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Course matters

* Please attend tutorials!
* Solutions to tutorial 1 will be up soon

* Coursework will be out by end of day on Friday.



Neural networks

* Perceptron activation functions
* Each perceptron defines a half plane

* Together they can form complex
boundaries using arrangements of
half spaces

* More perceptrons, more options for
re%:ons available in the arrangement
of half spaces




Challenges with perceptron and 0-1 values

* Gradients are not always useful
e Eg. If a small change does not change the classification of any point
* Hard to apply SGD type methods

e Sometimes it is useful to have real values



Other activati

e Sigmoid s
FfO) =1

1+eX

* RelLU
* f(x) = max(0, x)




Neural network structure

e Use RelLU or similar activation functions
* More compatible with gradients
* Easy to compute

* The middle layers produce a vector y of "scores” for each class, called
logit values

* Final layer: apply “softmax” to logits:

)
e softmax(y;) = eylj (improved the notation from the lecture)

Ye




Question: Why softmax?



Hard max or exact max

» Take a vector of values eg. [2,3,5,2,6,4,9,2,2,4]
* Make one indicating the position of the max eg. [0,0,0,0,0,0,1,0,0,0]



Softmax

e Substitute for hard-max, but differentiable
* Normalized, can be treated as probability p; for each class



Cross entropy loss

* Neural networks are usually trained on

the cross entropy loss of their output p
° Given: p=[0.1, 0.5, 0.2, 0.2]
_ t=[0.0, 1.0, 0.0, 0.0]
* Data point x
* Probability estimate vector p
* Truth label vector t: indicator vector or one-
hot encoding where only the true class has
value 1.

* Cross entropy loss: - = —)'t; Inp;

 Measures difference between the two
probability distributions



Generalisation gap for neural networks: How
does is grow?

* What do curves look like for training loss and test loss?
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Generalisation gap for neural networks
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Overtitting in neural networks

* The role of cross entropy loss

* Consider probability outputs for this data and this data space
* One curve for each class

e What should the curves look like?




Probability curves for classification

* A reasonable model sacrifices the outlier for better generalization
* But what is the cross entropy loss at the outlier?




Overfitting

* Optimiser tries to modify probability curves
* Such that large CE losses become smaller

.-




What prevents the NN from overtitting too
much to every point?

 The NN architecture restricts the possible arrangements of
hyperplanes

 The architecture and activation functions restrict



Overparameterised neural networks

* |dea:
* More neurons/weights/parameters: more unknown variables
* More data points: More information (similar to more equations)

e Recap of statistical ML: data requirements grow with
parameters/complexity

* Modern neural networks:
 Many more parameters than data points
* High complexity and therefore high estimation error
* We expect heavy overfitting and high test/generalization loss/error



Double descent

* With very large number of
parameters (more than number of
data points) testing performs well
again!

* Out of many possible models with
low training loss, SGD is finding ones
that have low test loss!

* See also (optional): Neural Tangent
kernels

Risk (errors)

Testing

Training
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Distribution of weights on trained NNs

* A large fraction of weights are close to zero

— A=00
A=0.001

e Small fraction is far from zero

e Observation:

e Zero weight edges have no effect — do not conduct
information .

* Almost zero weights: Little effect :

—0.100-0.075-0.050 -0.025 0.000 0.025 0.050 0.075 0.100
Model Weights

* Conclusion: While NNs have large number of
parameters, after training, many of them have little
to no effect!



