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Machine Learning Theory – Course info

• Course code: INFR11202/INFR11224, Shorthand: MLT 
• Web page: https://opencourse.inf.ed.ac.uk/mlt

• Lecturer : Rik Sarkar (rik.sarkar@ed.ac.uk)
• Schedule
• Tuesdays 16:10 – 18:00 (7 George Square) 

• Three Tutorial sessions
• Weeks 5, 8, 10 (may change)

• 1  Coursework 30% (written analysis, proofs) (Given Feb 16, Due 
march 13) 
• 1 Exam (April/May) : 70%

https://opencourse.inf.ed.ac.uk/mlt


Resources

• Book: Understanding Machine Learning: From Theory to Algorithms. Shai Shalev-
Shwartz and Shai Ben-David
• Available in library, Book retailers, free pdf Online

• Other notes and papers to be given out as we go. 
• Exercises given in tutorials and notes. 
• Piazza forum active 
• Sample Exam: Last year’s exam available online
• Forms of feedback: 

• Coursework. 
• Tutorials: Attempt tutorial exercises. Attend tutorials. Ask questions. 
• Exercises in notes: Some exercises available in notes. Attempt them and check solutions. 
• Piazza available. Ask your questions! 



What is machine learning

• What is learning? 
• When is learning possible?
• When is learning needed?



• Do we need to “learn” 
• Tic Tac Toe?
• The 2 times table upto 2x10?



Learning is useful when 

• Available data is small compared to possible inputs/questions
• If answers to all relevant questions are available, then it is just a matter of 

memorization

• Data possibly contains noise
• We have some idea (hypothesis class) of what the learned model 

could be

• Ideally the smaller quantity of data we learn from, the better
• But what is the definition of “small”? How little data is sufficient? 



Why theory

• We are interested in mathematics of ML 
• Define exactly what different metrics, models, methods are
• Gain better understanding of their strengths and weaknesses – where they work 

where they do not. What is understood/not understood

• Do better ML in the future 
• Accuracy, generalization 
• Privacy
• Fairness 
• Explainability
• Other desirable properties…. 

• Similar to learning algorithms and data structures to improve programming 



Have you taken an ML course before? 

• Raise your hand if you have never taken an ML course
• (I never studied formally till I started teaching this course, so don’t be shy!)



What the course is for

• Learn to precisely define and analyse ML models and algorithms
• Learn to think about and analyse their properties, know what they are 

good for
• Learn to read ML – the field is continuously evolving, it is not easy to read 

the latest paper 
• Eventually develop better models, metrics and algorithms 
• Make ML better in other ways beyond accuracy
• The course is suitable for two types of students

• You have learned various ML models and algorithms in courses and would like to 
have a unified view and understand them at a deeper level 

• You have studied maths/stats and would like to know how to think about ML  
• If neither description suits you 



What to expect in the course

• Reading and writing precise definitions, using symbols and equations 
• In class, notes, possibly papers.. 

• Proofs. And intuitions 
• We will not study new models, types of neural networks etc
• We will study ideas that broadly apply to all (or many) types of 

models
• What helps generalization, reduces overfitting etc

• We will focus on understanding why models behave the way they do. 
• How to think about privacy, fairness etc, How to define them 

mathematically. What is possible/impossible



Today

• A very quick introduction to machine learning 
• Regression
• Classification
• Neural network
• ML process and pipeline

• Introduction to Learning theory
• Notations and space of models
• Loss and empiricial risk minimization
• Introduction to PAC learning, sample complexity, loss functions

• Brief discussion of other topics: Privacy, fairness, explainability
• Homework: Analysis of simple ML problem: Classifying ripeness of papayas 

from color
• How many papayas do we need to have a good prediction threshold? 





Regression (curve fitting)

• Suppose points lie in a line
• 𝑦 = 𝑚𝑥 + 𝑐

• How many points do we need to “learn” the 
line model? 

• Suppose the points were on a 2nd degree
curve
• 𝑦 = 𝑎𝑥! + 𝑏𝑥 + 𝑐

• How many points do we need to learn it?



Regression in reality 

• Points may not be exactly in the line
• They may contain noise (real world 

issues may cause them to deviate 
slightly from exact coordinates)

• We do not know the right “degree”
• Visual observation is unreliable
• In high dimensions, we can’t even 

visualize
• Thus, we do not know the right

class/type of model

Images from wikipedia



Classification 

• Could be simple
• Linear separation 
• Red: 𝑦 ≤ 𝑚𝑥 + 𝑐

• Or more complex
• Red 𝑦 ≤ 𝑎𝑥" + 𝑏𝑥! + 𝑐𝑥 + 𝑑



Perceptrons

• Straight line separators 
• 𝑎𝑥 + 𝑏𝑦 + 𝑐 ≥ 0

• Can be drawn diagrammatically 

• Often the summation sign is 
omitted and activation function 
put in place
• Summation is assumed
• c is assumed and ommited
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What do we get with more perceptrons? 

