PAC Learning

Machine Learning Theory (MLT) Edinburgh Rik Sarkar

Recap: General ML

- Domain set X.
- Label Set *Y*. Eg. {0,1} or {-1, +1} red or blue.
- Training data (sample set): $S = \{(x_1, y_1), ..., (x_m, y_m)\}$
- Model, hypothesis, classifier, predictor h:
 - A function $h: \mathcal{X} \to \mathcal{Y}$. That is, h(x) returns a predicted label y
- Hypothesis class \mathcal{H} : The set of functions from which h is chosen
- Algortihm A: Chooses hypothesis h based on S
- Data generating distribution ${\cal D}$
- Success measure: Loss/error function L

Empirical risk minimization

- Empirical risk: Average loss in experiment
- For now, define empirical loss or risk of any hypothesis $h \in \mathcal{H}$ as:

$$L_S(h) \stackrel{\text{def}}{=} \frac{|\{i \in [m] : h(x_i) \neq y_i\}|}{m}$$

- ERM algorithm (A):
 - Find the h with min loss: $\underset{h \in \mathcal{H}}{\operatorname{arg\,min}} L_S(h)$
 - We can write $h_S = A(S)$ to mean that h was computed by A based on S
 - For a finite \mathcal{H} , A can just test all hypothesis and pick the one with the smallest loss.

Overview

- Machine learning has two questions:
 - Sample and prepare data
 - Question: How much data do we need?
 - Apply an algorithm to find a good model in class ${\mathcal H}$
 - Question: What is an algorithm that finds good models for a particular class?
 - What loss function to use
 - What steps the algorithm should take
 - How to modify the algorithm to get desirable properties like privacy, fairness etc

• In the course

- We will do the data sampling first. (this week and next)
- Algorithms and their properties in succeeding weeks
- General approach start with simple cases to build intuition and analysis. Then discuss complex cases

Today's questions

- How much data do we need for good guarantees?
- What kind of problems are "learnable"?
 - Observe that just because we would like to find a good model does not mean that it is possible!
- Approach: we will start with simple problems and finite hypothesis classes to build intuition and go toward more complex ones
- We will use formal mathematical notations and proofs
 - The ideas are not that hard, but takes getting used to the notations
 - Ask if you have questions
 - This lecture is harder than others. You will need to do some study afterwards!
- It gives us practice at how to think precisely and clearly. This will be useful in later parts
 of the course
 - You do not need to recreate these proofs in exam. Just make use that you follow the ideas
- Also read from the book

A simple classifier (exercise)

- A supermarket has asked us to build a model to classify ripe papayas
- Green is unripe, yellow is ripe
- A sensor reads the colour
- And returns a value in [0,1]
- Assume the supermarket sends us a random sample of labelled readings
- There is a color threshold t* of ripe papayas but we don't know it.

Sample size problem

- Show that sample size $m \ge \frac{1}{\epsilon} \ln \frac{2}{\delta}$ suffices to get ϵ, δ accuracy:
 - With probability at least $1~-\delta$
 - At most ϵ fraction of unseen papayas will be misclassified

Sample size problem

- Show that sample size $m \ge \frac{1}{\epsilon} \ln \frac{2}{\delta}$ suffices to get ϵ, δ accuracy.
 - With probability at least $1~-\delta$
 - At most ϵ fraction of unseen papayas will be misclassified
- Assume that papayas are uniformly distributed in [0,1] (the result works without this, but we are doing the easier version in class)

Algorithm

- Draw enough samples
 - So that there are samples in
 e intervals to the left and right of t*
- Take the highest "unripe" label and lowest "ripe" label.
- Select any point between these two

Sketch of proof

- Of sample size
- Consider only one interval r of size ϵ
- And a sample size of $m \ge \frac{1}{\epsilon} \ln \frac{2}{\delta}$
- Show that there is a sample in r, with probability at least $1 \frac{\delta}{2}$
- Hints:
 - Use the probability that none of the m samples are in r
 - Use the inequality that $(1-p)^{\frac{1}{p}} \le \frac{1}{e}$

Finite hypothesis classes

- To start with, we assume the number of possible hypotheses is finite.
- Suppose the sensor values are in range [0,100] and we can choose thresholds at only integer positions. What is $|\mathcal{H}|$?
- Suppose sensor values are in range [0, 1] and we are choosing from pre-fixed thresholds at intervals of ϵ . How many thresholds are there?

