
Neural Networks and
Non-convex Optimisation

Machine Learning Theory (MLT)
Edinburgh
Rik Sarkar

Course matters

• Please attend tutorials!
• Solutions to tutorial 1 will be up soon

• Coursework will be out by end of day on Friday.

Neural networks
• Perceptron activation functions
• Each perceptron defines a half plane
• Together they can form complex

boundaries using arrangements of
half spaces
• More perceptrons, more options for

regions available in the arrangement
of half spaces

Challenges with perceptron and 0-1 values

• Gradients are not always useful
• Eg. If a small change does not change the classification of any point
• Hard to apply SGD type methods

• Sometimes it is useful to have real values

Other activations

• Sigmoid
• 𝑓 𝑥 = !

!"#!

• ReLU
• 𝑓 𝑥 = max(0, 𝑥)

Neural network structure

• Use ReLU or similar activation functions
• More compatible with gradients
• Easy to compute

• The middle layers produce a vector 𝒚 of ”scores” for each class, called
logit values
• Final layer: apply “softmax” to logits:
• 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝒚$ = #"#

∑#
"$ (improved the notation from the lecture)

Question: Why softmax?

Hard max or exact max

• Take a vector of values eg. [2,3,5,2,6,4,9,2,2,4]
• Make one indicating the position of the max eg. [0,0,0,0,0,0,1,0,0,0]

Softmax

• Substitute for hard-max, but differentiable
• Normalized, can be treated as probability 𝑝! for each class

Cross entropy loss

• Neural networks are usually trained on
the cross entropy loss of their output 𝑝
• Given:

• Data point 𝑥
• Probability estimate vector 𝑝
• Truth label vector 𝑡: indicator vector or one-

hot encoding where only the true class has
value 1.

• Cross entropy loss: ℓ!" = −∑𝑡# ln 𝑝#
• Measures difference between the two

probability distributions

p=[0.1, 0.5, 0.2, 0.2]
t= [0.0, 1.0, 0.0, 0.0]

Generalisation gap for neural networks: How
does is grow?
• What do curves look like for training loss and test loss?

Generalisation gap for neural networks

What we might expect What we find

Overfitting in neural networks

• The role of cross entropy loss
• Consider probability outputs for this data and this data space
• One curve for each class

• What should the curves look like?

Probability curves for classification

• A reasonable model sacrifices the outlier for better generalization
• But what is the cross entropy loss at the outlier?

Overfitting

• Optimiser tries to modify probability curves
• Such that large CE losses become smaller

What prevents the NN from overfitting too
much to every point?

• The NN architecture restricts the possible arrangements of
hyperplanes
• The architecture and activation functions restrict

Overparameterised neural networks

• Idea:
• More neurons/weights/parameters: more unknown variables
• More data points: More information (similar to more equations)

• Recap of statistical ML: data requirements grow with
parameters/complexity
• Modern neural networks:
• Many more parameters than data points
• High complexity and therefore high estimation error
• We expect heavy overfitting and high test/generalization loss/error

Double descent
• With very large number of

parameters (more than number of
data points) testing performs well
again!
• Out of many possible models with

low training loss, SGD is finding ones
that have low test loss!

• See also (optional): Neural Tangent
kernels

Training

Testing

Number of parameters

Ri
sk

 (e
rr

or
s)

Distribution of weights on trained NNs

• A large fraction of weights are close to zero
• Small fraction is far from zero
• Observation:
• Zero weight edges have no effect – do not conduct

information
• Almost zero weights: Little effect

• Conclusion: While NNs have large number of
parameters, after training, many of them have little
to no effect!

Pruning

• Idea: take all the edges that are
tiny weights, and remove them!
• Observations
• Can sometimes remove 80% - 90%

of edges
• Retains comparable performance

and sometimes better
generalization

Lottery ticket hypothesis

• Hypothesis: A randomly initialised dense NN already contains a subnetwork
(a winning ticket) that can give good performance.

