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Fairness issues and examples

• Data is biased 
• All present employees belong to a certain group or demographic
• Recruitment software learns bias toward the group (even when the group is 

not explicitly stated in applications)

• Data is insufficient 
• Data on a small group is sparse 
• Accuracy on the group is low

• Fairness is hard to define



Typical considerations

• Entities:
• Individuals and differences across individuals
• Groups

• ML outcome
• A decision where the positive outcome is clear, e.g. Admission, loan approval 

etc
• Accuracy of prediction of an ML algorithm, e.g. Correct recommendation, 

correct classification decision for the person/group 



Fairness: Hard to achieve and hard to 
measure
• Consider the admissions case:
• Group A has higher test scores 
• Group B has lower test scores

• Who should get admission offers? 



Fairness: Hard to achieve and hard to 
measure
• Consider the admissions case:
• Group A has higher test scores 
• Group B has lower test scores

• Who should get admission offers? 

• What if: 
• A has access more resources (money), better schools, better healthcare, 

better test prep
• Who should get the admission offers?  



• Problems:
• What is fair in one situation may not be in another
• What is fair in one perspective (objective) may not be in another 

• Many types definitions of fairness, often not mutually compatible



Bias/fairness concepts

• Fairness through unawarerness
• Group fairness
• Calibration 
• Error rate balance 
• Representational fairness 
• Counterfactual fairness 
• Individual fairness 



Different Definitions 

• Fairness through unawareness: 
• Don’t record protected/sensitive attributes. Don’t use them 
• Proxies exist: name, address, school…

• Group fairness
• Same prediction rates for all groups 
• E.g. Same percentage of each group should be admitted
• Different groups may have different base rates (qualifications). Can lead to 

high errors 
• Calibration
• Probability of positive prediction same for same score and different groups
• Function of a score (e.g. risk score) 



• Error rate balance
• Equal false positive rates across groups 
• Incompatible with calibration

• Representational fairness
• Learn latent representation Z to minimize group information 
• Loses information, and accuracy 

• Counterfactual fairness
• Group A should not cause prediction Y 
• Assumes we know the biases

• Individual fairness
• Similar individuals should be treated similarly 
• Nearby points are likely to be classified similarly 



An impossibility result

• Suppose we are making classifications based on a score S, and there 
are 2 groups A and B
• Then the following are three possible notions of fairnesss
• Calibration

• Probability of positive prediction same for same score and different groups
• Balance for the positive class

• Average of scores for positive class in A  = Average of scores for positive class in B 
• Balance for the negative class

• Average of scores for negative class in A  = Average of scores for negative class in B

• Three desirable properties, but impossible to achieve all except for in 
special cases [Kleinberg 2016]



Fairness in binary classification

• Individual fairness: Two people with similar features are treated 
similarly
• If their feature values are similar, the function 𝑓 making decision outputs 

should produce similar values

• Idea: Similar data points should be treated similarly
• Remember we have seen Lipschitz functions before: if |𝑥 − 𝑦| is small, then 

|𝑓 𝑥 − 𝑓(𝑦)| must be small 

• Plan: extend this to fairness for classifiers 



Individual fairness

• Suppose, 𝑉 is data points, 𝐶 = {0,1} is set of classes, 𝑡(𝑥) is the true 
class of any 𝑥
• 𝑓: 𝑉 → Δ𝐶 is a randomized classifier, where Δ𝐶 is the set of 

distributions over 𝐶
• 𝑓(𝑥) assigns probabilities of 𝑥 belonging to each class
• E.g. 𝑓 𝑥 = 0.2, 0.8 𝑥 belongs to class 0 with prob. 0.2, to class 1 with 

probability  0.8
• Distance functions to define Lipschitzness:
• Distance between points 𝑑: 𝑉×𝑉 → [0,1]
• Distance between output distributions 𝐷: Δ𝐶×Δ𝐶 → ℝ

• 𝒇 is fair if it is Lipschitz: ∀𝑥, 𝑦 ∈ 𝑉, 𝐷 𝑓 𝑥 , 𝑓 𝑦 ≤ 𝑑(𝑥, 𝑦)



There is a simple fair classifier! 

• Proof: 
• Take a constant 𝑓 e.g. 𝑓 = (0.5, 0.5)
• Then always, 𝐷 𝑓 𝑥 , 𝑓 𝑦 = 0

• But this classifier is not very useful! 



