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Course matters 

• Please attend tutorials! 
• Solutions to tutorial 1 will be up soon 

• Coursework will be out by end of day on Friday.



Neural networks 
• Perceptron activation functions
• Each perceptron defines a half plane 
• Together they can form complex 

boundaries using arrangements of 
half spaces 
• More perceptrons, more options for 

regions available in the arrangement 
of half spaces 



Challenges with perceptron and 0-1 values

• Gradients are not always useful 
• Eg. If a small change does not change the classification of any point
• Hard to apply SGD type methods 

• Sometimes it is useful to have real values 



Other activations

• Sigmoid
• 𝑓 𝑥 = !

!"#!

• ReLU
• 𝑓 𝑥 = max(0, 𝑥)



Neural network structure

• Use ReLU or similar activation functions 
• More compatible with gradients
• Easy to compute 

• The middle layers produce a vector 𝒚 of ”scores” for each class, called 
logit values
• Final layer: apply “softmax” to logits: 
• 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝒚$ = #"#

∑#
"$ (improved the notation from the lecture)



Question: Why softmax? 



Hard max or exact max

• Take a vector of values eg. [2,3,5,2,6,4,9,2,2,4]
• Make one indicating the position of the max eg. [0,0,0,0,0,0,1,0,0,0]



Softmax

• Substitute for hard-max, but differentiable 
• Normalized, can be treated as probability 𝑝! for each class



Cross entropy loss

• Neural networks are usually trained on 
the cross entropy loss of their output 𝑝
• Given: 

• Data point 𝑥
• Probability estimate vector 𝑝
• Truth label vector 𝑡: indicator vector or one-

hot encoding where only the true class has 
value 1. 

• Cross entropy loss: ℓ!" = −∑𝑡# ln 𝑝#
• Measures difference between the two 

probability distributions 

p=[0.1, 0.5, 0.2, 0.2]
t= [0.0, 1.0, 0.0, 0.0]



Generalisation gap for neural networks: How 
does is grow? 
• What do curves look like for training loss and test loss? 



Generalisation gap for neural networks 

What we might expect What we find



Overfitting in neural networks

• The role of cross entropy loss
• Consider probability outputs for this data and this data space
• One curve for each class 

• What should the curves look like? 



Probability curves for classification

• A reasonable model sacrifices the outlier for better generalization
• But what is the cross entropy loss at the outlier? 



Overfitting

• Optimiser tries to modify probability curves 
• Such that large CE losses become smaller 



What prevents the NN from overfitting too
much to every point? 

• The NN architecture restricts the possible arrangements of 
hyperplanes 
• The architecture and activation functions restrict 



Overparameterised neural networks

• Idea: 
• More neurons/weights/parameters: more unknown variables
• More data points: More information (similar to more equations)

• Recap of statistical ML: data requirements grow with 
parameters/complexity
• Modern neural networks: 
• Many more parameters than data points 
• High complexity and therefore high estimation error 
• We expect heavy overfitting and high test/generalization loss/error



Double descent 
• With very large number of 

parameters (more than number of 
data points) testing performs well 
again! 
• Out of many possible models with 

low training loss, SGD is finding ones 
that have low test loss! 

• See also (optional): Neural Tangent 
kernels
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Distribution of weights on trained NNs

• A large fraction of weights are close to zero 
• Small fraction is far from zero 
• Observation: 
• Zero weight edges have no effect – do not conduct 

information 
• Almost zero weights: Little effect

• Conclusion: While NNs have large number of 
parameters, after training, many of them have little 
to no effect!  



Pruning

• Idea: take all the edges that are 
tiny weights, and remove them! 
• Observations
• Can sometimes remove 80% - 90% 

of edges
• Retains comparable performance 

and sometimes better 
generalization 



Lottery ticket hypothesis

• Hypothesis: A randomly initialised dense NN already contains a subnetwork 
(a winning ticket) that can give good performance. 

