Algorithms and loss functions

• We saw how to think about the sample complexity
 • Why machine learning works with reasonably small amounts of data
 • Why we need to decide hypothesis classes for learning to work

• Next:
 • How to find good models within the classes
 • Common types of loss functions and their properties
 • Common algorithms
 • Linear and polynomial predictors
 • Loss functions – convex and non-convex
Learning algorithms

• Each hypothesis or model is described by vector \mathbf{w} of weights
 • The length of \mathbf{w} is the dimension of the space of models
• We write bold \mathbf{w} or \mathbf{x} to indicate vectors.
• When writing by hand, it is perhaps best to write with an arrow overhead: \vec{w} since bold is tricky in handwriting

• The weights \mathbf{w} are the parameters that determine the model
• So, an ML algorithm searches in the space of \mathbf{w} trying to find the best one
Two spaces: Models and Data

• Eg. For classifiers given by $y \leq mx + c$, the space of models is all possible values of (m, c), so it is 2 dimensional

• A model that has k parameters will have a model space that is k-dim
Linear predictors

• Popular class of models
• Easy to train
• Easy to interpret
Halfspaces

• All the elements on one side of a straight line
• Written as $\text{sign}(\langle w, x \rangle + b)$
 • Sign function returns +1 or -1 depending on sign
 • $\langle w, x \rangle$ is an inner product $\langle w, x \rangle = \sum_{i=1}^{d} w_i x_i$
• VC dimension of class of halfspaces is $d + 1$
• Thus we should be able to learn the good halfspaces
• The realizable case for halfspaces is called separable
• LP can be used to solve the separable half space problem (omitted in class)
Perceptron

• A simple neuron denoting a half space classifier

• The activation function is a threshold function

• Challenge: learn the weights \mathbf{w}
Homogeneous coordinates

• Simplify $sign(\langle w, x \rangle + b)$
• We can extend
 • $w = [b, w_1, w_2, ...]$
 • $x = [1, x_1, x_2, ...]$
• Now we can write simply $sign(\langle w, x \rangle)$
Perceptron algorithm

- Input: Training set \((x_1, y_1), (x_2, y_2), \ldots\)
- Initialize \(w^1 = [0, \ldots, 0]\)
- At each iteration \(t = 1, 2, \ldots\)
 - If there is a sample \(x_i\) that is wrongly classified i.e. if \(y_i \langle w^t, x_i \rangle \leq 0\)
 - Update \(w^{t+1} = w^t + y_i x_i\)
 - Else
 - Output \(w^t\)

- Perceptron algorithm produces a half space classifier. (Thm 9.1)
- In the separable case produces the correct solution/model
Linear regression

- $\mathcal{X} = \mathbb{R}^d, \mathcal{Y} = \mathbb{R}$
- $h: \mathcal{X} \rightarrow \mathcal{Y}$ should be linear
- Loss $\ell(h, (x, y)) = (h(x) - y)^2$
- Empirical risk
 - $L_S(h) = \frac{1}{m} \sum (h(x_i) - y_i)^2$

- Note that the definition applies to any dimensional data
Least squares – solution to linear regression

\[\arg\min_w L_S(h_w) = \arg\min_w \frac{1}{m} \sum_{i=1}^{m} (\langle w, x_i \rangle - y_i)^2 \]

- Idea: When the risk is at a minimum, its gradient is 0
- That is: \(\frac{2}{m} \sum (\langle w, x_i \rangle - y_i)x_i = 0 \)
- Solved using linear algebra (matrix) techniques
Polynomial regression

\[p(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^n \]

- Assume \(X = \mathbb{R}, Y = \mathbb{R} \)
 - I.e., 1-D, non-linear problems

- Define \(\psi(x) = (1, x, x^2, \ldots, x^n) \)
 - And
 \[p(\psi(x)) = a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^n = \langle a, \psi(x) \rangle \]