Randomization is necessary

• The only fair deterministic classifier is constant function
• Proof sketch: 
• A deterministic classifier 𝑓 outputs values in {0, 1}, therefore 
𝐷 𝑓 𝑥 , 𝑓 𝑦 ∈ {0,1}
• Suppose 𝑥, 𝑦 belong to different classes 
• If 𝑓 is fair, then 𝐷 𝑓 𝑥 , 𝑓 𝑦 ≤ 1, Therefore 𝐷 𝑓 𝑥 , 𝑓 𝑦 = 0

• A useful individually fair classifier must be randomized
• Reminiscent of differential privacy. 



Utility 

• Outputs 0.5, 0.5 of a deterministic classifier are not useful 

• A randomized classifier is better but just ∀𝑥, 𝑦 ∈ 𝑉, 𝐷 𝑓 𝑥 , 𝑓 𝑦 ≤
𝑑(𝑥, 𝑦) is not sufficient.
• E.g. 𝐷 𝑓 𝑥 , 𝑓 𝑦 = (0.5,0.5) satisfies this condition, but not useful 

• We also need to maximize utility 
• E.g. If 𝑡(𝑥) is the true classification of 𝑥, then expected value of 𝑓(𝑥) should 

be as close to 𝑡(𝑥) as possible. 
• E.g. Maximize : 𝐿 𝑓, 𝑉 = !

|#|
∑$∈# |𝔼 𝑓 𝑥 − 𝑡(𝑥)|



Comments

• The fairness is in terms of the distribution. 
• A particular classification can be unfair due to probabilistic nature

• Does not guarantee anything about groups
• If groups have different feature values, individual fairness can still be unfair to 

groups



Group fairness: Disparate impact

• Suppose we are building a classifier for college admission
• 𝐷 = (𝑋, 𝑌, 𝐶) is a labelled dataset 𝐶 = 1 means admitted (positive 

class). 𝑋 is a protected feature (e.g. disability) and 𝑋 = 0 means 
protected. 𝑌 is all other features. 
• Classifier 𝑓 has disparate impact (DI) 𝜏 (0 < 𝜏 < 1) if:
• &'[) * +!|,+-]
&'[) * +!|,+!] ≤ 𝜏

• If the protected class is positively classified less than 𝜏 times as often 
as the unprotected class (𝜏 = 0.8 is a common threshold)



Disparate impact

• Suitable if the protected/unprotected status are uncorrelated to true 
value or qualification
• But the data may be biased 
• So we need to measure the disparate impact of data

• Has been legally used in US to block hiring decisions with disparate 
impact. Stopped using test scores that are correlated with race



Certifying disparate impact

• Suppose we have the dataset
• How can we verify that classification based on 𝑌 will not lead to DI?
• The problem is that we may not know what classifier C will be used. 
• So, we need to measure DI for the data irrespective of classifier. 
• Idea: 
• Any classifier C will not have disparate impact if 𝑋 cannot be predicted from 𝑌

• So, we can check a dataset for DI to see if the X labels can be 
predicted



Definitions

• Balanced error rate (BER). 
• Suppose 𝑔: 𝑌 → 𝑋 predicts protected group status, then
• 𝐵𝐸𝑅 𝑔 𝑌 , 𝑋 = &' / * +-|,+! 0&'(/ * +!|,+-)
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• Predictability 
• Dataset 𝐷 is 𝜖-predictable if there exists 𝑔: 𝑌 → 𝑋 with
• 𝐵𝐸𝑅 𝑔 𝑌 , 𝑋 ≤ 𝜖



Disparate impact characterization
• Suppose 𝐵 is the fraction of data points with 𝑋 = 0 that are classified as 
𝐶 = 1
• I.e. fraction of data points that constitute the positive examples in the protected 

class

• Theorem: 𝐷 is !
"
− #

$
-predictable if and only if it admits a classifier with DI 

= 0.8

• Proof. (if)
• Suppose there is a classifier 𝑓 with DI=0.8
• We can use 𝑓 as the predictor 𝑔 for the protected class
• When 𝑓 gives positive classification, 𝑔 predicts unprotected group, when 𝑓 gives 

negative, 𝑔 predicts protected group



• 𝐵𝐸𝑅 𝑔 𝑌 , 𝑋 = !"($ % &'|)&*),!" $ % &*| )&'
-

• = 
*.!" 𝑓 𝑌 = 1 𝑋 = 1 ,/

-

• ≤
* .!" 𝑓 𝑌 = 1 𝑋 = 0 /'.2,/

-

• = *
-
− /
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• Proof (only if)
• Suppose 𝐷 is (1/2 – B/8)-predictable

