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Algorithms and loss functions

* We saw how to think about the sample complexity
 Why machine learning works with reasonably small amounts of data
* Why we need to decide hypothesis classes for learning to work

* Next:
* How to find good models within the classes
 Common types of loss functions and their properties

* Common algorithms
* Linear and polynomial predictors
* Loss functions — convex and non-convex



Learning algorithms

* Each hypothesis or model is described by vector w of weights
* The length of w is the dimension of the space of models

e We write bold w or x to indicate vectors.

* When writing by hand, it is perhaps best to write with an arrow
overhead: w since bold is tricky in handwriting

* The weights w are the parameters that determine the model

* So, an ML algorithm searches in the space of w trying to find the best
one



Two spaces: Models and Data

* Eg. For classifiers given by y < mx + ¢, the space of models is all
possible values of (m, ¢), so it is 2 dimensional

* A model that has k parameters will have a model space that is k-dim

A

Models w Data x
Each point is a possible model Each point is a possible data point




Linear predictors

* Popular class of models
* Easy to train
* Easy to interpret



Halfspaces N T

* All the elements on one side of a straight line A=
 Written as sign({w, x) + b) +
* Sign function returns +1 or -1 depending on sign 7

* (W, x) is an inner product (w, x) = 2?21 WiX;i i

* VC dimension of class of halfspacesis d + 1
* Thus we should be able to learn the good halfspaces
* The realizable case for halfspaces is called separable

* LP can be used to solve the separable half space problem (omitted in
class)



Perceptron

* A simple neuron denoting a half space classifier xi.___

X2— W2
 The activation function is a threshold function
b

* Challenge: learn the weights w

+1




Homogeneous coordinates

* Simplify sign({w, x) + b)

 We can extend
W= [b, W1, Wy, ]
* X = [1,X1,X2, ]

* Now we can write simply sign({w, x))



Perceptron algorithm

* Input: Training set (x4, v;), (x5, V5), ...
* Initialize w! = [0, ..., 0]

At each iterationt = 1,2, ...

* If there is a sample x; that is wrongly classified i.e. if y;(wt, x;) < 0

t+1

« Update witl = wt + y;x;

* Else
* Output wt

e Perceptron algorithm produces a half space classifier. (Thm 9.1)
* In the separable case produces the correct solution/model



Linear regression

X =R4Y=R :
* h: X - Y should be linear ; ’
* Loss £(h, (x,¥)) = (h(x) — y)3 ©

* Empirical risk
+ Ls(h) = —%(h(x;) — y;)?

* Note that the definition applies to any dimensional data



Least squares — solution to linear regression

1 m
argmin Lg(hyw) = argmin — Z((W,Xi> —y3)?

m
w w i=1

* |dea: When the risk is at a minimum, its gradient is O
* That is: %Z((W, xi) — yl-)xl- =0

 Solved using linear algebra (matrix) techniques



Polynomial regression
p(z) = ap + a1z + agx® + - - + a 2"

* Assume X =R, Y =R | ./"

* |l.e, 1-D, non-linear problems / .

* Define ¥(x) = (1, x,x%, ..., x™)

* And p(tb(l‘)) :a0+a1x+a2x2+...—|—anxn — <a,¢($)>

* And apply linear regression

* That is, treat each degree term of x as a different dimension, and
apply multi-dimensional linear regression.



Loss functions

* Loss £(w, x) is a function of both data and models

* For every model w, there is a function £(w,-) on data space that
defines the loss at every point

* For every data point x there is a function €(-, x) that gives a loss for

each model
\
A

Data x Model w




Loss functions

* We are usually interested in the average of £(-, x) over all data points

/

* And want to find w  that minimizes the average L(w, x)
e Callitw”

w*

Models w



Convexity and convex learning

* Aset Cis convex if for any u, v € C, the line segment connecting u, v
isin C. (Any intermediate pointisin C)

e Can be written formally as:
 Foranya € [0,1], itistruethatau+ (1 —a)v € C

nomn-convex convex

9 99




Convex function

* For a convex C, a function f: C — R is convex if

*flau+ (1 -a)v) < af(w) + (1 - a)f (v)

* The graph of f lies below the straight line connecting u and v

f%
o af(u) + (1 - a)f(v)

flau+ (1 - a)v)

u Vv

'au—{—(I—a)v



Properties of convex functions

* Every local minimum is also a global minimum
e Question: is the global minimum unique?

* For every w the tangent at w lies below f:
* Vu, f(u) = f(w) +(Vf(w), u—w)

* If f:IR = Ris twice differentiable, then

* fis convex
* f'is monotone nondecreasing
" is nonnegative

* Are equivalent




Examples
* f(x) = x?

* f(x) = log(1 + e*)



Convex and non-convex loss: The loss
landscape

Empirical Loss of the model
Over training data

Space of models w
Each pointis a
model




Convex learning is easy!