• Find out what weights would be 
needed to achieve something like this

x

y



With more complicated networks: 

• We can achieve more 
complicated decision 
boundaries



Machine learning as a function to describe 
the data
• Computation of mean

• Is a very simple description of the data
• Mean + Standard deviation

• A more detailed description
• We can test if a data point is likely from the same source

• Mean + standard deviation + a class of distribution, e.g Gaussian
• An even more detailed description 
• We can generate similar data

• Other ML models: Neural nets, SVM etc
• Other types of multi-value functions describing the data
• The task is to find the different aggregate values, i.e. the model parameters 



The machine learning pipeline 

• Assume there is a distribution 𝒟 from which data is drawn 
• 𝑆 is a sample of 𝑚 data points used as training data 
• Written as 𝑆 ∈ 𝒟$

• ℋ is a hypothesis class: a set of possible models
• ℎ ∈ ℋ is a model E.g. a model selected by an algorithm
• An optimization algorithm 𝒜 takes in 𝑆,ℋ and produces a model ℎ

that it thinks has lowest errors on 𝑆
• ℎ is tested on test data also taken from 𝒟 to estimate generalization 

of ℎ





Question:

• Can the model class be all possible models? 

22



Models as vector

• For a known class of models, we can represent them by a vector of 
numbers (parameters): 
• Neural networks: A vector of edge weights
• Regression: Coefficients of polynomials

• Observe: The vector of numbers does not say the type (class) of 
model. That is up to us.

• Usually, this vector is written as a weight vector 𝒘 = (𝑤!, 𝑤", 𝑤#, … )
• The size or dimension of is the size of the model
• Larger models are likely to be more complex.
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The space of models

• If each model is a vector
• We can imagine a vector space or Euclidean 

space
• Where each point is a model
• The dimension of the space (number of 

weights, coordinates) is the dimension of ℋ

• Optimisation Algorithm: Search over all 
possible 𝑎, 𝑏 to find the best model
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Notations
• Domain set 𝒳. Form which data is sampled
• Label Set 𝒴. From which labels are drawn. Eg. {0,1} 

or {-1, +1} red or blue. 
• Training data (sample set): 𝑺 =

𝑥!, 𝑦! , … 𝑥$ , 𝑦$ (we assume random sample)
• Model, hypothesis, classifier, predictor 𝒉: 
• A function ℎ:𝒳 → 𝒴. That is, ℎ 𝑥 returns a predicted 

label 𝑦
• Hypothesis or model class 𝓗: The set of functions 

from which ℎ is chosen
• Algortihm A: Chooses hypothesis ℎ based on 𝑆
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Notations

• Data generating distribution 𝒟: An unknown  probability distribution 
over 𝒳. The training data is assumed to be sampled from 𝒟
• We also assume there is a function 𝑓 giving true labels of data
• Both 𝒟 and 𝑓 were unknown to us (and to the learning algorithm). 

• Success measure: Loss/error function L: The learning algorithm gives 
a hypothesis ℎ
• The true loss of ℎ is defined as 

• When drawn from 𝒟, 𝐿 is the probability that label predicted by h will not 
match the true label 
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Searching for the best model: Empirical risk 
minimization (ERM)
• Given a dataset 𝑆 of size 𝑚, 
• The empirical loss of hypothesis ℎ is defined as
• The average loss over all data points

• This is called the empirical risk or empirical error or empirical loss
• ERM is finding ℎ with minimum 𝐿%(ℎ)
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Observation 1 

• Finding the true minimum-loss 𝐿$&'
• may be difficult
• E.g. Searching in an infinite model class is not easy
• And we do not know what the min loss is

• What we can hope is to ensure that loss is not much higher than 
minimum
• That is, loss is approximately minimum
• It is not higher than 𝐿( ≤ (1 + 𝜖)𝐿$&'
• Note: we do not know 𝐿$&'
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Observation 2

• Our eventual goal is a good classifier for 𝒟
• But we work on  𝑆 : a random sample of 𝒟
• We cannot guarantee that 𝑆 is a good representative of true 𝒟
• But, with enough samples, we are likely to get close
• But not for sure. It is still probabilistic 

• So, with enough data: 
• Probably, we can approximate the minimum loss model!

