w^t + y_i x_i$
 - Else
 - Output **w**^t
- Perceptron algorithm produces a half space classifier. (Thm 9.1)
- In the separable case produces the correct solution/model

Linear regression

- $\mathcal{X} = \mathbb{R}^d$, $\mathcal{Y} = \mathbb{R}$
- $h: \mathcal{X} \to \mathcal{Y}$ should be linear
- Loss $\ell(h, (x, y)) = (h(x) y)^2$
- Empirical risk

•
$$L_S(h) = \frac{1}{m} \sum (h(\boldsymbol{x}_i) - y_i)^2$$

• Note that the definition applies to any dimensional data

Least squares – solution to linear regression

$$\underset{\mathbf{w}}{\operatorname{argmin}} L_{S}(h_{\mathbf{w}}) = \underset{\mathbf{w}}{\operatorname{argmin}} \quad \frac{1}{m} \sum_{i=1}^{m} (\langle \mathbf{w}, \mathbf{x}_{i} \rangle - y_{i})^{2}$$

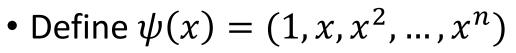
• Idea: When the risk is at a minimum, its gradient is 0

• That is:
$$\frac{2}{m} \sum (\langle \boldsymbol{w}, \boldsymbol{x}_i \rangle - y_i) \boldsymbol{x}_i = 0$$

• Solved using linear algebra (matrix) techniques

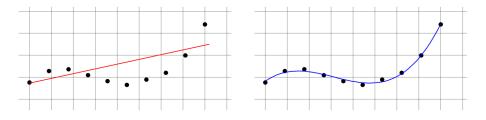
Polynomial regression $p(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$

- Assume $\mathcal{X} = \mathbb{R}$, $\mathcal{Y} = \mathbb{R}$
 - I.e, 1-D, non-linear problems



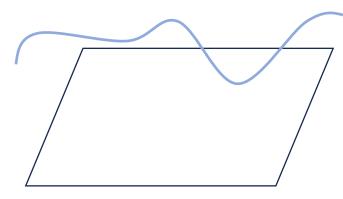
• And $p(\psi(x)) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n = \langle \mathbf{a}, \psi(x) \rangle$

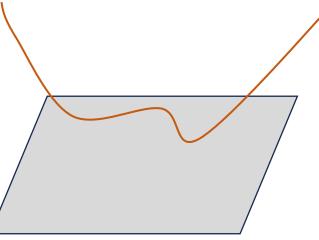
- And apply linear regression
- That is, treat each degree term of x as a different dimension, and apply multi-dimensional linear regression.



Loss functions

- Loss $\ell(w, x)$ is a function of both data and models
- For every model w, there is a function $\ell(w, \cdot)$ on data space that defines the loss at every point
- For every data point x there is a function $\ell(\cdot, x)$ that gives a loss for each model



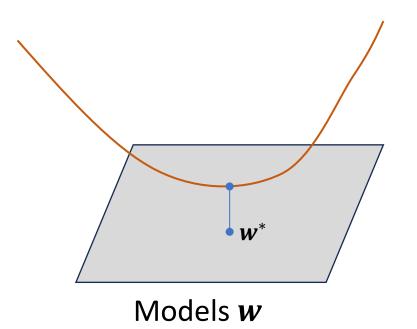


Data x

Model *w*

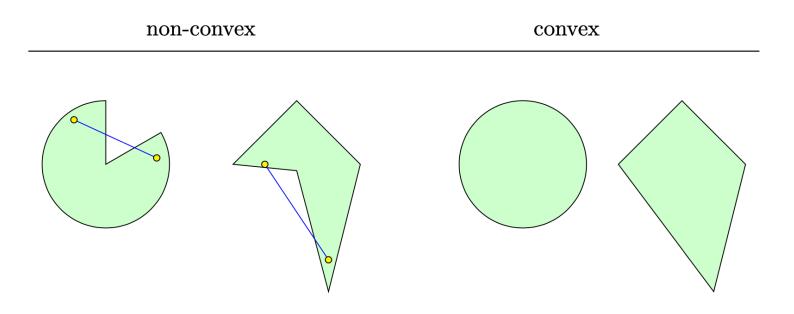
Loss functions

- We are usually interested in the average of $\ell(\cdot, x)$ over all data points
- And want to find w that minimizes the average L(w, x)
 - Call it w^*



