~ Machine Learning Theory (MLT)

Edinburgh
Rik Sarkar

Course matters

* Please attend tutorials!
* Solutions to tutorial 1 will be up soon

* Coursework will be out by end of day on Friday.

Neural networks

* Perceptron activation functions
* Each perceptron defines a half plane

* Together they can form complex
boundaries using arrangements of
half spaces

* More perceptrons, more options for
re%:ons available in the arrangement
of half spaces

Challenges with perceptron and 0-1 values

* Gradients are not always useful
e Eg. If a small change does not change the classification of any point
* Hard to apply SGD type methods

e Sometimes it is useful to have real values

Other activati

e Sigmoid s
FfO) =1

1+eX

* RelLU
* f(x) = max(0, x)

Neural network structure

e Use RelLU or similar activation functions
* More compatible with gradients
* Easy to compute

* The middle layers produce a vector y of "scores” for each class, called
logit values

* Final layer: apply “softmax” to logits:

)
e softmax(y;) = eylj (improved the notation from the lecture)

Ye

Question: Why softmax?

Hard max or exact max

» Take a vector of values eg. [2,3,5,2,6,4,9,2,2,4]
* Make one indicating the position of the max eg. [0,0,0,0,0,0,1,0,0,0]

Softmax

e Substitute for hard-max, but differentiable
* Normalized, can be treated as probability p; for each class

Cross entropy loss

* Neural networks are usually trained on

the cross entropy loss of their output p
° Given: p=[0.1, 0.5, 0.2, 0.2]
_ t=[0.0, 1.0, 0.0, 0.0]
* Data point x
* Probability estimate vector p
* Truth label vector t: indicator vector or one-
hot encoding where only the true class has
value 1.

* Cross entropy loss: - = —)'t; Inp;

 Measures difference between the two
probability distributions

Generalisation gap for neural networks: How
does is grow?

* What do curves look like for training loss and test loss?

Loss

Epochs

Generalisation gap for neural networks

Loss

What we might expect

Generalisation

Generalisation gap

Epochs

Loss

What we find

W

) Generalisation gap
Traini

Epochs

Overtitting in neural networks

* The role of cross entropy loss

* Consider probability outputs for this data and this data space
* One curve for each class

e What should the curves look like?

Probability curves for classification

* A reasonable model sacrifices the outlier for better generalization
* But what is the cross entropy loss at the outlier?

Overfitting

* Optimiser tries to modify probability curves
* Such that large CE losses become smaller

.-

What prevents the NN from overtitting too
much to every point?

 The NN architecture restricts the possible arrangements of
hyperplanes

 The architecture and activation functions restrict

Overparameterised neural networks

* |dea:
* More neurons/weights/parameters: more unknown variables
* More data points: More information (similar to more equations)

e Recap of statistical ML: data requirements grow with
parameters/complexity

* Modern neural networks:
 Many more parameters than data points
* High complexity and therefore high estimation error
* We expect heavy overfitting and high test/generalization loss/error

Double descent

* With very large number of
parameters (more than number of
data points) testing performs well
again!

* Out of many possible models with
low training loss, SGD is finding ones
that have low test loss!

* See also (optional): Neural Tangent
kernels

Risk (errors)

Testing

Training

Number of parameters

v

Distribution of weights on trained NNs

* A large fraction of weights are close to zero

— A=00
A=0.001

e Small fraction is far from zero

e Observation:

e Zero weight edges have no effect — do not conduct
information .

* Almost zero weights: Little effect :

—0.100-0.075-0.050 -0.025 0.000 0.025 0.050 0.075 0.100
Model Weights

* Conclusion: While NNs have large number of
parameters, after training, many of them have little
to no effect!

Pruning

* |dea: take all the edges that are
tiny weights, and remove them!

e Observations

 Can sometimes remove 80% - 90%
of edges

* Retains comparable performance
and sometimes better
generalization

Lottery ticket hypothesis

* Hypothesis: A randomly initialised dense NN already contains a subnetwork
(a winning ticket) that can give good performance.

e Algorithm to find the winning ticket
* |nitialise a network to random weights
* Train for some iterations
* Prune p% of edges with small weights
* Reset the remaining edge to their original random weights

* Works surprisingly well on MNIST, CIFAR with test performance comparable
to a well trained network [Frankle and Carbin, 2019]

Standard pruning methods

* One shot:
* Train
* Remove small weights
e Return to initialization weights and retrain
* Stop

* |terative
e Set random weights
* Train
* Remove edges with small weights
e Start over

Other results

* Theoretical proofs (special cases, few layers etc)
* [Malach et al. 2020, Bartoldson et al. 2020]

* Pruning and finding winning tickets without data
* [Wang et al. 2020, Tanaka et al. 2020]

Pruning and dimension

* The dimension of H is determined by the number of parameters

* The pruning and lottery tickets papers suggest that there are lowe
dimensional subspaces of H that contain good solutions

Question

* If a small network is good enough, why are we using a large one?