• Then there is a 𝑔 with 𝐵𝐸𝑅 𝑔 𝑌 , 𝑋 ≤ (*
-
− /

2
)

• We use 𝑔 for classification
• 𝐷𝐼 𝑔 𝑌 , 𝐶 = &'(/ * +!|,+-)

&'(/ * +!|,+!)
= 4

40!5 3467(/ * ,,)
≤ 4

!"
#

= 0.8



Certifying disparate impact in practice 

• We can estimate predictability of 𝐷
• E.g. by training some standard classifiers to predict X from Y

• The fraction 𝐵 can be estimated from training data. 
• Thus we can get an estimate of disparate impact



Removing disparate impact

• Suppose we decide that a dataset has disparate impact
• Can we remove it? i.e. repair the data to eliminate DI? 

• We need to change 𝐷 so that 𝑋 is no longer predictable

• We want a modified 𝑋, E𝑌 so that 𝐵𝐸𝑅 𝑔 E𝑌 , 𝑋 > 𝜖



Removing DI

• Suppose 𝑌 is a simple number like exam score

• Trivial solution: set 𝑌 = 0 for everyone! 
• Check that BER=1/2 

• We need a better algorithm



Removing disparate impact

• Algorithm
• Let 𝑝%& be fraction of people with protected status 𝑥, with score at most 𝑦
• Take data point (𝑥' , 𝑦'). Calculate 𝑝%!

&!

• Find 𝑦'(!such that 𝑝%!"#
!(&!= 𝑝%!

&!

• Repair /𝑦' = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑦' , 𝑦'(!)
• Equalising people from different groups with same rank. 

• The algorithm preserves rank within groups. [Feldman et al. Certifying and 
removing disparate impact, 2015.]



• For multiple features, repeat the algorithm for each feature 

• Limitations of DI
• Usually does not allow perfect classifiers 
• Easy to build bad classifiers that satisfy DI criteria 
• Assumes the groups have same intrinsic merit. I.e. real qualification does not 

vary by group
• May not be always true. 

• Let us look at some other definitions



Demographic parity 

• A classifier C satisfies demographic parity if C is independent of sensitive attribute 
A

• i.e. For groups 𝑎, 𝑏 (distinguished by A) : Pr
9
{𝐶 = 1} = Pr

:
{𝐶 = 1}

• Approximate versions 
•
!"
!
{$%&}

!"
"
{$%&}

≥ 1 − 𝜖 or

• |Pr
(
{𝐶 = 1} − Pr

)
𝐶 = 1 | ≤ 𝜖

• Sort of the reverse of DI
• DI measures inequality 
• Parity measures equality



True positive parity (TPP)

• Equal opportunity 
• For binary variables C and Y (labels) 
• A classifier C satisfies TPP if for groups 𝑎, 𝑏:
• Pr

9
{𝐶 = 1|𝑌 = 1} = Pr

:
{𝐶 = 1|𝑌 = 1}



False positive parity 

• Similarly:
• Pr

9
{𝐶 = 1|𝑌 = 0} = Pr

:
{𝐶 = 1|𝑌 = 0}



Equalized odds or positive rate parity

• Both TPP and FPP



Predictive Value Parity 

• Positive Predictive Value Parity 
• Pr

9
{𝑌 = 1|𝐶 = 1} = Pr

:
{𝑌 = 1|𝐶 = 1}

• Negative Predictive Value Parity 
• Pr

9
{𝑌 = 1|𝐶 = 0} = Pr

:
{𝑌 = 1|𝐶 = 0}

• Classifier C satisfies predictive value parity if it satisfies both of the 
above.



PRP and PVP are incompatible

• With different base rates across groups, and a perfect classifier is not 
known, then either
• Positive rate parity fails or
• Predictive value parity fails

• Exercise for you: construct examples to show these  



Summary 

• Many types of definitions
• Demographic parity or disparate impact
• Used in law
• Does not allow perfect classification 
• Achieved by modifying training data

• Equal odds/opportunity 
• Perfect classification is possible
• Different groups can get different rates of positive prediction
• Achieved by post processing the classifer
• Measure of the classifier being fair