• Algorithm to find the winning ticket
• Initialise a network to random weights
• Train for some iterations 
• Prune p% of edges with small weights
• Reset the remaining edge to their original random weights

• Works surprisingly well on MNIST, CIFAR with test performance comparable 
to a well trained network [Frankle and Carbin, 2019]
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Standard pruning methods

• One shot:
• Train
• Remove small weights
• Return to initialization weights and retrain
• Stop 

• Iterative
• Set random weights
• Train 
• Remove edges with small weights
• Start over 
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Other results

• Theoretical proofs (special cases, few layers etc)
• [Malach et al. 2020, Bartoldson et al. 2020]

• Pruning and finding winning tickets without data
• [Wang et al. 2020, Tanaka et al. 2020]

23



Pruning and dimension

• The dimension of ℋ is determined by the number of parameters 
• The pruning and lottery tickets papers suggest that there are lowe

dimensional subspaces of ℋ that contain good solutions
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Question

• If a small network is good enough, why are we using a large one?



Shape of minima

• Why it is good 
• Hessians and eps 



Flat and sharp minima

• A minimum of the loss function can be flat or sharp 

• Which is better? 
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Flat and sharp minima

• Flat minima generalize better 
• Sharper minima likely to represent overfitting



Flat minima are also more likely to be stable



Curvature as a sharpness measure

• For the min of a real valued function in 1-D we can measure curvature 
as the second derivative 
• &

%'
&(%

• For loss over models
• &%)
&*%

• Larger second derivative => sharper min 



𝜖-Sharpness

• At min 𝜃 take ball 𝐵(𝜃, 𝜖) of radius 𝜖
• Set of all points within a distance 𝜖 of 𝜃

• Sharpness is: 

𝜃

𝐵(𝜃, 𝜖)

𝜃!



Model spaces are high dimensional 

• 𝜖 – Sharpness definition applies directly

• Curvature requires considering the Hessian – high dim representation 
of 2nd derivative



Partial derivatives

• Suppose 𝑓 is a function of many variables 𝑥, 𝑦, 𝑧, …

• We can ask how 𝑓 changes with 𝑥. This is written as "#
"$

• Same as &1
&(

, but implying that there are other variables to potentially consider 

• And we can write the curvature along 𝑥 as 2
%1
2(% : how 212( changes with 𝑥



Partial derivatives

• Now we can also ask how $%
$&

changes 
with 𝑦
• This is written as $

!%
$'$&

• Hessian is just a collection of all these 
written as a matrix
• With two variable models:  

•

$!%
$("!

$!%
$("$(!

$!%
$(!$("

$!%
$(!!



Curvature directions

• The problem is that strongest directions of curvature may not align 
exactly with 𝑤%, 𝑤& etc
• So, we need to take eigen values and eigen vectors of the hessian 
• The eigen values represent the principal curvatures
• Corresponding eigen vectors represent the directions of these curvatures 

• Larger eigen values of hessian imply sharper minima 

• (Think Principal components of curvature matrix)



So, the method is

• Take the hessian
• Compute its eigen values
• Look at their distributions 
• If there are more of large values, that implies a sharper min 



Algorithms 

• Shapness aware minimization 
• Use 𝜖 sharpness 
• Minimize 𝐿 𝜃 + [𝐿 𝜃 + 𝜖3 − 𝐿(𝜃)]

• Entropy SGD
• Optimise a different function
• Computationally very expensive 

• Stochastic weight averaging
• Average the weights of the last 𝑐 models
• Shown to produce flat minima 



Flat minima

• Current topic of research
• While flat minima are generally agreed to be good, the full picture is 

not clear
• There are works showing that sometimes sharp minima can work well 
• Neural nets are highly redundant (e.g. symmetric) and many possible 

weight assignments achieve the same effective function
• It is possible to reconfigure weights such that the effective prediction function 

is same, therefore loss is same, but the curvature is different 



SGD and Flat minima 

• SGD is known to have a bias toward flat and well generalizable min 
• Large batch sizes and small learning rate approximates a smooth gradient

• And more likely to find a sharp min

• Small batch sizes and larger learning rate makes a more random, jumpy 
trajectory that can skip over sharp min. 
• Also easy to jump away from sharp min neighborhood since that is likely a small 

region

• However, a flat min means that even after step away from it, SGD is likely in 
the same basin 




