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Today’s topics 

• Uniform convergence
• No free lunch theorem 
• Error and bias-complexity tradeoff
• VC dimension and fundamental theorem of statistical learning



Uniform convergence 

• 𝑆 is 𝜖 −representative w.r.t (𝒵,ℋ,𝒟) if: 
• ∀ℎ ∈ ℋ, 𝐿! ℎ − 𝐿𝒟 ℎ ≤ 𝜖

• S gives a good estimate of the true loss for each ℎ

• ℋ has uniform convergence if there is 𝑚ℋ
"#: 0,1 $ → ℕ

• Such that a random sample 𝑆 ∼ 𝒟# of size 𝑚 ≥ 𝑚ℋ
%&(𝜖, 𝛿)

• Is 𝜖 −representative with probability at least 1 − 𝛿

• A hypothesis class is said to have uniform convergence 
• if for any 𝜖, 𝛿:
• Any random sample S of large enough sample size 𝑚 (a function of 𝜖, 𝛿) 
• Is 𝜖 – representative with probability of at least 1 − 𝛿

• Will give a good estimate of 



Corollary 

• If ℋ has uniform convergence with 𝑚ℋ
45 , 

• Then ℋ is PAC learnable with 𝑚ℋ 𝜖, 𝛿 ≤ 𝑚ℋ
"# %

$ , 𝛿

• So, every finite ℋ is learnable
• In the sense that based on S 
• ERM algorithm finds an ℎ ∈ ℋ
• Whose true loss is close to the best general ℎ∗ ∈ ℋ



• Theorem:
• Every finite ℋ has uniform convergence
• i.e. Given a random S, ℙ ∃ℎ ∈ ℋ: 𝐿' ℎ − 𝐿𝒟 ℎ > 𝜖 ≤ 𝛿

• (And therefore every finite ℋ is agnostic PAC-learnable)

• To prove this, we need the Chernoff-hoeffding bound



Chernoff-Hoeffding bound

• Very important result in theoretical CS and ML 
• Suppose 𝜃6 are random variables with average 7

8
∑6978 𝜃6

• Suppose 𝜇 is the expected value 
• Law of large numbers: with increasing 𝑚, 7

8
∑6978 𝜃6 approaches 𝜇

• Ie, )
*
∑+,)* 𝜃+ − 𝜇 becomes smaller

• But how fast? What 𝑚 do we need to get 𝜖-close to 𝜇?
• Chernoff-Hoeffding bound:

• ℙ 7
8
∑6978 𝜃6 − 𝜇 > 𝜖 ≤ 2𝑒:;8<!



• Proof that ℙ ∃ℎ ∈ ℋ: 𝐿= ℎ − 𝐿𝒟 ℎ > 𝜖 ≤ 𝛿
• Take any ℎ ∈ ℋ
• Now take a random sample 𝑆
• Let us write 𝜇 = 𝔼 𝐿= ℎ = 𝐿𝒟(ℎ)
• I.e. note that the expected value of empirical loss is the true loss

• For every 𝑧6 ∈ 𝑆, we write its loss on ℎ as 𝜃6. I.e. 𝜃6 = ℓ(ℎ, 𝑧6)

• Then the empirical loss is 𝐿= ℎ = 7
8
∑6978 𝜃6

• So, what is the probability that  7
8
∑6978 𝜃6 − 𝜇 > 𝜖? 



• What is the probability that  7
8
∑6978 𝜃6 − 𝜇 > 𝜖?

• Using Chernoff bound, probability that any one ℎ has large error is: 

• ℙ )
*
∑+,)* 𝜃+ − 𝜇 > 𝜖 ≤ 2𝑒-$*%!

• Summing over all ℎ ∈ ℋ, probability that one or more has large error 
is: 



• What is the probability that  !
"
∑#$!" 𝜃# − 𝜇 > 𝜖?

• Using Chernoff bound, probability that any one ℎ has large error is: 

• ℙ !
"
∑#$!" 𝜃# − 𝜇 > 𝜖 ≤ 2𝑒%&"'!

• Summing over all ℎ ∈ ℋ, probability that one or more has large error is: 
• ≤ 2 ℋ 𝑒%&"'! (by union bound)

• Substitute 𝑚 ≥ !
%&(

log % ℋ
(

to get a probability bound 𝛿



• So, we have proved finite classes are all PAC learnable 
• How useful is it? 



• So, we have proved finite classes are all PAC learnable 
• How useful is it? 

• ℋ is described by some parameters 
• E.g. coefficients of polynomials, weights on edges…

• We can always discretize by taking closely spaced discrete points
• In fact in a computer, numbers are always discretized 
• And thus practical hypothesis classes are technically finite 

• Though searching the entire class may not be practical…



Do we need to think about hypothesis 
classes? 
• In class, we discussed why we cannot have “all possible” hypotheses 

as our class. 
• Challenges in computation
• Challenges in enumerating 

• We now see a theorem that says there is no universal PAC learner
• For any learner 𝐴, there is an input on which it fails to find a good 

model 



No Free Lunch theorem (thm 5.1 in book) 

• For 0-1 loss. Assume 𝑚 < 𝒳
%

• There is 𝒟, 𝑓 such that 
• 𝐿𝒟 𝑓 = 0 (i.e. 𝑓 is a perfect classifier that exists)

• And we would like to find something close to 𝑓
• For a random 𝑆
• With probability ≥ !

*
, the true loss 𝐿𝒟 𝐴 𝑆 ≥ !

