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Recap: General ML 

• Domain set 𝒳. 
• Label Set 𝒴. Eg. {0,1} or {-1, +1} red or blue. 
• Training data (sample set): 𝑺 = 𝑥!, 𝑦! , … 𝑥" , 𝑦"
• Model, hypothesis, classifier, predictor 𝒉: 
• A function ℎ:𝒳 → 𝒴. That is, ℎ 𝑥 returns a predicted label 𝑦

• Hypothesis class 𝓗: The set of functions from which ℎ is chosen
• Algortihm A: Chooses hypothesis ℎ based on 𝑆
• Data generating distribution 𝒟
• Success measure: Loss/error function L



Empirical risk minimization 

• Empirical risk: Average loss in experiment
• For now, define empirical loss or risk of any hypothesis ℎ ∈𝓗as:

• ERM algorithm (A): 
• Find the ℎ with min loss:  argmin

!∈𝓗
𝐿#(ℎ)

• We can write ℎ# = 𝐴 𝑆 to mean that ℎ was computed by 𝐴 based on 𝑆
• For a finite ℋ, 𝐴 can just test all hypothesis and pick the one with the 

smallest loss.  



Overview

• Machine learning has two questions: 
• Sample and prepare data

• Question: How much data do we need?

• Apply an algorithm to find a good model in class ℋ
• Question: What is an algorithm that finds good models for a particular class? 

• What loss function to use
• What steps the algorithm should take
• How to modify the algorithm to get desirable properties like privacy, fairness etc

• In the course
• We will do the data sampling first. (this week and next)
• Algorithms and their properties in succeeding weeks 
• General approach start with simple cases to build intuition and analysis. Then discuss 

complex cases



Today’s questions

• How much data do we need for good guarantees? 
• What kind of problems are “learnable”? 

• Observe that just because we would like to find a good model does not mean that it is possible! 
• Approach: we will start with simple problems and finite hypothesis classes to build 

intuition and go toward more complex ones 
• We will use formal mathematical notations and proofs 

• The ideas are not that hard, but takes getting used to the notations 
• Ask if you have questions
• This lecture is harder than others. You will need to do some study afterwards! 

• It gives us practice at how to think precisely and clearly. This will be useful in later parts 
of the course 
• You do not need to recreate these proofs in exam. Just make use that you follow the ideas

• Also read from the book 



A simple classifier (exercise) 

• A supermarket has asked us to build a model  
to classify ripe papayas
• Green is unripe, yellow is ripe
• A sensor reads the colour
• And returns a value in [0,1]
• Assume the supermarket sends us a random 

sample of labelled readings 
• There is a color threshold 𝑡∗ of ripe papayas 

but we don’t know it. 
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Sample size problem

• Show that sample size m ≥ !
$
ln %

&
suffices to get  𝜖, 𝛿 accuracy: 

• With probability at least 1 − 𝛿
• At most 𝜖 fraction of unseen papayas will be misclassified



Sample size problem

• Show that sample size m ≥ !
$
ln %

&
suffices to get  𝜖, 𝛿 accuracy. 

• With probability at least 1 − 𝛿
• At most 𝜖 fraction of unseen papayas will be misclassified

• Assume that papayas are uniformly distributed in [0,1] (the 
result works without this, but we are doing the easier version in 
class)



Algorithm

• Draw enough samples 
• So that there are samples in 𝜖 intervals to the left 

and right of t*

• Take the highest “unripe” label and lowest 
“ripe” label. 
• Select any point between these two 



Sketch of proof 

• Of sample size 
• Consider only one interval 𝑟 of 

size 𝜖
• And a sample size of m ≥ $

% ln
&
'

• Show that there is a sample in 𝑟, 
with probability at least 1 − '

&
• Hints:

• Use the probability that none of the 
m samples are in 𝑟

• Use the inequality that 1 − 𝑝
!
" ≤ !

"



Finite hypothesis classes

• To start with, we assume the number of possible hypotheses is finite. 

• Suppose the sensor values are in range [0,100] and we can choose 
thresholds at only integer positions. What is |ℋ| ? 

• Suppose sensor values are in range [0, 1] and we are choosing from 
pre-fixed thresholds at intervals of 𝜖. How many thresholds are there? 



