Fairness and Machine Learning

Machine Learning Theory (MLT) Edinburgh Rik Sarkar

Fairness issues and examples

- Data is biased
 - All present employees belong to a certain group or demographic
 - Recruitment software learns bias toward the group (even when the group is not explicitly stated in applications)
- Data is insufficient
 - Data on a small group is sparse
 - Accuracy on the group is low
- Fairness is hard to define

Typical considerations

- Entities:
 - Individuals and differences across individuals
 - Groups
- ML outcome
 - A decision where the positive outcome is clear, e.g. Admission, loan approval etc
 - Accuracy of prediction of an ML algorithm, e.g. Correct recommendation, correct classification decision for the person/group

Fairness: Hard to achieve and hard to measure

- Consider the admissions case:
 - Group A has higher test scores
 - Group B has lower test scores
 - Who should get admission offers?

Fairness: Hard to achieve and hard to measure

- Consider the admissions case:
 - Group A has higher test scores
 - Group B has lower test scores
 - Who should get admission offers?
- What if:
 - A has access more resources (money), better schools, better healthcare, better test prep
 - Who should get the admission offers?

- Problems:
 - What is fair in one situation may not be in another
 - What is fair in one perspective (objective) may not be in another
- Many types definitions of fairness, often not mutually compatible

Bias/fairness concepts

- Fairness through unawarerness
- Group fairness
- Calibration
- Error rate balance
- Representational fairness
- Counterfactual fairness
- Individual fairness

Different Definitions

- Fairness through unawareness:
 - Don't record protected/sensitive attributes. Don't use them
 - Proxies exist: name, address, school...
- Group fairness
 - Same prediction rates for all groups
 - E.g. Same percentage of each group should be admitted
 - Different groups may have different base rates (qualifications). Can lead to high errors
- Calibration
 - Probability of positive prediction same for same score and different groups
 - Function of a score (e.g. risk score)

- Error rate balance
 - Equal false positive rates across groups
 - Incompatible with calibration
- Representational fairness
 - Learn latent representation Z to minimize group information
 - Loses information, and accuracy
- Counterfactual fairness
 - Group A should not cause prediction Y
 - Assumes we know the biases
- Individual fairness
 - Similar individuals should be treated similarly
 - Nearby points are likely to be classified similarly

An impossibility result

- Suppose we are making classifications based on a score S, and there are 2 groups A and B
- Then the following are three possible notions of fairnesss
 - Calibration
 - Probability of positive prediction same for same score and different groups
 - Balance for the positive class
 - Average of scores for positive class in A = Average of scores for positive class in B
 - Balance for the negative class
 - Average of scores for negative class in A = Average of scores for negative class in B
- Three desirable properties, but impossible to achieve all except for in special cases [Kleinberg 2016]

Fairness in binary classification

- Individual fairness: Two people with similar features are treated similarly
 - If their feature values are similar, the function *f* making decision outputs should produce similar values
- Idea: Similar data points should be treated similarly
 - Remember we have seen Lipschitz functions before: if |x y| is small, then |f(x) f(y)| must be small
- Plan: extend this to fairness for classifiers

Individual fairness

- Suppose, V is data points, $C = \{0,1\}$ is set of classes, t(x) is the true class of any x
- $f: V \rightarrow \Delta C$ is a randomized classifier, where ΔC is the set of distributions over C
 - f(x) assigns probabilities of x belonging to each class
 - E.g. f(x) = (0.2, 0.8) x belongs to class 0 with prob. 0.2, to class 1 with probability 0.8
- Distance functions to define Lipschitzness:
 - Distance between points $d: V \times V \rightarrow [0,1]$
 - Distance between output distributions $D: \Delta C \times \Delta C \rightarrow \mathbb{R}$
- **f** is fair if it is Lipschitz: $\forall x, y \in V$, $D(f(x), f(y)) \leq d(x, y)$

There is a simple fair classifier!