Simplifying assumptions for basic analysis

- Assumption 1: Finite ${oldsymbol{\mathcal{H}}}$
 - Limit the hypothesis class to have a finite number of hypotheses
 - What
- Assumption 2: Realizability:
 - There is $h^* \in \mathcal{H}$ that achieves perfect separation between classes
 - i.e. zero loss: $L_{(\mathcal{D},f)}(h^*) = 0$
 - It implies that the in-sample loss $L_S(h^*) = 0$

Sampling assumption (i.i.d)

- Assumption:
 - Examples in training set are independent and identically distributed according to ${\cal D}$
 - Written as $S \sim \mathcal{D}^m$

- Algorithm *A*:
 - Check all $h \in \mathcal{H}$
 - Pick $h_S = \underset{h \in \mathcal{H}}{\operatorname{argmin}} L_S(h)$
- Note that h_S is best (zero loss) in training data, but may not be good in true loss on $\mathcal D$

Sampling bound

• With these assumptions, we can show that

$$m \geq \frac{\log(|\mathcal{H}|/\delta)}{\epsilon}$$

- Samples suffice for ϵ, δ guarantee: $\mathbb{P}[L_{\mathcal{D},f}(h_S) \leq \epsilon]$
 - The best hypothesis on training data has small true loss
 - With probability 1δ ,

Proof

- The algorithm expects and finds 0 empirical loss in the training set
 - Outputs an *h* with 0 empirical loss (there can be many of these)
 - These "Look good" in data
- A "really good" hypothesis also has 0 true loss in ${\cal D}$ (realizability)
- Certain hypothesis are "bad": have a true loss $L_{\mathcal{D},f}(h) > \epsilon$

Proof

- The algorithm expects and finds 0 empirical loss in the training set
 - Outputs an h with 0 empirical loss (there can be many of these)
 - These "Look good" in data
- A "really good" hypothesis also has 0 true loss in $\mathcal D$ (realizability)
- Certain hypothesis are "bad": have a true loss $L_{\mathcal{D},f}(h) > \epsilon$
- We get a bad output only if a bad hypothesis has zero empirical loss in the sample. Let's compute the probability
- For a bad hypothesis h, the probability of getting one training label right is:
 - $1 L_{\mathcal{D},f}(h) \le 1 \epsilon$
- The probability of h getting m labels right is $\leq (1 \epsilon)^m \leq e^{-\epsilon m}$
 - This is the probability that a bad hypothesis h looks good

- If H_B is the subset of bad hypotheses
- Then by union bound, probability of some bad hypothesis looking good is
 - $\leq |H_B|e^{-\epsilon m} \leq |\mathcal{H}|e^{-\epsilon m}$
- Substitute m to get probability of a bad h succeeding $\leq \delta$
- The probability of not getting a bad result is $\geq 1-\delta$

QED

Observe

- The proof says that if h^* is the best hypothesis in a finite ${\mathcal H}$,
 - It is always possible to get as close to h^* in accuracy as we want
 - Just need large enough m
- That is, with some assumptions a good enough h_S can always be "learned" from big enough dataset

PAC Learnability

- We have just seen that every finite class is "PAC learnable"
- If ${m {\cal H}}$ is finite and realizable, then there is an algorithm that can
 - get as close to the optimum* model as we want,
 - with as high a probability as we want
 - Provided we give it enough data
 - (and happily, that data is not too much!)
- *optimum model or hypothesis within ${oldsymbol{\mathcal{H}}}$
 - How good that is in absolute accuracy depends on how good an ${oldsymbol{\mathcal{H}}}$ we select

PAC learnability (formal definition)