Pruning

* |dea: take all the edges that are
tiny weights, and remove them!

e Observations

 Can sometimes remove 80% - 90%
of edges

* Retains comparable performance
and sometimes better
generalization



Lottery ticket hypothesis

* Hypothesis: A randomly initialised dense NN already contains a subnetwork
(a winning ticket) that can give good performance.

e Algorithm to find the winning ticket
* |nitialise a network to random weights
* Train for some iterations
* Prune p% of edges with small weights
* Reset the remaining edge to their original random weights

* Works surprisingly well on MNIST, CIFAR with test performance comparable
to a well trained network [Frankle and Carbin, 2019]



Standard pruning methods

* One shot:
* Train
* Remove small weights
e Return to initialization weights and retrain
* Stop

* |terative
e Set random weights
* Train
* Remove edges with small weights
e Start over



Other results

* Theoretical proofs (special cases, few layers etc)
* [Malach et al. 2020, Bartoldson et al. 2020]

* Pruning and finding winning tickets without data
* [Wang et al. 2020, Tanaka et al. 2020]



Pruning and dimension

* The dimension of H is determined by the number of parameters

* The pruning and lottery tickets papers suggest that there are lowe
dimensional subspaces of H that contain good solutions



Question

* If a small network is good enough, why are we using a large one?



Shape of minima

* Why it is good
* Hessians and eps



Flat and sharp minima

* A minimum of the loss function can be flat or sharp

e Which is better?



Flat and sharp minima

* Flat minima generalize better
e Sharper minima likely to represent overfitting

A
Loss on Training dat
Loss on Test data
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Flat minima are also more likely to be stable

Loss on Tra|n|ng dd’f
Loss on Test data
\

A

=

\ B

Loss

Model space



Curvature as a sharpness measure

* For the min of a real valued function in 1-D we can measure curvature
as the second derivative
d?y
) dx?

* For loss over models
d?L
dw?2

* Larger second derivative => sharper min



e-Sharpness

* At min 6 take ball B(0, €) of radius €

* Set of all points within a distance € of 6

* Sharpness is:

maX9/€Bz(€’9) (L(O’) = L(O))
1+ L(6)

B(0,¢)



Model spaces are high dimensional

* ¢ —Sharpness definition applies directly

e Curvature requires considering the Hessian — high dim representation
of 2nd derivative



Partial derivatives

* Suppose f is a function of many variables x,y, z

* We can ask how f changes with x. This is written as — o

dx
d : : : : :
e Same as d—f, but implying that there are other variables to potentially consider

2
o7, : how — of

3 - Changes with x

 And we can write the curvature along x as —



Partial derivatives

* Now we can also ask how

with y

e This is written as

* Hessian is just a collection of all these

9% f
dyox

written as a matrix
e With two variable models:
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Curvature directions

* The problem is that strongest directions of curvature may not align
exactly with w, w, etc

* SO, we need to take eigen values and eigen vectors of the hessian

* The eigen values represent the principal curvatures
* Corresponding eigen vectors represent the directions of these curvatures

* Larger eigen values of hessian imply sharper minima

* (Think Principal components of curvature matrix)



So, the method is

* Take the hessian

* Compute its eigen values

* Look at their distributions

* If there are more of large values, that implies a sharper min
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Algorithms

* Shapness aware minimization

* Use € sharpness
* Minimize L(0) + [L(8 +€') — L(0)]

* Entropy SGD

e Optimise a different function
 Computationally very expensive

 Stochastic weight averaging
* Average the weights of the last ¢ models
* Shown to produce flat minima
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Flat minima

 Current topic of research

* While flat minima are generally agreed to be good, the full picture is
not clear

* There are works showing that sometimes sharp minima can work well

* Neural nets are highly redundant (e.g. symmetric) and many possible
weight assignments achieve the same effective function

* |tis possible to reconfigure weights such that the effective prediction function
is same, therefore loss is same, but the curvature is different



SGD and Flat minima k/\/

Model space

* SGD is known to have a bias toward flat and well generalizable min

* Large batch sizes and small learning rate approximates a smooth gradient
* And more likely to find a sharp min

* Small batch sizes and larger learning rate makes a more random, jumpy
trajectory that can skip over sharp min.
» Also easy to jump away from sharp min neighborhood since that is likely a small
region

* However, a flat min means that even after step away from it, SGD is likely in
the same basin