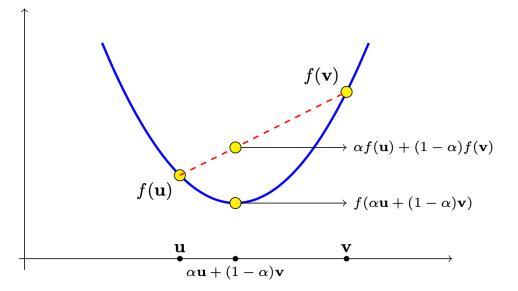
Convexity and convex learning

- A set C is convex if for any u, v ∈ C, the line segment connecting u, v
 is in C. (Any intermediate point is in C)
 - Can be written formally as:
 - For any $\alpha \in [0,1]$, it is true that $\alpha u + (1 \alpha)v \in C$



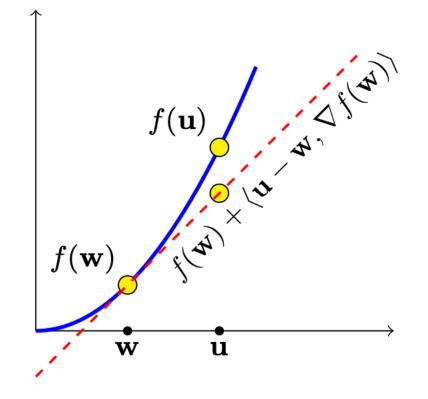
Convex function

- For a convex C, a function $f: C \to \mathbb{R}$ is convex if
- $f(\alpha \boldsymbol{u} + (1 \alpha)\boldsymbol{v}) \leq \alpha f(\boldsymbol{u}) + (1 \alpha)f(\boldsymbol{v})$
- The graph of f lies below the straight line connecting u and v



Properties of convex functions

- Every local minimum is also a global minimum
 - Question: is the global minimum unique?
- For every *w* the tangent at *w* lies below *f* :
 - $\forall u, f(u) \ge f(w) + \langle \nabla f(w), u w \rangle$
- If $f: \mathbb{R} \to \mathbb{R}$ is twice differentiable, then
 - *f* is convex
 - f' is monotone nondecreasing
 - *f*^{''} is nonnegative
- Are equivalent



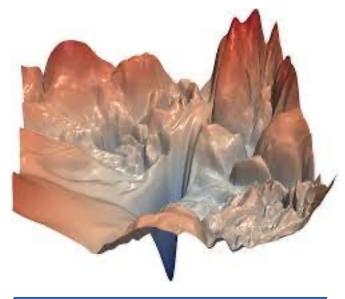
Examples

- $f(x) = x^2$
- $f(x) = \log(1 + e^x)$

Convex and non-convex loss: The loss landscape

Empirical Loss of the model Over training data

Space of models *w* Each point is a model



Convex learning is easy!

- Start with any model w_0
- Take a step in a direction that makes the loss smaller
- Repeat until we are at w^{*} with smallest loss

 W^* W_2 W_1 W_0

• Gradient descent

Convex learning problems

- A learning problem $(\mathcal{H}, \mathcal{Z}, \ell)$ is convex, if
 - \mathcal{H} is a convex set
 - For all $z \in \mathcal{Z}$, the loss function $\ell(\cdot, z)$ is a convex function.
- E.g. linear regression with squared loss

Combining convex functions

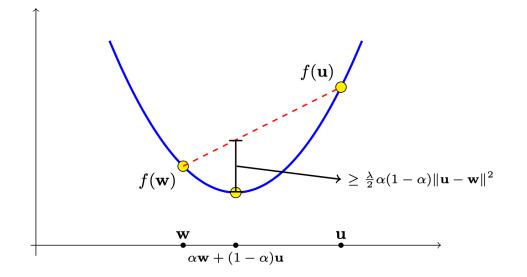
- If g is convex, then $f(w) = g(\langle w, x \rangle + y)$ is convex
- If f_i are convex functions
- $g(x) = \max_{i} f_i(x)$ is convex
- $g(x) = \sum_{i} w_{i} f_{i}(x)$ is convex
 - What is the consequence for loss functions?

Other properties of loss functions

Strong Convexity

• Function f is λ -strongly convex if

$$f(\alpha \mathbf{w} + (1 - \alpha)\mathbf{u}) \le \alpha f(\mathbf{w}) + (1 - \alpha)f(\mathbf{u}) - \frac{\lambda}{2}\alpha(1 - \alpha)\|\mathbf{w} - \mathbf{u}\|^2$$



Lipschitzness

- A function f is ρ -Lipschitz if
 - $||f(w_1) f(w_2)|| \le \rho ||w_1 w_2||$
- A function that does not change too fast
 - If the derivative is bounded by ρ , then the function is ρ -Lipschitz
 - But Lipschitzness can be defined even if the derivative is not defined