- And apply linear regression
- That is, treat each degree term of \(x \) as a different dimension, and apply multi-dimensional linear regression.
Loss functions

• Loss $\ell(w, x)$ is a function of both data and models
• For every model w, there is a function $\ell(w, \cdot)$ on data space that defines the loss at every point
• For every data point x there is a function $\ell(\cdot, x)$ that gives a loss for each model
Loss functions

• We are usually interested in the average of $\ell(\cdot, x)$ over all data points
• And want to find w that minimizes the average $L(w, x)$
 • Call it w^*
Convexity and convex learning

• A set C is convex if for any $u, v \in C$, the line segment connecting u, v is in C. (Any intermediate point is in C)
 • Can be written formally as:
 • For any $\alpha \in [0,1]$, it is true that $\alpha u + (1 - \alpha)v \in C$
Convex function

• For a convex C, a function $f: C \rightarrow \mathbb{R}$ is convex if

$$f(\alpha u + (1 - \alpha)v) \leq \alpha f(u) + (1 - \alpha)f(v)$$

• The graph of f lies below the straight line connecting u and v
Properties of convex functions

• Every local minimum is also a global minimum
 • Question: is the global minimum unique?

• For every \mathbf{w} the tangent at \mathbf{w} lies below f:
 • $\forall \mathbf{u}, f(\mathbf{u}) \geq f(\mathbf{w}) + \langle \nabla f(\mathbf{w}), \mathbf{u} - \mathbf{w} \rangle$

• If $f : \mathbb{R} \to \mathbb{R}$ is twice differentiable, then
 • f is convex
 • f' is monotone nondecreasing
 • f'' is nonnegative

• Are equivalent
Examples

• \(f(x) = x^2 \)

• \(f(x) = \log(1 + e^x) \)
Convex and non-convex loss: The loss landscape

Empirical Loss of the model
Over training data

Space of models w
Each point is a model
Convex learning is easy!

• Start with any model \mathbf{w}_0
• Take a step in a direction that makes the loss smaller

• Repeat until we are at \mathbf{w}^* with smallest loss

• Gradient descent
 • Compute the derivative at current \mathbf{w}, move a step in that direction
Gradient

• Gradient (a vector derivative in multiple dimensions)
 • The direction and speed of fastest increase

\[\nabla f(w) = \left(\frac{\partial f(w)}{\partial w_1}, \ldots, \frac{\partial f(w)}{\partial w_d} \right) \]

• (here a \(w_i \) is a parameter or dimension of the model)

• Partial derivatives
 • Compute the derivative along each dimension, put them in a vector
Convex learning problems

• A learning problem \((H, Z, \ell)\) is convex, if
 • \(H\) is a convex set
 • For all \(z \in Z\), the loss function \(\ell(\cdot, z)\) is a convex function.

• E.g. linear regression with squared loss, logistic regression
Combining convex functions

• If g is convex, then $f(w) = g(\langle w, x \rangle + y)$ is convex

• If f_i are convex functions

 • $g(x) = \max_i f_i(x)$ is convex
 • $g(x) = \sum_i w_i f_i(x)$ is convex
 • What is the consequence for loss functions?
Other properties of loss functions
Strong Convexity

- Function f is λ-strongly convex if

$$f(\alpha w + (1 - \alpha)u) \leq \alpha f(w) + (1 - \alpha) f(u) - \frac{\lambda}{2} \alpha (1 - \alpha) \|w - u\|^2$$
Lipschitzness

• A function f is ρ-Lipschitz if
 • $|f(w_1) - f(w_2)| \leq \rho ||w_1 - w_2||$

• A function that does not change too fast
 • If the derivative is bounded by ρ,
 • What can we say about its lipschitzness?
 • Then the function is also ρ-Lipschitz
 • But lipschitzness can be defined/computed even when the derivative does not exist
Smoothness