Shape of minima

* Why it is good
* Hessians and eps

Flat and sharp minima

* A minimum of the loss function can be flat or sharp

e Which is better?

Flat and sharp minima

* Flat minima generalize better
e Sharper minima likely to represent overfitting

A
Loss on Training dat
Loss on Test data

Model space

Loss

Flat minima are also more likely to be stable

Loss on Tra|n|ng dd’f
Loss on Test data
\

A

=

\ B

Loss

Model space

Curvature as a sharpness measure

* For the min of a real valued function in 1-D we can measure curvature
as the second derivative
d?y
) dx?

* For loss over models
d?L
dw?2

* Larger second derivative => sharper min

e-Sharpness

* At min 6 take ball B(0, €) of radius €

* Set of all points within a distance € of 6

* Sharpness is:

maX9/€Bz(€’9) (L(O’) = L(O))
1+ L(6)

B(0,¢)

Model spaces are high dimensional

* ¢ —Sharpness definition applies directly

e Curvature requires considering the Hessian — high dim representation
of 2nd derivative

Partial derivatives

* Suppose f is a function of many variables x,y, z

* We can ask how f changes with x. This is written as — o

dx
d : : : : :
e Same as d—f, but implying that there are other variables to potentially consider

2
o7, : how — of

3 - Changes with x

 And we can write the curvature along x as —

Partial derivatives

* Now we can also ask how

with y

e This is written as

* Hessian is just a collection of all these

9% f
dyox

written as a matrix
e With two variable models:

0°%f
ow?
0°f

0%f

0W26W1

6W16W2
o°f
ow2

af

ox

changes

[0% f o f
Oz Oz 02
o0 f 0> f
Oy 071 O’
32](‘ 82f
| Ox, 0x1 Ox, Oxs

0% f
8331 8:En

81132 Bazn

% f

Ox2

Curvature directions

* The problem is that strongest directions of curvature may not align
exactly with w, w, etc

* SO, we need to take eigen values and eigen vectors of the hessian

* The eigen values represent the principal curvatures
* Corresponding eigen vectors represent the directions of these curvatures

* Larger eigen values of hessian imply sharper minima

* (Think Principal components of curvature matrix)

So, the method is

* Take the hessian

* Compute its eigen values

* Look at their distributions

* If there are more of large values, that implies a sharper min

small-mnistfc: Hessian eigenspectrum at local minimum char-Istm: Hessian eigenspectrum at local minimum
50
> 102 S
£
& 3
= =)
i) g
‘Q_‘) ~
& 10 -

10 |
0 I IIIIIII-IIIII.- ll w
10 5 15 25
\

x10~2)

L)| |‘IIIIIIIII I ‘
0.25 1 10 50

Eigenvalues Eigenvalues

Algorithms

* Shapness aware minimization

* Use € sharpness
* Minimize L(0) + [L(8 +€') — L(0)]

* Entropy SGD

e Optimise a different function
 Computationally very expensive

 Stochastic weight averaging
* Average the weights of the last ¢ models
* Shown to produce flat minima

Epoch: 50 Epoch: 1

Epoch: 300

SGD

SAM

Amax = 62.9 Amax = 18.6
Amax/As = 2.5 Amax/As = 3.6

B T) I

0 20 40 60 20 40 60
Amax = 12.5 Amax = 8.9
Amax/As = 1.7 Amax/As = 1.9

6 é lb é lb
Amax = 24.2 Amax = 1.0

\“ Amax/As =11.4 Amax/As = 2.6

1/ | | |

0 10 20 10 20

p(A) p(A)

Flat minima

 Current topic of research

* While flat minima are generally agreed to be good, the full picture is
not clear

* There are works showing that sometimes sharp minima can work well

* Neural nets are highly redundant (e.g. symmetric) and many possible
weight assignments achieve the same effective function

* |tis possible to reconfigure weights such that the effective prediction function
is same, therefore loss is same, but the curvature is different

SGD and Flat minima k/\/

Model space

* SGD is known to have a bias toward flat and well generalizable min

* Large batch sizes and small learning rate approximates a smooth gradient
* And more likely to find a sharp min

* Small batch sizes and larger learning rate makes a more random, jumpy
trajectory that can skip over sharp min.
» Also easy to jump away from sharp min neighborhood since that is likely a small
region

* However, a flat min means that even after step away from it, SGD is likely in
the same basin