+

• This violates the 𝜖, 𝛿 guarantees of PAC 
• We skip the proof



Conlusion: Prior knowledge is necessary

• ℋ represents what we know or can guess about the problem
• A restricted class is suitable when we have a pretty good idea, or prior 

knowledge
• A larger class is suitable when we have less knowledge about the 

problem
• Taking the set of all possible hypotheses or functions will imply no 

knowledge of domain 
• Corollary (5.2 in book): If 𝒳 is infinite, and ℋ is set of all possible 

functions from 𝒳 to 0,1 , then ℋ is not PAC learnable 



Impact of Prior knowledge

• So, we have to choose a fixed ℋ
• We make some assumptions about the type of solution that can work
• This introduces a Bias we are looking for certain types of solutions instead of 

all possible  solutions 



Error decomposition

• True loss: 𝐿𝒟 ℎ= = 𝜖>?? + 𝜖@AB

• Approximation error 𝜖>?? = 𝐿𝒟(ℎ∗)
• Min true error in the hypothesis class
• Limitation of the choice of hypothesis class 

• Estimation error 𝜖@AB = 𝐿𝒟 ℎ= − 𝐿𝒟(ℎ∗):
• Difference between approximation error and true error
• Error due to sampling and overfitting choosing suboptimal ℎ'



Bias complexity tradeoff 

• Rich/complex ℋ
• Small approximation error
• Large estimation error (due to overfitting)

• Needs more data

• Small, restricted ℋ
• Small estimation error

• Needs less data
• Large approximation error

• A lot of ML is about designing good ℋ, balancing errors
• Often by making use of our knowledge of the domain



Infinite hypothesis classes 

• We have proved that finite ℋ are PAC learnable 
• What about infinite ℋ? 

• We already proved PAC guarantee for an infinite ℋ
• The threshold classifier for ripe papayas: real numbers [t, 1]

• Why were we able to prove the guarantees? 



Observation

• Sample complexity 𝑚 ≥
DEF ! ℋ

#
;<!

can be written as 

• 𝑚 ≥
./0 $ ℋ 1./0 "

#
$%!

• It has two components
• Complexity of hypothesis class
• Confidence probability 



• Dimensionality
• A measure of complexity of ℋ
• Allows us to get efficient results in the 1-D case

• Another measure of complexity was ℋ -- for finite classes

• VC-dimension: A complexity measure for infinite classes
• Ability of ℋ to split different arrangements of points into different subsets



Shattering

• Take a point set 𝐶 ⊂ 𝒳
• 𝐶 is shattered by ℋ if 
• Any classification of points in 𝐶 can be achieved by ℋ
• That is, for each possible 0-1 labelling of points in 𝐶
• There is an ℎ ∈ ℋ that selects all of the ones and none of the zeros



VC dimension

• VC dimension of ℋ is 
• The size of the largest set 𝐶 ⊂ 𝒳 that can be shattered by ℋ

• For VC dim to be 𝑑, we have to show:  
• There is one set of size 𝑑 that is shattered by ℋ
• No set of size 𝑑 + 1 is shattered by ℋ



VC dim examples

• Threshold functions: Dim 1 
• Intervals : Dim 2 
• Axis aligned rectangles: Dim 4



Finite classes 

• On	𝐶 there	are	2 5 possibly	binary	classifications
• Thus, 𝐶 cannot be shattered if ℋ < 2 5

• Therefore: 𝑉𝐶𝑑𝑖𝑚 ℋ ≤ log; ℋ



Number of parametres

• Number of parameters of ℋ is a good measure of complexity 
• Often equals VCdim
• But not always 



Fundamental theorem of statistical learning



In more detail 



• Proof: Omitted 

• Other types of loss functions:
• Similar properties hold. But do search for exact results before use. 



Structural Risk Minimization 

• We have till now treated ℋ as binary choice: hypothesis in the class are all 
equally valid, while outside the class are disallowed 

• What if all ℎ ∈ ℋ are not equally desirable? 

• Structural Risk Minimization
• Assign different preferences to different hypothesis

• Examples: 
• Assign a weight 𝑤(h) to each hypothesis. Higher weight reflects higher preference
• Divide hypothesis class into subclasses, assign a weight to each class



Some example weighting functions

• Polynomial degree
• We would usually prefer lower degree polynomials 

• Polynomial coefficients 
• We prefer smaller coefficients as that describes gentler/smoother functions

• Minimum description length 
• How many bits or characters does it take to represent the class? 
• Shorter description length (simpler class) is more desirable



Regularization 

• A common way to achieve simpler models
• Include a “penalty” function to the loss
• E.g. sum of coefficients, or description length… 

• Minimizing the loss now includes minimizing the actual loss and 
minimizing the penalty 

• More on regularization later 



Discussion: PAC, VCDim and ML in practice

• The issue: PAC and VC analysis does not work too well on Deep learning 
• VC dim of neural networks are hard to compute. A simple bound is 
VCDim = 𝑂(|𝐸|)
• Not useful 
• Varies somewhat by activation function etc. 

• However, we are studying this because: 
• Knowing the background helps us in building more comprehensive theories of future 

ML
• The set up with formal definition of ML is still valid
• Rigorous introduction to important concepts like “Probably approximately correct”, 

hypothesis classes, their complexity, impossibility results etc. 



Recap till now

• Hypothesis classes
• Empirical and true loss. Empiricial loss minimization 
• Sample complexity 
• PAC learnability (realizable, finite)
• Agnostic PAC learnability (finite)
• Bias- complexity tradeoff
• VC dim 
• PAC learning infinite classes: Fundamental theorem of statistical learning 
• Next: Algorithms, convex learning, stochastic gradient descent, neural 

networks 