- Gradient (a vector derivative in multiple dimensions)
 - The direction and speed of fastest increase

\[\nabla f(w) = \left(\frac{\partial f(w)}{\partial w_1}, \ldots, \frac{\partial f(w)}{\partial w_d} \right) \]

- \(f \) is \(\beta \)-smooth if \(\nabla f \) is \(\beta \)-Lipschitz:
 - \(\| \nabla f(v) - \nabla f(w) \| \leq \beta \| v - w \| \)
Convex-Lipschitz-Bounded learning problems

• A learning problem \((\mathcal{H}, \mathcal{Z}, \ell)\) where:

\[\mathcal{H}\] is convex, \(\forall w \in \mathcal{H}, \|w\| \leq B\)

\(\forall z \in \mathcal{Z}\) the loss \(\ell(\cdot, z)\) is convex and \(\rho\)-Lipschitz (for some \(\rho\))
Convex-smooth-bounded learning

• A learning problem $(\mathcal{H}, \mathcal{Z}, \ell)$ where:

 • \mathcal{H} is convex, $\forall \mathbf{w} \in \mathcal{H}, \|\mathbf{w}\| \leq B$

 • $\forall z \in \mathcal{Z}$ the loss $\ell(\cdot, z)$ is convex, nonnegative and β-smooth (for some β)
The why do we want convexity, smoothness, lipschitzness etc?
The why do we want convexity, smoothness, lipschitzness etc?

• Avoids sudden changes in function and its gradients
• Easier to compute and apply gradients as optimization steps
What is the problem of 0-1 empirical risk as loss function?

- Remember that we had defined the average empirical error as the loss.
 - Can we use that for gradient descent?
Surrogate loss functions

• Some loss functions are hard to work with. E.g.
 • They are not convex
 • They are hard to optimize for
 • E.g. 0-1 loss in halfspace-based classification

• Solution
 • Use a “surrogate” loss function
 • That is kind of similar, but easier to manage, e.g. convex

• Usual rule for surrogate loss
 • Should be convex
 • Should upper bound (be larger than original loss.)
Example: Hinge loss

\[\ell^{\text{hinge}}(\mathbf{w}, (\mathbf{x}, y)) \overset{\text{def}}{=} \max\{0, 1 - y\langle \mathbf{w}, \mathbf{x} \rangle\} \]
Regularization

• Instead of the pure loss, minimize loss with a regularization term:

$$\arg\min_w (L_S(w) + R(w))$$

• Commonly used: $R(w) = \lambda \|w\|^2$
 • Called Tikhonov regularization
Try yourself:

Go to wolfram alpha and plot a polynomial: $y = a_5 x^5 + a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0$

• With numbers of your choice in place of coefficients a_i
• Now scale the coefficients: multiply all the coefficients with the same number (may be fractions too). What do you see?
Ridge regression

• Linear regression with Tikhonov regularization

\[
\arg\min_{w \in \mathbb{R}^d} \left(\lambda \|w\|^2_2 + \frac{1}{m} \sum_{i=1}^m \frac{1}{2}(\langle w, x_i \rangle - y_i)^2 \right)
\]
\[
R(\mathbf{w}) = \lambda \|\mathbf{w}\|^2 \text{ is } 2\lambda\text{-strongly convex}
\]

If \(f \) is \(\lambda \)-strongly convex and \(g \) is convex, then \(f + g \) is \(\lambda \)-strongly convex.

Thus, Ridge regression is strongly convex.

