Algorithms and Loss functions

Machine Learning Theory (MLT)

Edinburgh

Rik Sarkar

Algorithms and loss functions

- We saw how to think about the sample complexity
 - Why machine learning works with reasonably small amounts of data
 - Why we need to decide hypothesis classes for learning to work

• Next:

- How to find good models within the classes
- Common types of loss functions and their properties
- Common algorithms
 - Linear and polynomial predictors
 - Loss functions convex and non-convex

Learning algorithms

- Each hypothesis or model is described by vector w of weights
 - The length of w is the dimension of the space of models
- We write bold w or x to indicate vectors.
- When writing by hand, it is perhaps best to write with an arrow overhead: \vec{w} since bold is tricky in handwriting

- The weights w are the parameters that determine the model
- ullet So, an ML algorithm searches in the space of $oldsymbol{w}$ trying to find the best one

Two spaces: Models and Data

- Eg. For classifiers given by $y \le mx + c$, the space of models is all possible values of (m, c), so it is 2 dimensional
- A model that has k parameters will have a model space that is k-dim

Each point is a possible data point

Linear predictors

- Popular class of models
- Easy to train
- Easy to interpret

Halfspaces

- All the elements on one side of a straight line
- Written as $sign(\langle w, x \rangle + b)$
 - Sign function returns +1 or -1 depending on sign
 - $\langle w, x \rangle$ is an inner product $\langle w, x \rangle = \sum_{i=1}^d w_i x_i$
- VC dimension of class of halfspaces is d+1
- Thus we should be able to learn the good halfspaces
- The realizable case for halfspaces is called separable
- LP can be used to solve the separable half space problem (omitted in class)

Perceptron

A simple neuron denoting a half space classifier

The activation function is a threshold function

• Challenge: learn the weights w

Homogeneous coordinates

- Simplify $sign(\langle w, x \rangle + b)$
- We can extend
 - $\mathbf{w} = [b, w_1, w_2, ...]$
 - $x = [1, x_1, x_2, ...]$
- Now we can write simply $sign(\langle w, x \rangle)$

Perceptron algorithm

- Input: Training set $(x_1, y_1), (x_2, y_2), ...$
- Initialize $w^1 = [0, ..., 0]$
- At each iteration t = 1, 2, ...
 - If there is a sample x_i that is wrongly classified i.e. if $y_i \langle w^t, x_i \rangle \leq 0$
 - Update $w^{t+1} = w^t + y_i x_i$
 - Else
 - Output w^t
- Perceptron algorithm produces a half space classifier. (Thm 9.1)
- In the separable case produces the correct solution/model

Linear regression

•
$$\mathcal{X} = \mathbb{R}^d$$
, $\mathcal{Y} = \mathbb{R}$

- $h: \mathcal{X} \to \mathcal{Y}$ should be linear
- Loss $\ell(h, (x, y)) = (h(x) y)^2$
- Empirical risk

•
$$L_S(h) = \frac{1}{m} \sum (h(\mathbf{x}_i) - y_i)^2$$

Note that the definition applies to any dimensional data

Least squares – solution to linear regression

$$\underset{\mathbf{w}}{\operatorname{argmin}} L_S(h_{\mathbf{w}}) = \underset{\mathbf{w}}{\operatorname{argmin}} \ \frac{1}{m} \sum_{i=1}^m (\langle \mathbf{w}, \mathbf{x}_i \rangle - y_i)^2$$

- Idea: When the risk is at a minimum, its gradient is 0
- That is: $\frac{2}{m}\sum(\langle \boldsymbol{w},\boldsymbol{x}_i\rangle-y_i)\boldsymbol{x}_i=0$
- Solved using linear algebra (matrix) techniques

Polynomial regression

$$p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

- Assume $\mathcal{X} = \mathbb{R}$, $\mathcal{Y} = \mathbb{R}$
 - I.e, 1-D, non-linear problems

- Define $\psi(x) = (1, x, x^2, ..., x^n)$
 - And $p(\psi(x)) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n = \langle \mathbf{a}, \psi(x) \rangle$
- And apply linear regression
- That is, treat each degree term of x as a different dimension, and apply multi-dimensional linear regression.