* Start with any model w

* Take a step in a direction that
makes the loss smaller

* Repeat until we are at w* with
smallest loss

* Gradient descent w’ W, W1 wg

* Compute the derivative at current w,
move a step in that direction



Gradient

e Gradient ( a vector derivative in multiple dimensions)
* The direction and speed of fastest increase

Viw) = (%, 250

° ) de

* (here a w; is a parameter or dimension of the model)

 Partial derivatives
 Compute the derivative along each dimension, put them in a vector



Convex learning problems

* Alearning problem (H, Z,¥) is convex, if
* H'is a convex set
* Forall z € Z, the loss function (-, z) is a convex function.

* E.g. linear regression with squared loss, logistic regression



Combining convex functions

* If g is convex, then f(w) = g({w, x) + y) is convex
* If f; are convex functions

e glx) = max fi(x) is convex

* g(x) = X, w;f;(x) is convex

* What is the consequence for loss functions?



Other properties of loss functions



Strong Convexity

* Function f is A-strongly convex if

flaw + (1 - a)u) < af(w) + (1 - a)f(u) - Sa(l — a)|w - ul?

> 3a(l - a)lu—w|?




Lipschitzness

* A function f is p-Lipschitz if
|f (wy) —f(W2)|| < pllwy — wy]]

e A function that does not change too fast

* If the derivative is bounded by p,
* What can we say about its lipschitzness?

* Then the function is also p-Lipschitz
* But lipschitzness can be defined/computed even when the derivative does not exist



Smoothness

e Gradient ( a vector derivative in multiple dimensions)
* The direction and speed of fastest increase

Vi(w) = (Y, 250

ow1 ") Qwyg

* fis B-smooth if Vf is B-Lipschitz:
Vf(v) = VfwW)I| < Bllv —wl|




Convex-Lipschitz-Bounded learning problems

* A learning problem (H, Z,€) where:

* H{is convex, Vw € H, Hw|| <B
*Vz € Z theloss £(+, z) is convex and p-Lipschitz (for some p)



Convex-smooth-bounded learning

* A learning problem (H, Z,€) where:

* H{is convex, Vw € 7—[,‘le| <B

*Vz € Z theloss £(+, z) is convex, nonnegative and [f-smooth (for
some [5)



The why do we want convexity, smoothness,
lipschitzness etc?



The why do we want convexity, smoothness,
lipschitzness etc?

* Avoids sudden changes in function and its gradients
e Easier to compute and apply gradients as optimization steps



What is the problem of 0-1 empirical risk as
loss function?

* Remember that we had defined the average empirical error as the
loss.

* Can we use that for gradient descent?



Surrogate loss functions

* Some loss functions are hard to work with. E.g.
* They are not convex
* They are hard to optimize for
* E.g. 0-1 loss in halfspace-based classification

* Solution
e Use a “surrogate” loss function
e That is kind of similar, but easier to manage, e.g. convex

e Usual rule for surrogate loss

e Should be convex
e Should upper bound (be larger than original loss.)



Example: Hinge loss

£hinEe (w, (x,y)) = max{0,1 — y(w,x)}
ghinee é”,
0”
‘0
| ’.
L 2
eo—l ‘0’
4o 1
0"
00
’0
2
% y(w, x)




Regularization

* Instead of the pure loss, minimize loss with a regularization term:

argmin (Lg(w) + R(w))

W

2
« Commonly used: R(w) = AHWI‘
* Called Tikhonov regularization



Try yourself:

Go to wolfram alpha and plot a polynomial: y = acx® + a,x* +
asx3 + a,x? + a;x + qq

* With numbers of your choice in place of coefficients a;

* Now scale the coefficients: multiply all the coefficients with the same
number (may be fractions too). What do you see?



Ridge regression

* Linear regression with Tikhonov regularization

| 1 .1
argmin (A||w||§ + — Z §(<W7Xi> — ?Jz)z)

m
weER? i=1



* R(w) = AHWHZ is 2A-strongly convex

* If f is A-strongly convex and g is convex, then f + g is A-strongly
convex

* Thus, Ridge regression is strongly convex
* Strongly convex loss implies stability



Stability

* Intuitively: A learning algorithm is stable if

* A small change to training set does not cause a big change to the output
(model or hypothesis)

* This is a desirable property because...



Stability

* Intuitively: A learning algorithm is stable if

* A small change to training set does not cause a big change to the output
(model or hypothesis)

* This is a desirable property because
* It implies that it is not too sensitive to specific S. does not overfit
* |f we continue to use it, it will not abruptly change behavior



 Suppose in S, we replace z; with z' ~ D

e Let us write this as S*

* A good algorithm A should have small value for
+ 2(A(SY), z1) — £(A(S), )

* The loss on z; does not depend too much on it being in the sample



Stability definition and result

* Algorithm A is on-average-replace-one-stable with rate e(m)
o |f
« E[¢(A(SY), ;) — €(A(S), z)] < e(m)



Stability definition and result

* Algorithm A is on-average-replace-one-stable with rate e(m)

- If
« E[¢(A(SY), ;) — €(A(S), z)] < e(m)

e Theorem:

« E[Lp(A(S)) — Ls(A(S))] = E[£(A(S?), z;) — 2(A(S), )]

* The generalization gap is bounded by the stability



Generalisation Gap

* Empirical or training loss: L¢(h)
* Generalisation loss or true loss : Ly (h)