Strongly convex loss implies stability.
Stability

• Intuitively: A learning algorithm is stable if
 • A small change to training set does not cause a big change to the output (model or hypothesis)

• This is a desirable property because...
Stability

• Intuitively: A learning algorithm is stable if
 • A small change to training set does not cause a big change to the output (model or hypothesis)

• This is a desirable property because
 • It implies that it is not too sensitive to specific S. does not overfit
 • If we continue to use it, it will not abruptly change behavior
• Suppose in S, we replace z_i with $z' \sim \mathcal{D}$

• Let us write this as S^i

• A good algorithm A should have small value for
 • $\ell(A(S^i), z_i) - \ell(A(S), z_i)$

• The loss on z_i does not depend too much on it being in the sample
Stability definition and result

• Algorithm A is on-average-replace-one-stable with rate $\epsilon(m)$

• If
 • $\mathbb{E}[\ell(A(S^i), z_i) - \ell(A(S), z_i)] \leq \epsilon(m)$
Stability definition and result

• Algorithm A is on-average-replace-one-stable with rate $\epsilon(m)$

• If

 $\mathbb{E}[\ell(A(S^i), z_i) - \ell(A(S), z_i)] \leq \epsilon(m)$

• Theorem:

 $\mathbb{E}[L_D(A(S)) - L_S(A(S))] = \mathbb{E}[\ell(A(S^i), z_i) - \ell(A(S), z_i)]$

• The generalization gap is bounded by the stability
Generalisation Gap

• Empirical or training loss: $L_S(h)$
• Generalisation loss or true loss: $L_D(h)$

• $L_D(h) − L_S(h)$
• A measure of overfitting
 • (sometimes generalization gap is referred to as generalization loss)
Gradient descent

\[\nabla f(w) = \left(\frac{\partial f(w)}{\partial w[1]}, \ldots, \frac{\partial f(w)}{\partial w[d]} \right) \]

• Gradient is \(\nabla f(w) \)

• Gradient represents the direction in which \(f \) increases fastest

• Gradient Descent: At every step \(t \):
 • \(w^{t+1} = w^t - \eta \nabla f(w^t) \)
 • (Move in the direction that \(f \) decreases fastest With a step scale of \(\eta \))

• After \(T \) steps, output the average vector \(\bar{w} = \frac{1}{T} \sum_{t=1}^{T} w^t \)

• Other version: output final vector \(w_T \)

• For us, \(f \) is the average loss \(L \)
Theorem (14.2 in book)

- For convex lipschitz bounded learning
- Setting \(\eta = \sqrt{\frac{B^2}{\rho^2 T}} \)
- We can get
 \[
 f(\bar{w}) - f(w^*) \leq \frac{B \rho}{\sqrt{T}}
 \]
- Alternatively, to achieve \(f(\bar{w}) - f(w^*) \leq \epsilon \) the number of rounds is:
 \[
 T \geq \frac{B^2 \rho^2}{\epsilon^2}
 \]
Stochastic gradient descent

• Computing the gradient of empirical loss is expensive
 • Because empirical loss depends on all training data

• Idea: Instead of computing gradient on the entire dataset each time, compute them on small samples: like single data points.
 • (Each i.i.d data point is treated like a tiny sample of data)
Stochastic gradient descent (SGD) for minimizing $f(w)$

parameters: Scalar $\eta > 0$, integer $T > 0$

initialize: $w^{(1)} = 0$

for $t = 1, 2, \ldots, T$

choose v_t at random from a distribution such that $E[v_t | w^{(t)}] \in \partial f(w^{(t)})$

update $w^{(t+1)} = w^{(t)} - \eta v_t$

output $\bar{w} = \frac{1}{T} \sum_{t=1}^{T} w^{(t)}$
Stochastic gradient descent other version

• Initialize \mathbf{w}^1 randomly (uniform or gaussian)

• For $t = 1 \ldots T$
 • Take a random small sample of data (mini batch)
 • Compute gradient \mathbf{v}^t on this sample
 • Update $\mathbf{w}^{t+1} = \mathbf{w}^t - \eta \mathbf{v}^t$

• Output \mathbf{w}^T
GD vs SGD
Theorem (14.8)

• Similar result to deterministic GD:

\[\mathbb{E}[f(\bar{w})] - f(w^*) \leq \frac{B \rho}{\sqrt{T}} \]
Practical modifications

• **Mini batching:**
 • Instead of one data item at time, take them in batches of a few at a time.
 • Faster, and fewer unhelpful moves