Simplifying assumptions for basic analysis

• Assumption 1: Finite 𝓗
• Limit the hypothesis class to have a finite number 

of hypotheses
• What 

• Assumption 2: Realizability: 
• There is ℎ∗ ∈ 𝓗 that achieves perfect separation 

between classes
• i.e. zero loss: 𝐿(𝒟,)) ℎ

∗ = 0
• It implies that the in-sample loss 𝐿# ℎ∗ = 0



Sampling assumption (i.i.d)

• Assumption: 
• Examples in training set are independent and identically distributed according 

to 𝒟
• Written as 𝑆 ∼ 𝒟*

• Algorithm 𝐴: 
• Check all ℎ ∈ ℋ
• Pick ℎ# = argmin

!∈ℋ
𝐿# ℎ

• Note that ℎ, is best (zero loss) in training data, but may not be good 
in true loss on 𝒟



Sampling bound

• With these assumptions, we can show that 

• Samples suffice for 𝜖, 𝛿 guarantee: ℙ[𝐿𝒟,/ ℎ, ≤ 𝜖]
• The best hypothesis on training data has small true loss
• With probability 1 − 𝛿, 



Proof

• The algorithm expects and finds 0 empirical loss in the training 
set
• Outputs an ℎ with 0 empirical loss (there can be many of these)
• These “Look good” in data

• A “really good” hypothesis also has 0 true loss in 𝒟 (realizability)
• Certain hypothesis are “bad”: have a true loss 𝐿𝒟,/ ℎ > 𝜖



Proof

• The algorithm expects and finds 0 empirical loss in the training set
• Outputs an ℎ with 0 empirical loss (there can be many of these)
• These “Look good” in data

• A “really good” hypothesis also has 0 true loss in 𝒟 (realizability)
• Certain hypothesis are “bad”: have a true loss 𝐿𝒟,! ℎ > 𝜖
• We get a bad output only if a bad hypothesis has zero empirical loss 

in the sample. Let’s compute the probability
• For a bad hypothesis ℎ, the probability of getting one training label 

right is: 
• 1 − 𝐿𝒟,! ℎ ≤ 1 − 𝜖

• The probability of ℎ getting m labels right is ≤ 1 − 𝜖 " ≤ 𝑒#$"
• This is the probability that a bad hypothesis ℎ looks good



• If 𝐻0 is the subset of bad hypotheses
• Then by union bound, probability of some bad hypothesis looking 

good is
• ≤ 𝐻, 𝑒-%* ≤ |𝓗|𝑒-%*

• Substitute m to get probability of a bad ℎ succeeding ≤ δ

• The probability of not getting a bad result is ≥ 1 − 𝛿

QED



Observe 

• The proof says that if ℎ∗ is the best hypothesis in a finite ℋ, 
• It is always possible to get as close to ℎ∗ in accuracy as we want 
• Just need large enough 𝑚

• That is, with some assumptions a good enough ℎ, can always be 
“learned” from big enough dataset 



PAC Learnability 

• We have just seen that every finite class is “PAC learnable”

• If 𝓗 is finite and realizable, then there is an algorithm that can 
• get as close to the optimum* model as we want, 
• with as high a probability as we want
• Provided we give it enough data 

• (and happily, that data is not too much!)

• *optimum model or hypothesis within𝓗
• How good that is in absolute accuracy depends on how good an 𝓗 we select



PAC learnability (formal definition)

• A hypothesis class 𝓗 is PAC learnable if 
• There exists a function 𝑚𝓗 0,1 & → ℕ (means: depending on 𝜖, 𝛿, there is a 

suitable number of samples)
• And an algorithm that:

• For every 𝜖, 𝛿
• For 𝒟 over 𝒳
• With realizability assumption
• On 𝑚 ≥𝑚𝓗 𝜖, 𝛿 i.i.d samples from 𝒟,𝒇
• Finds an ℎ that satisfies

• 𝐿(𝒟,#) ℎ ≤ 𝜖 (finds a good ℎ)
• with probability at least 1 − 𝛿



More general learning

• In general, realizability is not true
• There may be no perfect ℎ = 𝑓

• Called Agnostic PAC learning

• E.g. Our ℋconsists of squares
• But the data needs a circle to separate classes

• To extend to more general scenarios, let’s change our assumptions



More general model – agnostic learning

• Modified data generating distribution: 
• Define 𝒟 to be probability distribution over 𝒳×𝒴
• Consequence: The same 𝑥 ∈ 𝒳 may have labels 0 or 1 probabilistically 

• Redefine true risk:

• (homework: compare this with how we defined true risk earlier)

• Question: Where can this happen in a real example? 