- Proof:
 - Take a constant f e.g. f = (0.5, 0.5)
 - Then always, D(f(x), f(y)) = 0

• But this classifier is not very useful!

Randomization is necessary

- The only fair deterministic classifier is constant function
- Proof sketch:
 - A deterministic classifier f outputs values in $\{0, 1\}$, therefore $D(f(x), f(y)) \in \{0, 1\}$
 - Suppose *x*, *y* belong to different classes
 - If f is fair, then $D(f(x), f(y)) \le 1$, Therefore D(f(x), f(y)) = 0
- A useful individually fair classifier must be randomized
- Reminiscent of differential privacy.

Utility

- Outputs (0.5, 0.5) of a deterministic classifier are not useful
- A randomized classifier is better but just $\forall x, y \in V$, $D(f(x), f(y)) \leq d(x, y)$ is not sufficient.
 - E.g. D(f(x), f(y)) = (0.5, 0.5) satisfies this condition, but not useful
- We also need to maximize utility
 - E.g. If t(x) is the true classification of x, then expected value of f(x) should be as close to t(x) as possible.
 - E.g. Maximize : $L(f, V) = \frac{1}{|V|} \sum_{x \in V} |\mathbb{E}[f(x)] t(x)|$

Comments

- The fairness is in terms of the distribution.
 - A particular classification can be unfair due to probabilistic nature
- Does not guarantee anything about groups
 - If groups have different feature values, individual fairness can still be unfair to groups

Group fairness: Disparate impact

- Suppose we are building a classifier for college admission
- D = (X, Y, C) is a labelled dataset C = 1 means admitted (positive class). X is a protected feature (e.g. disability) and X = 0 means protected. Y is all other features.
- Classifier f has disparate impact (DI) τ ($0 < \tau < 1$) if: • $\frac{\Pr[f(Y)=1|X=0]}{\Pr[f(Y)=1|X=1]} \leq \tau$
- If the protected class is positively classified less than τ times as often as the unprotected class ($\tau = 0.8$ is a common threshold)

Disparate impact

- Suitable if the protected/unprotected status are uncorrelated to true value or qualification
- But the data may be biased
 - So we need to measure the disparate impact of data
- Has been legally used in US to block hiring decisions with disparate impact. Stopped using test scores that are correlated with race

Certifying disparate impact

- Suppose we have the dataset
- How can we verify that classification based on Y will not lead to DI?
- The problem is that we may not know what classifier C will be used.
- So, we need to measure DI for the data irrespective of classifier.
- Idea:
 - Any classifier C will not have disparate impact if X cannot be predicted from Y
- So, we can check a dataset for DI to see if the X labels can be predicted

Definitions

- Balanced error rate (BER).
- Suppose $g: Y \rightarrow X$ predicts protected group status, then

•
$$BER(g(Y), X) = \frac{\Pr(g(Y)=0|X=1) + \Pr(g(Y)=1|X=0)}{2}$$

- Predictability
- Dataset D is ε-predictable if there exists g: Y → X with
 BER(g(Y), X) ≤ ε

Disparate impact characterization

- Suppose *B* is the fraction of data points with X = 0 that are classified as C = 1
 - I.e. fraction of data points that constitute the positive examples in the protected class
- Theorem: *D* is $\left(\frac{1}{2} \frac{B}{8}\right)$ -predictable if and only if it admits a classifier with DI = 0.8
- Proof. (if)
 - Suppose there is a classifier *f* with DI=0.8
 - We can use f as the predictor g for the protected class
 - When f gives positive classification, g predicts unprotected group, when f gives negative, g predicts protected group

•
$$BER(g(Y), X) = \frac{\Pr(f(Y)=0|X=1)+\Pr(f(Y)=1|X=0)}{2}$$

• $= \frac{1-\Pr(f(Y)=1|X=1)+B}{2}$
• $\leq \frac{1-\Pr(f(Y)=1|X=0)/0.8+B}{2}$
• $= \frac{1}{2} - \frac{B}{8}$