• **Run in epochs. In each epoch**
 • Order the data points in a random permutation
 • For each data point (or mini-batch)
 • Compute the gradient and move the model

• **Other modifications:**
 • Change learning rates
 • Add momentum, add dropout etc
Uniform Stability

• Suppose we get S^i by replacing one element z_i at position i of S with a new element z'_i

• And suppose that $z \in \mathcal{Z}$ is some possible input element

• As before $A(S)$ refers to the model that algorithm A computes using S

• We can write the loss on z as $\ell(A(S), z)$

• Algorithm A is ϵ-uniformly stable if
 • $\text{Sup}_{z \in \mathcal{Z}} [E_A \ell(A(S^i), z) - E_A \ell(A(S), z)] \leq \epsilon$

• E_A means expectation taken over all possible random behaviour of A
Stability implies generalization

• Theorem:

• If Algorithm A is ϵ-uniformly stable then
 • $E_S E_A \ell(A(S), D) \leq E_S E_A \ell(A(S), S) + \epsilon$
 • True loss \leq Training loss $+ \epsilon$
Stability implies generalization

• Theorem:
 • If Algorithm A is ϵ-uniformly stable then
 • $E_S E_A \ell(A(S), D) \leq E_S E_A \ell(A(S), S) + \epsilon$
 • True loss \leq Training loss $+ \epsilon$

• Proof:
 • Observe that $(\ell(A(S^i)z) \sim \ell(A(S^i)z_i)$
 • Since z_i is just another random point outside S^i
 • Given S, Consider another random sample set $S' = \{z'_1, z'_2, \ldots\}$
$E_{S'}E_SE_A\ell(A(S), D) - E_{S'}E_SE_A\ell(A(S), S)$

$= \frac{1}{m}\sum^m E_{S'}E_SE_A\ell(A(S^i), z_i) - \frac{1}{m}\sum^m E_{S'}E_SE_A\ell(A(S), z_i)$

$= \frac{1}{m}\sum^m E_{S'}E_S[E_A\ell(A(S^i), z_i) - E_A\ell(A(S), z_i)] \leq \epsilon$

Thus, Uniform stability implies generalization.
• Regularization creates strong convexity
• Strong convexity implies stability
• Stability implies generalization
Neural networks

- Perceptron activation functions
- Each perceptron defines a half plane
- Together they can form complex boundaries
- More perceptrons, more options for regions available in the arrangement of lines
Challenges

• Gradients are not always useful
 • Eg. If a small change does not change the classification of any point
 • Hard to apply SGD type methods

• Sometimes it is useful to have real values
Other activations

- **Sigmoid**
 - \(f(x) = \frac{1}{1 + e^x} \)

- **ReLU**
 - \(f(x) = \max(0, x) \)
Neural network structure

• Use ReLU or similar activation functions
 • More compatible with gradients
 • Easy to compute

• The middle layers produce a vector \mathbf{y} of "scores" for each class, called logit values

• Final layer: apply “softmax” to logits:
 • $\text{softmax}(y_i) = \frac{e^{y_i}}{\sum e^{y_j}}$ (improved the notation from the lecture)
Question: Why softmax?
Hard max or exact max

• Take a vector of values eg. [2,3,5,2,6,4,9,2,2,4]
• Make one indicating the position of the max eg. [0,0,0,0,0,0,1,0,0,0]
Softmax

• Substitute for hard-max, but differentiable
• Normalized, can be treated as probability p_i for each class
Cross entropy loss

• Given:
 • Sample x
 • Probability estimate p_i
 • Truth label vector t: indicator vector or one-hot encoding where only the true class has value 1.

• Cross entropy loss: $\ell_{CE} = -\sum t_i \ln p_i$
 • Measures difference between the two functions

$p = [0.1, 0.5, 0.2, 0.2]$
$t = [0.0, 1.0, 0.0, 0.0]$