Smoothness

• Gradient
$$\nabla f(\mathbf{w}) = \left(\frac{\partial f(\mathbf{w})}{\partial w_1}, \dots, \frac{\partial f(\mathbf{w})}{\partial w_d}\right)$$

• f is β -smooth if ∇f is β -Lipschitz:

•
$$||\nabla f(\boldsymbol{v}) - \nabla f(\boldsymbol{w})|| \le \beta ||\boldsymbol{v} - \boldsymbol{w}||$$

Convex-Lipschitz-Bounded learning problems

- A learning problem $(\mathcal{H}, \mathcal{Z}, \ell)$ where:
- \mathcal{H} is convex, $\forall w \in \mathcal{H}, ||w|| \leq B$
- $\forall z \in \mathcal{Z}$ the loss $\ell(\cdot, z)$ is convex and ρ -Lipschitz

Convex-smooth-bounded learning

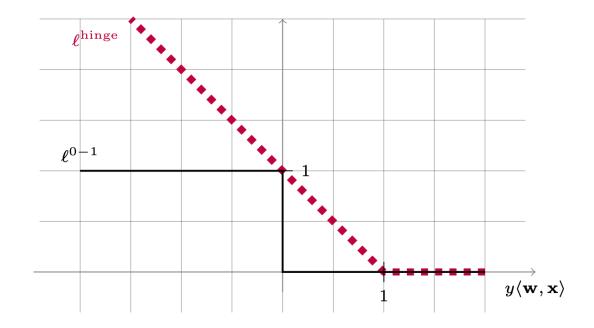
- A learning problem $(\mathcal{H}, \mathcal{Z}, \ell)$ where:
- \mathcal{H} is convex, $\forall w \in \mathcal{H}, ||w|| \leq B$
- $\forall z \in \mathcal{Z}$ the loss $\ell(\cdot, z)$ is convex, nonnegative and β -smooth

Surrogate loss functions

- Some loss functions are hard to work with. E.g.
 - They are not convex
 - They are hard to optimize for
 - E.g. 0-1 loss in halfspace-based classification
- Solution
 - Use a "surrogate" loss function
 - That is kind of similar, but easier to manage, e.g. convex
- Usual rule for surrogate loss
 - Should be convex
 - Should upper bound (be larger than original loss.)

Example: Hinge loss

$$\ell^{\text{hinge}}(\mathbf{w}, (\mathbf{x}, y)) \stackrel{\text{def}}{=} \max\{0, 1 - y \langle \mathbf{w}, \mathbf{x} \rangle\}$$



Regularization

• Instead of the pure loss, minimize loss with a regularization term:

$$\operatorname*{argmin}_{\mathbf{w}} \left(L_S(\mathbf{w}) + R(\mathbf{w}) \right)$$

- Commonly used: $R(w) = \lambda ||w||^2$
 - Called Tikhonov regularization

Try yourself:

Go to wolfram alpha and plot a polynomial: $y = a_5 x^5 + a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0$

- With numbers of your choice in place of coefficients a_i
- Now scale the coefficients: multiply all the coefficients with the same number (may be fractions too). What do you see?

Ridge regression

• Linear regression with Tikhonov regularization

$$\underset{\mathbf{w}\in\mathbb{R}^d}{\operatorname{argmin}} \left(\lambda \|\mathbf{w}\|_2^2 + \frac{1}{m}\sum_{i=1}^m \frac{1}{2}(\langle \mathbf{w}, \mathbf{x}_i \rangle - y_i)^2\right)$$

- $R(w) = \lambda ||w||^2$ is 2λ -strongly convex
- If f is λ -strongly convex and g is convex, then f+g is λ -strongly convex
- Thus, Ridge regression is strongly convex
- Strongly convex loss implies stability
- Why else do we like strongly convex losses?

Stability

- Intuitively: A learning algorithm is stable if
 - A small change to training set does not cause a big change to the output (model or hypothesis)

• This is a desirable property because...

Stability

- Intuitively: A learning algorithm is stable if
 - A small change to training set does not cause a big change to the output (model or hypothesis)

- This is a desirable property because
 - It implies that it is not too sensitive to specific S. does not overfit
 - If we continue to use it, it will not abruptly change behavior

- Suppose in *S*, we replace z_i with $z' \sim D$
- Let us write this as Sⁱ
- A good algorithm A should have small value for • $\ell(A(S^i), z_i) - \ell(A(S), z_i)$
- The loss on z_i does not depend too much on it being in the sample

Generalisation

- Empirical or training loss: $L_S(h)$
- Generalisation loss or ture loss : $L_{\mathcal{D}}(h)$

