Machi e;"fZarning Theory (MLT)

Edinburgh
Rik Sarkar

Algorithms and loss functions

* We saw how to think about the sample complexity
 Why machine learning works with reasonably small amounts of data
* Why we need to decide hypothesis classes for learning to work

* Next:
* How to find good models within the classes
 Common types of loss functions and their properties

* Common algorithms
* Linear and polynomial predictors
* Loss functions — convex and non-convex

Learning algorithms

* Each hypothesis or model is described by vector w of weights
* The length of w is the dimension of the space of models

e We write bold w or x to indicate vectors.

* When writing by hand, it is perhaps best to write with an arrow
overhead: w since bold is tricky in handwriting

* The weights w are the parameters that determine the model

* So, an ML algorithm searches in the space of w trying to find the best
one

Two spaces: Models and Data

* Eg. For classifiers given by y < mx + ¢, the space of models is all
possible values of (m, ¢), so it is 2 dimensional

* A model that has k parameters will have a model space that is k-dim

A

Models w Data x
Each point is a possible model Each point is a possible data point

Linear predictors

* Popular class of models
* Easy to train
* Easy to interpret

Halfspaces N T

* All the elements on one side of a straight line A=
 Written as sign({w, x) + b) +
* Sign function returns +1 or -1 depending on sign 7

* (W, x) is an inner product (w, x) = 2?21 WiX;i i

* VC dimension of class of halfspacesis d + 1
* Thus we should be able to learn the good halfspaces
* The realizable case for halfspaces is called separable

* LP can be used to solve the separable half space problem (omitted in
class)

Perceptron

* A simple neuron denoting a half space classifier xi.___

X2— W2
 The activation function is a threshold function
b

* Challenge: learn the weights w

+1

Homogeneous coordinates

* Simplify sign({w, x) + b)

 We can extend
W= [b, W1, Wy,]
* X = [1,X1,X2,]

* Now we can write simply sign({w, x))

Perceptron algorithm

* Input: Training set (x4, v;), (x5, V5), ...
* Initialize w! = [0, ..., 0]

At each iterationt = 1,2, ...

* If there is a sample x; that is wrongly classified i.e. if y;(wt, x;) < 0

t+1

« Update witl = wt + y;x;

* Else
* Output wt

e Perceptron algorithm produces a half space classifier. (Thm 9.1)
* In the separable case produces the correct solution/model

Linear regression

X =R4Y=R :
* h: X - Y should be linear ; ’
* Loss £(h, (x,¥)) = (h(x) — y)3 ©

* Empirical risk
+ Ls(h) = —%(h(x;) — y;)?

* Note that the definition applies to any dimensional data

Least squares — solution to linear regression

1 m
argmin Lg(hyw) = argmin — Z((W,Xi> —y3)?

m
w w i=1

* |dea: When the risk is at a minimum, its gradient is O
* That is: %Z((W, xi) — yl-)xl- =0

 Solved using linear algebra (matrix) techniques

Polynomial regression
p(z) = ap + a1z + agx® + - - + a 2"

* Assume X =R, Y =R | ./"

* |l.e, 1-D, non-linear problems / .

* Define ¥(x) = (1, x,x%, ..., x™)

* And p(tb(l‘)) :a0+a1x+a2x2+...—|—anxn — <a,¢($)>

* And apply linear regression

* That is, treat each degree term of x as a different dimension, and
apply multi-dimensional linear regression.

Loss functions

* Loss £(w, x) is a function of both data and models

* For every model w, there is a function £(w,-) on data space that
defines the loss at every point

* For every data point x there is a function €(-, x) that gives a loss for

each model
\
A

Data x Model w

Loss functions

* We are usually interested in the average of £(-, x) over all data points

/

* And want to find w that minimizes the average L(w, x)
e Callitw”

w*

Models w

Convexity and convex learning

* Aset Cis convex if for any u, v € C, the line segment connecting u, v
isin C. (Any intermediate pointisin C)

e Can be written formally as:
 Foranya € [0,1], itistruethatau+ (1 —a)v € C

nomn-convex convex

9 99

Convex function

* For a convex C, a function f: C — R is convex if

*flau+ (1 -a)v) < af(w) + (1 - a)f (v)

* The graph of f lies below the straight line connecting u and v

f%
o af(u) + (1 - a)f(v)

flau+ (1 - a)v)

u Vv

'au—{—(I—a)v

Properties of convex functions

* Every local minimum is also a global minimum
e Question: is the global minimum unique?

* For every w the tangent at w lies below f:
* Vu, f(u) = f(w) +(Vf(w), u—w)

* If f:IR = Ris twice differentiable, then

* fis convex
* f'is monotone nondecreasing
" is nonnegative

* Are equivalent

Examples
* f(x) = x?

* f(x) = log(1 + e*)

Convex and non-convex loss: The loss
landscape

Empirical Loss of the model
Over training data

Space of models w
Each pointis a
model

Convex learning is easy!

* Start with any model wy

* Take a step in a direction that
makes the loss smaller

* Repeat until we are at w* with
smallest loss

*

e Gradient descent

Convex learning problems

* Alearning problem (H, Z,¥) is convex, if
* H'is a convex set
* Forall z € Z, the loss function (-, z) is a convex function.

* E.g. linear regression with squared loss

Combining convex functions

* If g is convex, then f(w) = g({w, x) + y) is convex
* If f; are convex functions

e glx) = max fi(x) is convex

* g(x) = X, w;f;(x) is convex

* What is the consequence for loss functions?

Other properties of loss functions

Strong Convexity

* Function f is A-strongly convex if

flaw + (1 - a)u) < af(w) + (1 - a)f(u) - Sa(l — a)|w - ul?