Loss functions

• Loss $\ell(w,x)$ is a function of both data and models

• For every model w, there is a function $\ell(w,\cdot)$ on data space that defines the loss at every point

• For every data point x there is a function $\ell(\cdot, x)$ that gives a loss for

each model

Model w

Loss functions

- We are usually interested in the average of $\ell(\cdot,x)$ over all data points
- And want to find w that minimizes the average L(w, x)
 - Call it **w***

Convexity and convex learning

- A set C is convex if for any $u, v \in C$, the line segment connecting u, v is in C. (Any intermediate point is in C)
 - Can be written formally as:
 - For any $\alpha \in [0,1]$, it is true that $\alpha u + (1-\alpha)v \in C$

Convex function

- For a convex C, a function $f: C \to \mathbb{R}$ is convex if
- $f(\alpha \mathbf{u} + (1 \alpha)\mathbf{v}) \le \alpha f(\mathbf{u}) + (1 \alpha)f(\mathbf{v})$
- The graph of f lies below the straight line connecting u and v

Properties of convex functions

- Every local minimum is also a global minimum
 - Question: is the global minimum unique?
- For every **w** the tangent at **w** lies below *f*:
 - $\forall u, f(u) \ge f(w) + \langle \nabla f(w), u w \rangle$
- If $f: \mathbb{R} \to \mathbb{R}$ is twice differentiable, then
 - *f* is convex
 - f' is monotone nondecreasing
 - f'' is nonnegative
- Are equivalent

Examples

$$\bullet f(x) = x^2$$

$$f(x) = \log(1 + e^x)$$

Convex and non-convex loss: The loss landscape

Convex learning is easy!

- Start with any model $oldsymbol{w}_0$
- Take a step in a direction that makes the loss smaller
- Repeat until we are at w* with smallest loss
- Gradient descent
 - Compute the derivative at current w, move a step in that direction

Gradient

- Gradient (a vector derivative in multiple dimensions)
 - The direction and speed of fastest increase

$$\nabla f(\mathbf{w}) = \left(\frac{\partial f(\mathbf{w})}{\partial w_1}, \dots, \frac{\partial f(\mathbf{w})}{\partial w_d}\right)$$

• (here a w_i is a parameter or dimension of the model)

- Partial derivatives
 - Compute the derivative along each dimension, put them in a vector

Convex learning problems

- A learning problem $(\mathcal{H}, \mathcal{Z}, \ell)$ is convex, if
 - \mathcal{H} is a convex set
 - For all $z \in \mathcal{Z}$, the loss function $\ell(\cdot, z)$ is a convex function.
- E.g. linear regression with squared loss, logistic regression

Combining convex functions

- If g is convex, then $f(w) = g(\langle w, x \rangle + y)$ is convex
- If f_i are convex functions
- $g(x) = \max_{i} f_i(x)$ is convex
- $g(x) = \sum_{i} w_{i} f_{i}(x)$ is convex
 - What is the consequence for loss functions?

Other properties of loss functions

Strong Convexity

• Function f is λ -strongly convex if

$$f(\alpha \mathbf{w} + (1 - \alpha)\mathbf{u}) \le \alpha f(\mathbf{w}) + (1 - \alpha)f(\mathbf{u}) - \frac{\lambda}{2}\alpha(1 - \alpha)\|\mathbf{w} - \mathbf{u}\|^2$$

Lipschitzness

- A function f is ρ -Lipschitz if
 - $||f(\mathbf{w}_1) f(\mathbf{w}_2)|| \le \rho ||\mathbf{w}_1 \mathbf{w}_2||$
- A function that does not change too fast
 - If the derivative is bounded by ρ ,
 - What can we say about its lipschitzness?
 - Then the function is also ρ -Lipschitz
 - But lipschitzness can be defined/computed even when the derivative does not exist