- Proof (only if)
- Suppose *D* is (1/2 B/8)-predictable
- Then there is a g with $BER(g(Y), X) \le (\frac{1}{2} \frac{B}{8})$
- We use g for classification • $DI(g(Y), C) = \frac{\Pr(g(Y)=1|X=0)}{\Pr(g(Y)=1|X=1)} = \frac{B}{B+1-2BER(g(Y),X)} \le \frac{B}{\frac{5B}{4}} = 0.8$

Certifying disparate impact in practice

- We can estimate predictability of *D*
 - E.g. by training some standard classifiers to predict X from Y
- The fraction *B* can be estimated from training data.
- Thus we can get an estimate of disparate impact

Removing disparate impact

- Suppose we decide that a dataset has disparate impact
- Can we remove it? i.e. repair the data to eliminate DI?
- We need to change D so that X is no longer predictable
- We want a modified (X, \overline{Y}) so that $BER(g(\overline{Y}), X) > \epsilon$

Removing DI

- Suppose *Y* is a simple number like exam score
- Trivial solution: set Y = 0 for everyone!
 - Check that BER=1/2
- We need a better algorithm

Removing disparate impact

- Algorithm
- Let p_y^x be fraction of people with protected status x, with score at most y
- Take data point (x_i, y_i) . Calculate $p_{y_i}^{x_i}$
- Find y_i^{-1} such that $p_{y_i^{-1}}^{1-x_i} = p_{y_i}^{x_i}$
- Repair $\overline{y_i} = median(y_i, y_i^{-1})$
- Equalising people from different groups with same rank.
- The algorithm preserves rank within groups. [Feldman et al. Certifying and removing disparate impact, 2015.]

- For multiple features, repeat the algorithm for each feature
- Limitations of DI
 - Usually does not allow perfect classifiers
 - Easy to build bad classifiers that satisfy DI criteria
 - Assumes the groups have same intrinsic merit. I.e. real qualification does not vary by group
 - May not be always true.

• Let us look at some other definitions

Demographic parity

- A classifier C satisfies demographic parity if C is independent of sensitive attribute Α
- i.e. For groups a, b (distinguished by A) : $\Pr_a \{C = 1\} = \Pr_b \{C = 1\}$
- Approximate versions $\frac{a}{\Pr\{C=1\}} \ge 1 \epsilon$ or $|\Pr_a\{C=1\} \Pr_b\{C=1\}| \le \epsilon$
- Sort of the reverse of DI
 - DI measures inequality
 - Parity measures equality

True positive parity (TPP)

- Equal opportunity
- For binary variables C and Y (labels)
- A classifier C satisfies TPP if for groups *a*, *b*:

•
$$\Pr_a \{C = 1 | Y = 1\} = \Pr_b \{C = 1 | Y = 1\}$$

False positive parity

• Similarly:

•
$$\Pr_a \{C = 1 | Y = 0\} = \Pr_b \{C = 1 | Y = 0\}$$

Equalized odds or positive rate parity

• Both TPP and FPP

Predictive Value Parity

• Positive Predictive Value Parity

•
$$\Pr_a \{Y = 1 | C = 1\} = \Pr_b \{Y = 1 | C = 1\}$$

• Negative Predictive Value Parity

•
$$\Pr_a \{Y = 1 | C = 0\} = \Pr_b \{Y = 1 | C = 0\}$$

 Classifier C satisfies predictive value parity if it satisfies both of the above.

PRP and PVP are incompatible

- With different base rates across groups, and a perfect classifier is not known, then either
 - Positive rate parity fails or
 - Predictive value parity fails

• Exercise for you: construct examples to show these

Summary

- Many types of definitions
- Demographic parity or disparate impact
 - Used in law
 - Does not allow perfect classification
 - Achieved by modifying training data
- Equal odds/opportunity
 - Perfect classification is possible
 - Different groups can get different rates of positive prediction
 - Achieved by post processing the classifer
 - Measure of the classifier being fair