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Today’s topics

e Uniform convergence
* No free lunch theorem
* Error and bias-complexity tradeoff

* VC dimension and fundamental theorem of statistical learning



Uniform convergence

e S'is € —representative w.r.t (Z,H, D) if:
« YVhe H,|Ls(h) — Lp(h)| < e
S gives a good estimate of the true loss for each h

* I has uniform convergence if there is m¥*: (0,1)? > N

e Such that a random sample S ~ D™ of size m = m¥¢ (¢, §)
* |Is € —representative with probability at least 1 — 6

* A hypothesis class is said to have uniform convergence
* if foranye, o:
* Any random sample S of large enough sample size m (a function of €, §)

* |Is € —representative with probability of at least 1 — §
* Will give a good estimate of



Corollary

* If 7 has uniform convergence with m>¢,

* Then H is PAC learnable with my(€,5) < mgf (g, 6)

* So, every finite H is learnable
* In the sense that based on S
 ERM algorithm findsan h € H
* Whose true loss is close to the best general h* € H



e Theorem:

* Every finite H has uniform convergence
 i.e.GivenarandomS, P[3h € H:|Ls(h) — Lp(h)| > €] <6

* (And therefore every finite H is agnostic PAC-learnable)

* To prove this, we need the Chernoff-hoeffding bound



Chernoft-Hoeftding bound

* Very important result in theoretical CS and ML

* Suppose 6; are random variables with average %Z}Zl 0;

* Suppose u is the expected value

e Law of large numbers: with increasing m, %Z’{Zl 6; approaches u
* le, ‘% m.0; — ,u‘ becomes smaller

* But how fast? What m do we need to get e-close to u?
* Chernoff-Hoeffding bound:

« P ”%2{11 0; — ,u‘ > E] < 2e74Mm€
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* Proof that P[3h € H:|Ls(h) — Lp(h)| > €] <6
e Takeanyh € H

* Now take a random sample S

* Let us write u = E[Ls(h)] = Ly (h)

* |.e. note that the expected value of empirical loss is the true loss

* For every z; € S, we write its loss on h as 0;. l.e. 8; = £(h, z;)

* Then the empirical loss is Lg(h) = iZ’-’l

* So, what is the probability that Z > €7



* What is the probability that ‘% Yt 0, —ul>e€?

* Using Chernoff bound, probability that any one h has large error is:

2

P ”% m.o; —u‘ > E] < 2e72me

 Summing over all h € H, probability that one or more has large error
IS:



 What is the probability that ‘%Zﬁl 6; —u|l > e€?
* Using Chernoff bound, probability that any one h has large error is:

2

) P”% ?;1 Hi _,U‘ > E] < Qe —2me

 Summing over all h € H, probability that one or more has large error is:
e < 2|H|e~2™m€" (by union bound)

e Substitute m > —log( l}[l) to get a probability bound 6



* So, we have proved finite classes are all PAC learnable
* How useful is it?



* So, we have proved finite classes are all PAC learnable
* How useful is it?

 H is described by some parameters
* E.g. coefficients of polynomials, weights on edges...

* We can always discretize by taking closely spaced discrete points

* In fact in a computer, numbers are always discretized
* And thus practical hypothesis classes are technically finite

* Though searching the entire class may not be practical...



Do we need to think about hypothesis
classes?

* In class, we discussed why we cannot have “all possible” hypotheses
as our class.
* Challenges in computation
* Challenges in enumerating

* We now see a theorem that says there is no universal PAC learner

* For any learner A, there is an input on which it fails to find a good
model



No Free Lunch theorem (thm 5.1 in book)

X
e For 0-1 loss. Assume m < |2—|

* There is D, f such that

* Lp(f) = 0 (i.e. f is a perfect classifier that exists)
* And we would like to find something close to f

* Forarandom S
e With probability > %, the true loss LD(A(S)) > %

* This violates the €, guarantees of PAC
* We skip the proof



Conlusion: Prior knowledge is necessary

* H represents what we know or can guess about the problem

* A restricted class is suitable when we have a pretty good idea, or prior
knowledge

* A larger class is suitable when we have less knowledge about the
problem

* Taking the set of all possible hypotheses or functions will imply no
knowledge of domain

e Corollary (5.2 in book): If X is infinite, and H is set of all possible
functions from X to {0,1}, then H is not PAC learnable



Impact of Prior knowledge

* So, we have to choose a fixed H
* We make some assumptions about the type of solution that can work

* This introduces a Bias we are looking for certain types of solutions instead of
all possible solutions



Error decomposition

* True loss: Lp(hs) = €4pp T+ €pst

* Approximation error €,,, = Lp(h")
* Min true error in the hypothesis class
* Limitation of the choice of hypothesis class

* Estimation error €,;; = Lp(hs) — Lo (h™):
 Difference between approximation error and true error
* Error due to sampling and overfitting choosing suboptimal hg



Bias complexity tradeoff

* Rich/complex H
* Small approximation error
e Large estimation error (due to overfitting)

e Needs more data

* Small, restricted H

* Small estimation error
* Needs less data

* Large approximation error

* A lot of ML is about designing good H, balancing errors
e Often by making use of our knowledge of the domain



Infinite hypothesis classes

* We have proved that finite H are PAC learnable
* What about infinite H'?