> 3a(l - a)lu—w|?

Lipschitzness

* A function f is p-Lipschitz if
|f (wy) —f(W2)|| < pllwy — wy]]

e A function that does not change too fast
* If the derivative is bounded by p, then the function is p-Lipschitz
e But Lipschitzness can be defined even if the derivative is not defined

Smoothness

+ Gradient Vf(w)= (%52, 20

* fis f-smooth if Vf is f-Lipschitz:
* [IVf @) = VFWw)I| < Bllv —wl|

Convex-Lipschitz-Bounded learning problems

* A learning problem (H, Z,€) where:

* H{is convex, Vw € H, Hw|| <B
*Vz € Z theloss (-, z) is convex and p-Lipschitz

Convex-smooth-bounded learning

* A learning problem (H, Z,€) where:

* H{is convex, Vw € 7—[,‘le| <B

*Vz € Z theloss £(+, z) is convex, nonnegative and f-smooth

Surrogate loss functions

* Some loss functions are hard to work with. E.g.
* They are not convex
* They are hard to optimize for
* E.g. 0-1 loss in halfspace-based classification

* Solution
e Use a “surrogate” loss function
e That is kind of similar, but easier to manage, e.g. convex

e Usual rule for surrogate loss

e Should be convex
e Should upper bound (be larger than original loss.)

Example: Hinge loss

£hinEe (w, (x,y)) = max{0,1 — y(w,x)}
ghinee é”,
0”
‘0
| ’.
L 2
eo—l ‘0’
4o 1
0"
00
’0
2
% y(w, x)

Regularization

* Instead of the pure loss, minimize loss with a regularization term:

argmin (Lg(w) + R(w))

W

2
« Commonly used: R(w) = AHWI‘
* Called Tikhonov regularization

Try yourself:

Go to wolfram alpha and plot a polynomial: y = acx® + a,x* +
asx3 + a,x? + a;x + qq

* With numbers of your choice in place of coefficients a;

* Now scale the coefficients: multiply all the coefficients with the same
number (may be fractions too). What do you see?

Ridge regression

* Linear regression with Tikhonov regularization

| 1 .1
argmin (A||w||§ + — Z §(<W7Xi> — ?Jz)z)

m
weER? i=1

* R(w) = AHWHZ is 2A-strongly convex

* If f is A-strongly convex and g is convex, then f + g is A-strongly
convex

* Thus, Ridge regression is strongly convex
* Strongly convex loss implies stability
* Why else do we like strongly convex losses?

Stability

* Intuitively: A learning algorithm is stable if

* A small change to training set does not cause a big change to the output
(model or hypothesis)

* This is a desirable property because...

Stability

* Intuitively: A learning algorithm is stable if

* A small change to training set does not cause a big change to the output
(model or hypothesis)

* This is a desirable property because
* It implies that it is not too sensitive to specific S. does not overfit
* |f we continue to use it, it will not abruptly change behavior

 Suppose in S, we replace z; with z' ~ D

e Let us write this as S*

* A good algorithm A should have small value for
+ 2(A(SY), z1) — £(A(S),)

* The loss on z; does not depend too much on it being in the sample

Generalisation

* Empirical or training loss: L¢(h)
* Generalisation loss or ture loss : Ly (h)

Generalisation gap

* Lp(h) — Lg(h)
* A measure of overfitting

Stability definition and result

* Algorithm A is on-average-replace-one-stable with rate e(m)
o |f
« E[¢(A(SY), ;) — €(A(S), z)] < e(m)

Stability definition and result

* Algorithm A is on-average-replace-one-stable with rate e(m)

- If
« E[¢(A(SY), ;) — €(A(S), z)] < e(m)

e Theorem:

« E[Lp(A(S)) — Ls(A(S))] = E[£(A(S?), z;) — 2(A(S),)]

* The generalization gap is bounded by the stability

Gradient descent o
[8f(w) Of(w)
* Gradient is Vf(W) _ (Owll] ** 7 Owld])

* Gradient represents the direction in which f increases fastest

* Gradient Descent: At every step t :
e witl =yt — UVf(Wt)
* (Move in the direction that f decreases fastest With a step scale of n)

_ 1
» After T steps, output the average vector w = p {=1 wt

* When f is the empirical risk, gradient is computed using loss of all
data points

Theorem (14.2 in book)

* For convex lipschitz bounded learning

: B2
* Settingn = ST
* We can get f(w) — f(w*) < %

* Alternatively, to achieve f(w) — f(w*) < € the number of rounds is:

B2,02

T >
€2

Stochastic gradient descent

* Computing the gradient of empirical loss is expensive
* Because empirical loss depends on all training data

* |dea: Instead of computing gradient on the entire dataset each time,
compute them on small samples: like single data points.

* (Eachi.i.d data point is treated like a tiny sample of data)

Stochastic gradient descent

Stochastic Gradient Descent (SGD) for minimizing
f(w)

parameters: Scalar n > 0, integer T > 0

initialize: w(!) = 0

fort=1,2,...,T
choose v; at random from a distribution such that E[v; | w()] € 8 f(w®)
update wtth) = w(®) — v,

output w = & 3, w(®

GD vs SGD

@

Theorem (14.8)

e Similar result to deterministic GD:

E[f(w)] = f(w7)

<

SIS

Practical modifications

* Mini batching:
* Instead of one data item at time, take them in batches of a few at a time.
* Faster, and fewer unhelpful moves

* Run in epochs. In each epoch
* Order the data points in a random permutation

* For each data point (or mini-batch)
* Compute the gradient and move the model