- A hypothesis class ${oldsymbol{\mathcal{H}}}$ is PAC learnable if
 - There exists a function $m_{\mathcal{H}}(0,1)^2 \to \mathbb{N}$ (means: depending on ϵ, δ , there is a suitable number of samples)
 - And an algorithm that:
 - For every ϵ, δ
 - For ${\mathcal D}$ over ${\mathcal X}$
 - With realizability assumption
 - On $m \ge m_{\mathcal{H}}(\epsilon, \delta)$ i.i.d samples from \mathcal{D} , **f**
 - Finds an *h* that satisfies
 - $L_{(\mathcal{D},f)}(h) \leq \epsilon$ (finds a good h)
 - with probability at least $1-\delta$

More general learning

- In general, realizability is not true
 - There may be no perfect h = f
- Called Agnostic PAC learning
- E.g. Our \mathcal{H} consists of squares
 - But the data needs a circle to separate classes
- To extend to more general scenarios, let's change our assumptions

More general model – agnostic learning

- Modified data generating distribution:
 - Define $\boldsymbol{\mathcal{D}}$ to be probability distribution over $\boldsymbol{\mathcal{X}} \times \boldsymbol{\mathcal{Y}}$
 - Consequence: The same $x \in \mathcal{X}$ may have labels 0 or 1 probabilistically
- Redefine true risk:

$$L_{\mathcal{D}}(h) \stackrel{\text{def}}{=} \mathbb{P}_{(x,y)\sim\mathcal{D}}[h(x)\neq y] \stackrel{\text{def}}{=} \mathcal{D}(\{(x,y):h(x)\neq y\}).$$

- (homework: compare this with how we defined true risk earlier)
- Question: Where can this happen in a real example?

Agnostic PAC learnability

- A hypothesis class ${oldsymbol{\mathcal{H}}}$ is Agnostic PAC learnable if
 - There exists a function $m_{\mathcal{H}}(0,1)^2 \to \mathbb{N}$
 - And an algorithm that:
 - For every ϵ, δ
 - For \mathcal{D} over $\mathcal{X} \times \mathcal{Y}$
 - With realizability assumption
 - On $m \ge m_{\mathcal{H}}(\epsilon, \delta)$ i.i.d samples from \mathcal{D} , f
 - Finds an *h* that satisfies
 - $L_{\mathcal{D}}(h) \leq \min_{\mathbf{h}' \in \mathcal{H}} L_{\mathcal{D}}(h') + \epsilon$ (gets ϵ close to the best $h' \in \mathcal{H}$)
 - with probability at least $1-\delta$

Other types of learning problems (defined by suitable loss)

- We have looked at binary classification
- Other possibilities:
- Multi-class classification
 - E.g, Measure loss as the probability of predicting a wrong label
- Regression: labels are real numbers i.e. $\mathcal{Y}=\mathbb{R}$

$$L_{\mathcal{D}}(h) \stackrel{\text{def}}{=} \mathbb{E}_{(x,y)\sim\mathcal{D}}(h(x)-y)^2$$

Generalised loss

- Instead of $X \times Y$, we consider a single domain Z (which may be $X \times Y$, or something else)
 - Loss functions are: $\ell: \mathcal{H} \times \mathcal{Z} \to \mathbb{R}_+$
 - The loss measured for a single element: $\ell(h, z)$
- Generalises to more ML problems e.g. clustering (unsupervised learning)
- True risk function: Expected loss: $L_{\mathcal{D}}(h) = \mathbb{E}_{z \in \mathcal{D}}[\ell(h, z)]$
- Empirical risk function: $L_{S(h)} = \frac{1}{m} \sum_{i=1}^{m} \ell(h, z_i)$
- Exercise: Define k-means clustering as a formal ML problem, with hypothesis class, loss function etc.