Smoothness

- Gradient (a vector derivative in multiple dimensions)
 - The direction and speed of fastest increase

$$\nabla f(\mathbf{w}) = \left(\frac{\partial f(\mathbf{w})}{\partial w_1}, \dots, \frac{\partial f(\mathbf{w})}{\partial w_d}\right)$$

- f is β -smooth if ∇f is β -Lipschitz:
 - $||\nabla f(v) \nabla f(w)|| \le \beta ||v w||$

Convex-Lipschitz-Bounded learning problems

• A learning problem $(\mathcal{H}, \mathcal{Z}, \ell)$ where:

- \mathcal{H} is convex, $\forall w \in \mathcal{H}$, $||w|| \leq B$
- $\forall z \in \mathcal{Z}$ the loss $\ell(\cdot, z)$ is convex and ρ -Lipschitz (for some ρ)

Convex-smooth-bounded learning

• A learning problem $(\mathcal{H}, \mathcal{Z}, \ell)$ where:

- \mathcal{H} is convex, $\forall w \in \mathcal{H}$, $||w|| \leq B$
- $\forall z \in \mathcal{Z}$ the loss $\ell(\cdot, z)$ is convex, nonnegative and β -smooth (for some β)

The why do we want convexity, smoothness, lipschitzness etc?

The why do we want convexity, smoothness, lipschitzness etc?

- Avoids sudden changes in function and its gradients
- Easier to compute and apply gradients as optimization steps

What is the problem of 0-1 empirical risk as loss function?

- Remember that we had defined the average empirical error as the loss.
 - Can we use that for gradient descent?

Surrogate loss functions

- Some loss functions are hard to work with. E.g.
 - They are not convex
 - They are hard to optimize for
 - E.g. 0-1 loss in halfspace-based classification
- Solution
 - Use a "surrogate" loss function
 - That is kind of similar, but easier to manage, e.g. convex
- Usual rule for surrogate loss
 - Should be convex
 - Should upper bound (be larger than original loss.)

Example: Hinge loss

$$\ell^{\text{hinge}}(\mathbf{w}, (\mathbf{x}, y)) \stackrel{\text{def}}{=} \max\{0, 1 - y\langle \mathbf{w}, \mathbf{x} \rangle\}$$

Regularization

• Instead of the pure loss, minimize loss with a regularization term:

$$\underset{\mathbf{w}}{\operatorname{argmin}} \left(L_S(\mathbf{w}) + R(\mathbf{w}) \right)$$

- Commonly used: $R(\mathbf{w}) = \lambda ||\mathbf{w}||^2$
 - Called Tikhonov regularization

Try yourself:

Go to wolfram alpha and plot a polynomial: $y = a_5 x^5 + a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0$

- With numbers of your choice in place of coefficients a_i
- Now scale the coefficients: multiply all the coefficients with the same number (may be fractions too). What do you see?

Ridge regression

Linear regression with Tikhonov regularization

$$\underset{\mathbf{w} \in \mathbb{R}^d}{\operatorname{argmin}} \left(\lambda \|\mathbf{w}\|_2^2 + \frac{1}{m} \sum_{i=1}^m \frac{1}{2} (\langle \mathbf{w}, \mathbf{x}_i \rangle - y_i)^2 \right)$$

- $R(w) = \lambda ||w||^2$ is 2λ -strongly convex
- If f is λ -strongly convex and g is convex, then f+g is λ -strongly convex

- Thus, Ridge regression is strongly convex
- Strongly convex loss implies stability

Stability

- Intuitively: A learning algorithm is stable if
 - A small change to training set does not cause a big change to the output (model or hypothesis)

• This is a desirable property because...