• Algorithm to find the winning ticket
• Initialise a network to random weights
• Train for some iterations
• Prune p% of edges with small weights
• Reset the remaining edge to their original random weights

• Works surprisingly well on MNIST, CIFAR with test performance comparable
to a well trained network [Frankle and Carbin, 2019]

21

Standard pruning methods

• One shot:
• Train
• Remove small weights
• Return to initialization weights and retrain
• Stop

• Iterative
• Set random weights
• Train
• Remove edges with small weights
• Start over

22

Other results

• Theoretical proofs (special cases, few layers etc)
• [Malach et al. 2020, Bartoldson et al. 2020]

• Pruning and finding winning tickets without data
• [Wang et al. 2020, Tanaka et al. 2020]

23

Pruning and dimension

• The dimension of ℋ is determined by the number of parameters
• The pruning and lottery tickets papers suggest that there are lowe

dimensional subspaces of ℋ that contain good solutions

24

Question

• If a small network is good enough, why are we using a large one?

Shape of minima

• Why it is good
• Hessians and eps

Flat and sharp minima

• A minimum of the loss function can be flat or sharp

• Which is better?

27

Flat and sharp minima

• Flat minima generalize better
• Sharper minima likely to represent overfitting

Flat minima are also more likely to be stable

Curvature as a sharpness measure

• For the min of a real valued function in 1-D we can measure curvature
as the second derivative
• &

%'
&(%

• For loss over models
• &%)
&*%

• Larger second derivative => sharper min

𝜖-Sharpness

• At min 𝜃 take ball 𝐵(𝜃, 𝜖) of radius 𝜖
• Set of all points within a distance 𝜖 of 𝜃

• Sharpness is:

𝜃

𝐵(𝜃, 𝜖)

𝜃!

Model spaces are high dimensional

• 𝜖 – Sharpness definition applies directly

• Curvature requires considering the Hessian – high dim representation
of 2nd derivative

Partial derivatives

• Suppose 𝑓 is a function of many variables 𝑥, 𝑦, 𝑧, …

• We can ask how 𝑓 changes with 𝑥. This is written as "#
"$

• Same as &1
&(

, but implying that there are other variables to potentially consider

• And we can write the curvature along 𝑥 as 2
%1
2(% : how 212(changes with 𝑥

Partial derivatives

• Now we can also ask how $%
$&

changes
with 𝑦
• This is written as $

!%
$'$&

• Hessian is just a collection of all these
written as a matrix
• With two variable models:

•

$!%
$("!

$!%
$("$(!

$!%
$(!$("

$!%
$(!!

Curvature directions

• The problem is that strongest directions of curvature may not align
exactly with 𝑤%, 𝑤& etc
• So, we need to take eigen values and eigen vectors of the hessian
• The eigen values represent the principal curvatures
• Corresponding eigen vectors represent the directions of these curvatures

• Larger eigen values of hessian imply sharper minima

• (Think Principal components of curvature matrix)

So, the method is

• Take the hessian
• Compute its eigen values
• Look at their distributions
• If there are more of large values, that implies a sharper min

Algorithms

• Shapness aware minimization
• Use 𝜖 sharpness
• Minimize 𝐿 𝜃 + [𝐿 𝜃 + 𝜖3 − 𝐿(𝜃)]

• Entropy SGD
• Optimise a different function
• Computationally very expensive

• Stochastic weight averaging
• Average the weights of the last 𝑐 models
• Shown to produce flat minima

Flat minima

• Current topic of research
• While flat minima are generally agreed to be good, the full picture is

not clear
• There are works showing that sometimes sharp minima can work well
• Neural nets are highly redundant (e.g. symmetric) and many possible

weight assignments achieve the same effective function
• It is possible to reconfigure weights such that the effective prediction function

is same, therefore loss is same, but the curvature is different

SGD and Flat minima

• SGD is known to have a bias toward flat and well generalizable min
• Large batch sizes and small learning rate approximates a smooth gradient

• And more likely to find a sharp min

• Small batch sizes and larger learning rate makes a more random, jumpy
trajectory that can skip over sharp min.
• Also easy to jump away from sharp min neighborhood since that is likely a small

region

• However, a flat min means that even after step away from it, SGD is likely in
the same basin