29



PAC learning 

• Probably Approximately Correct learning 
• If true min-loss is 𝐿$%& and 𝐿' is loss of ℎ, then
• PAC learnability means we can get:
• Pr (𝐿' − 𝐿$%&) ≤ 𝜖 ≥ 1 − 𝛿

• (Hopefully for small 𝜖, 𝛿)
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Sample complexity 

• How many data points do we need? 
• We will show that finite hypothesis classes need: 
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What happens for infinite classes?
• Instead of |𝓗|, we use VCdim(𝓗)
• VC dimension is a measure of dimension 

(complexity) of ℋ
• Examples- increasingly higher vcd
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Overfitting 

• More complex model classes have 
more flexibility 
• Larger space of possible models
• Algorithm finds a model with smaller 

loss that works well for 𝑆
• But more likely to overfit
• Perform badly on unseen data from 

the same distribution
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Loss functions and optimization algorithms

• Other loss functions are used to make 
learning easier
• Cross entropy loss is a common one for deep 

learning
• We will look at cross entropy loss and what 

it implies for deep learning, overfitting and 
geenralisation
• We will study stochastic gradient descent

algorithm used to train neural networks
and its loss landscape



Privacy

• The problem: We need data for ML
• Data comes from people

• It may reveal sensitive information about people
• The data itself may get leaked 
• The ML model, or decisions made by it may reveal information

• Simple example: A  company releases average salary every week. When 
you join the company, someone can guess your salary comparing with 
previous month’s average. (how can you prevent that?)
• Other model parameters or functions of the data can similarly reveal info

• Because each new data point causes a small change in the function value/model



Privacy preserving machine learning and 
differential privacy 
• The study of these small changes to functions and models 
• Understanding the effect of each tiny data point

• A different perspective in ML/AI
• How can we reveal some facts and hide others?
• What are the limits of this tradeoff? 

• Differential privacy works by adding small calculate amounts of noise 
to models. Precise Bayesian definitions and properties 



Fairness

• ML can be unfair
• E.g.
• Most employees in a company belong to a certain community 
• The CV scanning software learns that bias
• Even if the community is not stated explicitly (e.g. correlations with name, 

address etc)

• Data is likely to be biased toward the majority 
• Anyone can be a minority with suitable combination of parameters 

(e.g. race, religion, gender, age, advanced degree..)



Fairness

• Fairness study is important for better ML 
• E.g. a bank software refuses loan to a “minority” due to fairness 

failure
• Bad for the person
• Bad for the society in the long term that a deserving person did not get a loan
• Bad for the bank as they miss a good investment 



Fairness

• We will study 
• Precise mathematical definitions
• See that everything we want may not be achievable

• Fairness is a complex topic
• What is fair from one perspective is unfair from others
• Many possible metrics of fairness
• Affected by other properties like generalization, stability, privacy etc…



Explainability

• Why did the model produce a particular result? 
• E.g. a model predicts rain tomorrow

• Was a specific feature(s) were important?
• Did certain training data points play a role? 
• Will a different type of model work better? 



Explainability

• Giving scores to features
• For a particular output
• For general accuracy of the model

• Which features contribute more to accuracy? 

• Attaching value to data
• Which data points contribute more to the accuracy? 

• We will study: 
• Shapley Value from Economics – assigns Value to different items 
• Other techniques
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Next: 

• We will start with simple problems and models that we can analyze 
easily 
• Build toward more complex topics 
• Keep an eye on announcements and materials on Learn and Piazza.
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Homework 

• Read chapters 1 and 2 of the lecture notes (to be uploaded)
• Do the exercises
• Read chapters 1 and 2 of the book: Understanding Machine Learning

• Make sure you can understand these comfortably and can do exercises
• This course is mathematical and not easy. 
• Change to a different material if you are not comfortable with the material
• Do the homework problem next
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Homework: A simple classifier 

• A supermarket has asked us to build a model classify ripe papayas
• Green is unripe, yellow is ripe
• A sensor reads the colour
• And returns a value in [0,1]
• Assume the supermarket sends us a random sample of labelled 

readings 
• There is a color threshold t* of ripe papayas but we don’t know it. 
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Homework: Simple classifier

• Question: 
• Describe the different parameters of the ML model in this case. 
• What is the ERM objective? 
• Show that sample size m ≥ (

)
ln !

*
suffices to get  𝜖, 𝛿 (PAC) accuracy. 

• Hint: You may need the inequality: 1 − 𝑝
!
" ≤ (

+
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