Stability

- Intuitively: A learning algorithm is stable if
 - A small change to training set does not cause a big change to the output (model or hypothesis)

- This is a desirable property because
 - It implies that it is not too sensitive to specific S. does not overfit
 - If we continue to use it, it will not abruptly change behavior

- Suppose in S, we replace z_i with $z' \sim \mathcal{D}$
- Let us write this as S^i

- A good algorithm A should have small value for
 - $\ell(A(S^i), z_i) \ell(A(S), z_i)$
- ullet The loss on z_i does not depend too much on it being in the sample

Stability definition and result

- Algorithm A is on-average-replace-one-stable with rate $\epsilon(m)$
- If
 - $\mathbb{E}[\ell(A(S^i), z_i) \ell(A(S), z_i)] \le \epsilon(m)$

Stability definition and result

- Algorithm A is on-average-replace-one-stable with rate $\epsilon(m)$
- If

•
$$\mathbb{E}[\ell(A(S^i), z_i) - \ell(A(S), z_i)] \le \epsilon(m)$$

• Theorem:

•
$$\mathbb{E}[L_{\mathcal{D}}(A(S)) - L_{S}(A(S))] = \mathbb{E}[\ell(A(S^{i}), z_{i}) - \ell(A(S), z_{i})]$$

The generalization gap is bounded by the stability

Generalisation Gap

- Empirical or training loss: $L_S(h)$
- Generalisation loss or true loss : $L_{\mathcal{D}}(h)$
- $L_{\mathcal{D}}(h) L_{\mathcal{S}}(h)$
- A measure of overfitting
 - (sometimes generalization gap is referred to as generalization loss)

Gradient descent

• Gradient is

$$\nabla f(\mathbf{w}) = \left(\frac{\partial f(\mathbf{w})}{\partial w[1]}, \dots, \frac{\partial f(\mathbf{w})}{\partial w[d]}\right)$$

- Gradient represents the direction in which f increases fastest
- Gradient Descent: At every step t:
 - $w^{t+1} = w^t \eta \nabla f(w^t)$
 - (Move in the direction that f decreases fastest With a step scale of η)
- After T steps, output the average vector $\overline{\boldsymbol{w}} = \frac{1}{T} \sum_{t=1}^{T} \boldsymbol{w}^t$
- Other version: output final vector w_T
- For us, f is the average loss L

Theorem (14.2 in book)

For convex lipschitz bounded learning

• Setting
$$\eta = \sqrt{\frac{B^2}{\rho^2 T}}$$

• We can get $f(\bar{\mathbf{w}}) - f(\mathbf{w}^\star) \leq \frac{B \, \rho}{\sqrt{T}}$

• Alternatively, to achieve $f(\bar{w}) - f(w^*) \le \epsilon$ the number of rounds is:

$$T \ge \frac{B^2 \rho^2}{\epsilon^2}$$

Stochastic gradient descent

- Computing the gradient of empirical loss is expensive
 - Because empirical loss depends on all training data
- Idea: Instead of computing gradient on the entire dataset each time, compute them on small samples: like single data points.
 - (Each i.i.d data point is treated like a tiny sample of data)

Stochastic gradient descent (from book)

```
Stochastic Gradient Descent (SGD) for minimizing
                                           f(\mathbf{w})
parameters: Scalar \eta > 0, integer T > 0
initialize: \mathbf{w}^{(1)} = \mathbf{0}
for t = 1, 2, ..., T
   choose \mathbf{v}_t at random from a distribution such that \mathbb{E}[\mathbf{v}_t \,|\, \mathbf{w}^{(t)}] \in \partial f(\mathbf{w}^{(t)})
   update \mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \eta \mathbf{v}_t
output \bar{\mathbf{w}} = \frac{1}{T} \sum_{t=1}^{T} \mathbf{w}^{(t)}
```

Stochastic gradient descent other version

• Initialize w^1 randomly (uniform or gaussian)

- For t = 1 ... T
 - Take a random small sample of data (mini batch)
 - Compute gradient $oldsymbol{v}^t$ on this sample
 - Update $\mathbf{w}^{t+1} = \mathbf{w}^t \eta \mathbf{v}^t$
- Output w^T

GD vs SGD

Theorem (14.8)

• Similar result to deterministic GD:

$$\mathbb{E}\left[f(\bar{\mathbf{w}})\right] - f(\mathbf{w}^{\star}) \le \frac{B\rho}{\sqrt{T}}$$