* Lp(h) — Ls(h)

* A measure of overfitting
* (sometimes generalization gap is referred to as generalization loss)



Gradient descent o
_ (8f(w) Of(w)
* Gradient is vf(w) B ( ow([l] ’ " ° 7 Owl|d] )

* Gradient represents the direction in which f increases fastest

* Gradient Descent: At every step t :
o wttl =yt — nvf(wt)
* (Move in the direction that f decreases fastest With a step scale of n)

_ 1
e After T steps, output the average vector w = ;Zle wt

* Other version: output final vector wy
* For us, f is the average loss L



Theorem (14.2 in book)

* For convex lipschitz bounded learning

: B2
* Settingn = ST
* We can get f(w) — f(w*) < %

* Alternatively, to achieve f(w) — f(w*) < € the number of rounds is:

B2,02

T >
€2




Stochastic gradient descent

* Computing the gradient of empirical loss is expensive
* Because empirical loss depends on all training data

* |dea: Instead of computing gradient on the entire dataset each time,
compute them on small samples: like single data points.

* (Eachi.i.d data point is treated like a tiny sample of data)



Stochastic gradient descent (from book)

Stochastic Gradient Descent (SGD) for minimizing
f(w)

parameters: Scalar n > 0, integer T > 0

initialize: w(!) = 0

fort=1,2,...,T
choose v; at random from a distribution such that E[v; | w()] € 8 f(w®)
update wtth) = w(®) — v,

output w = & 3, w(®




Stochastic gradient descent other version

* Initialize w! randomly (uniform or gaussian)

cFort=1..T
* Take a random small sample of data (mini batch)
 Compute gradient v" on this sample
e Update wtt! = wt — ot

e Output w!



GD vs SGD

1@






Theorem (14.8 )

e Similar result to deterministic GD:

E[f(w)] = f(w7)

<

SIS



Practical modifications

* Mini batching:
* |Instead of one data item at time, take them in batches of a few at a time.
e Faster, and fewer unhelpful moves

* Run in epochs. In each epoch
* Order the data points in a random permutation

* For each data point (or mini-batch)
* Compute the gradient and move the model

e Other modifications:
* Change learning rates
 Add momentum, add dropout etc



Uniform Stability

* Suppose we get St by replacing one element z; at position i of S with a
new element z;

* And suppose that z € Z is some possible input element
* As before A(S) refers to the model that algorithm A computes using S
* We can write the loss on z as £(A(S), z)

e Algorithm A is e-uniformly stable if
* Sup,ez|Eat(A(SY), z) — E42(A(S),2)] < €

* £, means expectation taken over all possible random behaviour of 4



Stability implies generalization

e Theorem:

* If Algorithm A is e-uniformly stable then
° EsEA'g(A(S), D) < EsEA'g(A(S),S) + €
* True loss < Training loss + €



Stability implies generalization

e Theorem:

* If Algorithm A is e-uniformly stable then
° EsEA'g(A(S),D) < EsEA'g(A(S), S) + €
* True loss < Training loss + €

* Proof:
* Observe that (f(A(Si)Z) ~ f(A(Si)Zi )
* Since z; is just another random point outside St
* Given S, Consider another random sample set S’ = {z{, 25, ... }



¢ ESIEsEA'g(A(S), D) — ESIESEA'B(A(S),S)

=—YM  EqEsE£(A(SY),z) — =™ EgEsEs£(A(S),2))
=nilzm E¢ Es|Ea0(A(SY),z;) — E4€(A(S),z)| < €

Thus, Uniform stability implies generalization.



* Regularization creates strong convexity
e Strong convexity implies stability
e Stability implies generalization



Neural networks

e Perceptron activation functions
* Each perceptron defines a half plane

» Together they can form complex
boundaries

* More perceptrons, more options for
Ir.eglons available in the arrangement of Hidden
ines




Challenges

* Gradients are not always useful
e Eg. If a small change does not change the classification of any point
* Hard to apply SGD type methods

e Sometimes it is useful to have real values



Other activati

e Sigmoid s
FfO) =1

1+eX

* RelLU
* f(x) = max(0, x)




Neural network structure

e Use RelLU or similar activation functions
* More compatible with gradients
* Easy to compute

* The middle layers produce a vector y of "scores” for each class, called
logit values

* Final layer: apply “softmax” to logits:

)
e softmax(y;) = eylj (improved the notation from the lecture)

Ye




Question: Why softmax?



Hard max or exact max

* Take a vector of values eg. [2,3,5,2,6,4,9,2,2,4]
* Make one indicating the position of the max eg. [0,0,0,0,0,0,1,0,0,0]



Softmax

e Substitute for hard-max, but differentiable
* Normalized, can be treated as probability p; for each class



Cross entropy loss

* Given:
* Sample x
. . =[0.1, 0.5, 0.2, 0.2
* Probability estimate p; ?: %o_o, 1.0, 0.0, o.o}

 Truth label vector t: indicator vector or
one-hot encoding where only the true
class has value 1.

* Cross entropy loss: - = —)'t; Inp;

e Measures difference between the two
functions