* We already proved PAC guarantee for an infinite H
* The threshold classifier for ripe papayas: real numbers [t, 1]

* Why were we able to prove the guarantees?



Observation

o22)

2€2

 Sample complexity m = can be written as

log(2|7¢])+log(5)
2€?

om>

* It has two components
* Complexity of hypothesis class
* Confidence probability



* Dimensionality
* A measure of complexity of H
* Allows us to get efficient results in the 1-D case

* Another measure of complexity was |H | -- for finite classes

* VC-dimension: A complexity measure for infinite classes
* Ability of H to split different arrangements of points into different subsets



Shattering

* Take a pointset C c X
e C is shattered by H if
* Any classification of points in C can be achieved by H

* That is, for each possible 0-1 labelling of points in C
* Thereis an h € H that selects all of the ones and none of the zeros



VC dimension

e VC dimension of H is

* The size of the largest set C c X that can be shattered by H

* For VC dim to be d, we have to show:

* There is one set of size d that is shattered by H
* No set of size d + 1 is shattered by H



VC dim examples

* Threshold functions: Dim 1
* Intervals : Dim 2

* Axis aligned rectangles: Dim 4



Finite classes

* On C there are 2!¢! possibly binary classifications

e Thus, C cannot be shattered if || < 2/¢/
* Therefore: VCdim(H) < log,|H|



Number of parametres

* Number of parameters of H is a good measure of complexity
e Often equals VCdim

* But not always



Fundamental theorem of statistical learning

THEOREM 6.7 (The Fundamental Theorem of Statistical Learning) Let H be a
hypothesis class of functions from a domain X to {0,1} and let the loss function
be the 0 — 1 loss. Then, the following are equivalent:

1. 'H has the uniform convergence property.
2. Any ERM rule is a successful agnostic PAC learner for H.
3. H is agnostic PAC learnable.
4. H is PAC learnable.

5. Any ERM rule is a successful PAC' learner for H.

6. H has a finite VC-dimension.



In More detail

1. H has the uniform convergence property with sample complexity

1d+ log(1/4) d + log(1/9)

€2 €2

C < my;(€,d) < Cy

2. H is agnostic PAC learnable with sample complexity

d + log(1/9) d + log(1/9)

€2 €2

Ch

< 771‘7‘((635) < Oy

3. H is PAC learnable with sample complexity
1+ log(1/4
d +log(1/9) _

11 1/€ log(1/4
< my(e,9) < C2( Og( /5) + Oo( / )

€ €

Ch



* Proof: Omitted

e Other types of loss functions:
* Similar properties hold. But do search for exact results before use.



Structural Risk Minimization

* We have till now treated H as binary choice: hypothesis in the class are all
equally valid, while outside the class are disallowed

 What if all h € H are not equally desirable?

e Structural Risk Minimization
* Assign different preferences to different hypothesis

* Examples:
* Assign a weight w(h) to each hypothesis. Higher weight reflects higher preference
* Divide hypothesis class into subclasses, assign a weight to each class



Some example weighting functions

* Polynomial degree
* We would usually prefer lower degree polynomials

* Polynomial coefficients
* We prefer smaller coefficients as that describes gentler/smoother functions

* Minimum description length
* How many bits or characters does it take to represent the class?
» Shorter description length (simpler class) is more desirable



Regularization

* A common way to achieve simpler models
* Include a “penalty” function to the loss
* E.g. sum of coefficients, or description length...

* Minimizing the loss now includes minimizing the actual loss and
minimizing the penalty

* More on regularization later



Discussion: PAC, VCDim and ML in practice

* The issue: PAC and VC analysis does not work too well on Deep learning

* VC dim of neural networks are hard to compute. A simple bound is
VCDim = O(|E])
* Not useful
* Varies somewhat by activation function etc.

 However, we are studying this because:

* Knowing the background helps us in building more comprehensive theories of future
ML

* The set up with formal definition of ML is still valid

e Rigorous introduction to important concepts like “Probably approximately correct”,
hypothesis classes, their complexity, impossibility results etc.



Recap till now

* Hypothesis classes

* Empirical and true loss. Empiricial loss minimization

e Sample complexity

* PAC learnability (realizable, finite)

» Agnostic PAC learnability (finite)

* Bias- complexity tradeoff

e VCdim

e PAC learning infinite classes: Fundamental theorem of statistical learning

* Next: Algorithms, convex learning, stochastic gradient descent, neural
networks