Agnostic PAC learning with general loss function

- Defined in terms of ${\mathcal Z}$ and general loss functions
- Learning in absence of realizability

Representative data sets

- We use S as a representative of $\ensuremath{\mathcal{D}}$
- In general, we cannot be sure that
 - we will find an h that does well outside training data,
 - or that for an *h*, the performance on *S* matches general performance
- When it does, we say S is a representative sample

Representative sample

- S is ϵ -representative w.r.t ($\mathcal{Z}, \mathcal{H}, \mathcal{D}$) if:
 - $\forall h \in \mathcal{H}, |L_S(h) L_D(h)| \leq \epsilon$

Representative sample

- S is ϵ -representative w.r.t ($\mathcal{Z}, \mathcal{H}, \mathcal{D}$) if:
 - $\forall h \in \mathcal{H}, |L_S(h) L_D(h)| \leq \epsilon$
- S gives a good estimate of the true loss for each \boldsymbol{h}
- Observe:
 - A sample is representative with respect to \mathcal{H} , \mathcal{Z}
 - That is, it is representative with respect to a specifc problem and hypothesis class
- Question: Can there be a notion of represenativeness independent of $\mathcal{H},\mathcal{Z}?$

Representative sample

- *S* is ϵ -representative w.r.t ($\mathcal{Z}, \mathcal{H}, \mathcal{D}$) if:
 - $\forall h \in \mathcal{H}, |L_S(h) L_D(h)| \leq \epsilon$
- S gives a good estimate of the true loss for each h
- Lemma:
 - If S is $\frac{\epsilon}{2}$ -representative, and $h_S \in \operatorname{argmin}_{h \in \mathcal{H}} L_S(h)$, then
 - $L_{\mathcal{D}}(h_{S}) \leq \min_{h' \in \mathcal{H}} L_{\mathcal{D}}(h') + \epsilon$
- With representative data, the best empirical (trained) model (h_S) is almost as good as the best model for true data

Uniform convergence

- \mathcal{H} has uniform convergence if there is $m_{\mathcal{H}}^{UC}: (0,1)^2 \to \mathbb{N}$
 - Such that a random sample $S \sim \mathcal{D}^m$ of size $m \ge m_{\mathcal{H}}^{UC}(\epsilon, \delta)$
 - Is ϵ –representative with probability at least $1-\delta$
- When ${\mathcal H}$ has uniform convergence, it means we know a large enough m that gives accurate estimates for all h

Corollary

- If $\mathcal H$ has uniform convergence with $m_{\mathcal H}^{UC}$,
 - Then \mathcal{H} is PAC learnable with $m_{\mathcal{H}}(\epsilon, \delta) \leq m_{\mathcal{H}}^{UC}(\frac{\epsilon}{2}, \delta)$

- Theorem:
- Every finite ${\mathcal H}$ has uniform convergence
 - i.e. Given a random suitable sized S, $\mathbb{P}[\exists h \in \mathcal{H}: |L_S(h) L_D(h)| > \epsilon] \le \delta$
- And therefore every finite ${\mathcal H}$ is agnostic PAC-learnable
- Proof next week, using Chernoff-hoeffding bound

Chernoff-Hoeffding bound

- Very important result in theoretical CS and ML
- Suppose θ_i are random variables with average $\frac{1}{m} \sum_{i=1}^m \theta_i$
- Suppose μ is the expected value of a random θ
- Law of large numbers: with increasing m, $\frac{1}{m}\sum_{i=1}^{m} \theta_i$ approaches μ

• Ie,
$$\left|\frac{1}{m}\sum_{i=1}^{m}\theta_{i}-\mu\right|$$
 becomes smaller

- But how fast? What m do we need to get ϵ -close to μ ?
- Chernoff-Hoeffding bound:

•
$$\mathbb{P}\left[\left|\frac{1}{m}\sum_{i=1}^{m}\theta_{i}-\mu\right|>\epsilon\right]\leq 2e^{-2m\epsilon^{2}}$$

- Proof of uniform convergence for finite \mathcal{H} : next week.
- (you can look up in the book!)

- So, we have proved finite classes are all PAC learnable
- Next week, we will cover
 - The proof of uniform convergence
 - No free lunch theorem: There is no universal learner
 - Bias-complexity tradeoff
 - Infinite hypothesis classes and fundamental theorem of statistical learning
 - Starting with ML algorithms