Practical modifications

- Mini batching:
 - Instead of one data item at time, take them in batches of a few at a time.
 - Faster, and fewer unhelpful moves
- Run in epochs. In each epoch
 - Order the data points in a random permutation
 - For each data point (or mini-batch)
 - Compute the gradient and move the model
- Other modifications:
 - Change learning rates
 - Add momentum, add dropout etc

Uniform Stability

- Suppose we get S^i by replacing one element z_i at position i of S with a new element z_i'
- And suppose that $z \in \mathcal{Z}$ is some possible input element
- As before A(S) refers to the model that algorithm A computes using S
- We can write the loss on z as $\ell(A(S), z)$
- Algorithm A is ϵ -uniformly stable if
 - $\sup_{z \in \mathcal{Z}} \left[E_A \ell(A(S^i), z) E_A \ell(A(S), z) \right] \le \epsilon$
- E_A means expectation taken over all possible random behaviour of A

Stability implies generalization

- Theorem:
- If Algorithm A is ϵ -uniformly stable then
 - $E_S E_A \ell(A(S), \mathcal{D}) \le E_S E_A \ell(A(S), S) + \epsilon$
 - True loss \leq Training loss + ϵ

Stability implies generalization

- Theorem:
- If Algorithm A is ϵ -uniformly stable then
 - $E_S E_A \ell(A(S), \mathcal{D}) \le E_S E_A \ell(A(S), S) + \epsilon$
 - True loss \leq Training loss + ϵ
- Proof:
 - Observe that $(\ell(A(S^i)z) \sim \ell(A(S^i)z_i)$
 - Since z_i is just another random point outside S^i
 - Given S, Consider another random sample set $S' = \{z'_1, z'_2, ...\}$

•
$$E_{S'}E_SE_A\ell(A(S),\mathcal{D}) - E_{S'}E_SE_A\ell(A(S),S)$$

$$= \frac{1}{m} \sum_{i=1}^{m} E_{S'} E_{S} E_{A} \ell(A(S^{i}), z_{i}) - \frac{1}{m} \sum_{i=1}^{m} E_{S'} E_{S} E_{A} \ell(A(S), z_{i})$$

$$= \frac{1}{m} \sum_{i=1}^{m} E_{S'} E_{S} \left[E_{A} \ell(A(S^{i}), z_{i}) - E_{A} \ell(A(S), z_{i}) \right] \leq \epsilon$$

Thus, Uniform stability implies generalization.

- Regularization creates strong convexity
- Strong convexity implies stability
- Stability implies generalization

Neural networks

- Perceptron activation functions
- Each perceptron defines a half plane
- Together they can form complex boundaries
- More perceptrons, more options for regions available in the arrangement of lines

Challenges

- Gradients are not always useful
 - Eg. If a small change does not change the classification of any point
 - Hard to apply SGD type methods
- Sometimes it is useful to have real values

Other activations

• Sigmoid
•
$$f(x) = \frac{1}{1+e^x}$$

• ReLU

•
$$f(x) = \max(0, x)$$

Neural network structure

- Use ReLU or similar activation functions
 - More compatible with gradients
 - Easy to compute
- ullet The middle layers produce a vector $oldsymbol{y}$ of "scores" for each class, called logit values
- Final layer: apply "softmax" to logits:
 - $softmax(y_i) = \frac{e^{y_i}}{\sum e^{y_j}}$ (improved the notation from the lecture)

Question: Why softmax?

Hard max or exact max

- Take a vector of values eg. [2,3,5,2,6,4,9,2,2,4]
- Make one indicating the position of the max eg. [0,0,0,0,0,0,1,0,0,0]

Softmax

- Substitute for hard-max, but differentiable
- ullet Normalized, can be treated as probability p_i for each class

Cross entropy loss

• Given:

- Sample *x*
- Probability estimate p_i
- Truth label vector t: indicator vector or one-hot encoding where only the true class has value 1.

- Cross entropy loss: $\ell_{\mathit{CE}} = -\sum t_i \ln p_i$
 - Measures difference between the two functions

p=[0.1, 0.5, 0.2, 0.2] t= [0.0, 1.0, 0.0, 0.0]