Generalisation gap

- $L_{\mathcal{D}}(h) L_{\mathcal{S}}(h)$
- A measure of overfitting

Stability definition and result

- Algorithm A is on-average-replace-one-stable with rate $\epsilon(m)$
- If
 - $\mathbb{E}\left[\ell\left(A(S^{i}), z_{i}\right) \ell(A(S), z_{i})\right] \leq \epsilon(m)$

Stability definition and result

- Algorithm A is on-average-replace-one-stable with rate $\epsilon(m)$
- If
 - $\mathbb{E}\left[\ell\left(A(S^{i}), z_{i}\right) \ell(A(S), z_{i})\right] \leq \epsilon(m)$
- Theorem:

•
$$\mathbb{E}[L_{\mathcal{D}}(A(S)) - L_{S}(A(S))] = \mathbb{E}[\ell(A(S^{i}), z_{i}) - \ell(A(S), z_{i})]$$

• The generalization gap is bounded by the stability

Gradient descent

• Gradient is
$$\nabla f(\mathbf{w}) = \left(\frac{\partial f(\mathbf{w})}{\partial w[1]}, \dots, \frac{\partial f(\mathbf{w})}{\partial w[d]}\right)$$

- Gradient represents the direction in which f increases fastest
- Gradient Descent: At every step t :

•
$$w^{t+1} = w^t - \eta \nabla f(w^t)$$

- (Move in the direction that f decreases fastest With a step scale of η)
- After T steps, output the average vector $\overline{w} = \frac{1}{T} \sum_{t=1}^{T} w^t$
- When f is the empirical risk, gradient is computed using loss of all data points

Theorem (14.2 in book)

- For convex lipschitz bounded learning
- Setting $\eta = \sqrt{\frac{B^2}{\rho^2 T}}$
- We can get $f(\bar{\mathbf{w}}) f(\mathbf{w}^{\star}) \leq \frac{B \rho}{\sqrt{T}}$
- Alternatively, to achieve $f(\overline{w}) f(w^*) \le \epsilon$ the number of rounds is:

$$T \geq \frac{B^2 \rho^2}{\epsilon^2}$$

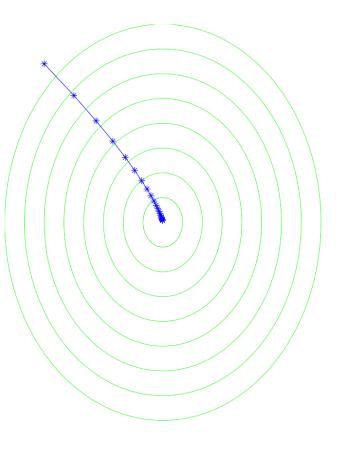
Stochastic gradient descent

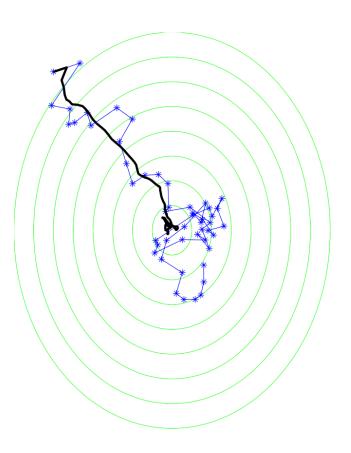
- Computing the gradient of empirical loss is expensive
 - Because empirical loss depends on all training data
- Idea: Instead of computing gradient on the entire dataset each time, compute them on small samples: like single data points.
 - (Each i.i.d data point is treated like a tiny sample of data)

Stochastic gradient descent

```
Stochastic Gradient Descent (SGD) for minimizing
                                          f(\mathbf{w})
parameters: Scalar \eta > 0, integer T > 0
initialize: \mathbf{w}^{(1)} = \mathbf{0}
for t = 1, 2, ..., T
   choose \mathbf{v}_t at random from a distribution such that \mathbb{E}[\mathbf{v}_t | \mathbf{w}^{(t)}] \in \partial f(\mathbf{w}^{(t)})
   update \mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \eta \mathbf{v}_t
output \bar{\mathbf{w}} = \frac{1}{T} \sum_{t=1}^{T} \mathbf{w}^{(t)}
```

GD vs SGD





Theorem (14.8)

• Similar result to deterministic GD:

$$\mathbb{E}\left[f(\bar{\mathbf{w}})\right] - f(\mathbf{w}^{\star}) \le \frac{B\,\rho}{\sqrt{T}}$$

Practical modifications

- Mini batching:
 - Instead of one data item at time, take them in batches of a few at a time.
 - Faster, and fewer unhelpful moves
- Run in epochs. In each epoch
 - Order the data points in a random permutation
 - For each data point (or mini-batch)
 - Compute the gradient and move the model