Agnostic PAC learnability 

• A hypothesis class 𝓗 is Agnostic PAC learnable if 
• There exists a function 𝑚𝓗 0,1 & → ℕ
• And an algorithm that:

• For every 𝜖, 𝛿
• For 𝒟 over 𝒳×𝒴
• With realizability assumption
• On 𝑚 ≥𝑚𝓗 𝜖, 𝛿 i.i.d samples from 𝒟,𝒇
• Finds an ℎ that satisfies

• 𝑳𝓓(𝒉) ≤ 𝐦𝐢𝐧
𝒉!∈𝓗

𝑳𝓓 𝒉) +𝝐 (gets 𝜖 close to the best ℎ) ∈ ℋ )

• with probability at least 1 − 𝛿



Other types of learning problems (defined by 
suitable loss)
• We have looked at binary classification
• Other possibilities: 
• Multi-class classification
• E.g, Measure loss as the probability of predicting a wrong label

• Regression: labels are real numbers i.e. 𝒴 = ℝ



Generalised loss 

• Instead of 𝒳×𝒴,  we consider a single domain 𝒵 (which may be 𝒳×𝒴, or 
something else)
• Loss functions are: ℓ:ℋ×𝒵 → ℝ"

• The loss measured for a single element: ℓ ℎ, 𝑧

• Generalises to more ML problems e.g. clustering (unsupervised learning)
• True risk function: Expected loss: 𝐿𝒟 ℎ = 𝔼*∈𝒟[ℓ(ℎ, 𝑧)]
• Empirical risk function: 𝐿, - = .

"
∑/0." ℓ(ℎ, 𝑧/)

• Exercise: Define 𝑘-means clustering as a formal ML problem, with 
hypothesis class, loss function etc.



Agnostic PAC learning with general loss 
function
• Defined in terms of 𝒵 and general loss functions
• Learning in absence of realizability  



Representative data sets

• We use 𝑆 as a representative of 𝒟

• In general, we cannot be sure that 
• we will find an ℎ that does well outside training data, 
• or that for an ℎ, the performance on 𝑆 matches general performance

• When it does, we say 𝑆 is a representative sample



Representative sample

• 𝑆 is 𝜖 −representative w.r.t (𝒵,ℋ,𝒟) if: 
• ∀ℎ ∈ ℋ, 𝐿# ℎ − 𝐿𝒟 ℎ ≤ 𝜖



Representative sample

• 𝑆 is 𝜖 −representative w.r.t (𝒵,ℋ,𝒟) if: 
• ∀ℎ ∈ ℋ, 𝐿# ℎ − 𝐿𝒟 ℎ ≤ 𝜖

• S gives a good estimate of the true loss for each ℎ

• Observe:
• A sample is representative with respect to ℋ,𝒵
• That is, it is representative with respect to a specifc problem and hypothesis 

class 

• Question: Can there be a notion of represenativeness independent of 
ℋ,𝒵?



Representative sample

• 𝑆 is 𝜖 −representative w.r.t (𝒵,ℋ,𝒟) if: 
• ∀ℎ ∈ ℋ, 𝐿# ℎ − 𝐿𝒟 ℎ ≤ 𝜖

• S gives a good estimate of the true loss for each ℎ

• Lemma: 
• If 𝑆 is %&−representative, and ℎ# ∈ argmin!∈ℋ𝐿#(ℎ), then
• 𝐿𝒟(ℎ#) ≤ min

!!∈ℋ
𝐿𝒟 ℎ? +𝜖

• With representative data, the best empirical (trained) model (ℎ,) is 
almost as good as the best model for true data



Uniform convergence 

• ℋ has uniform convergence if there is 𝑚ℋ
<= : 0,1 % → ℕ

• Such that a random sample 𝑆 ∼ 𝒟* of size 𝑚 ≥ 𝑚ℋ
@A(𝜖, 𝛿)

• Is 𝜖 −representative with probability at least 1 − 𝛿

• When ℋ has uniform convergence, it means we know a large enough 
𝑚 that gives accurate estimates for all ℎ



Corollary 

• If ℋ has uniform convergence with 𝑚ℋ
<= , 

• Then ℋ is PAC learnable with 𝑚ℋ 𝜖, 𝛿 ≤ 𝑚ℋ
@A(%& , 𝛿)



• Theorem:
• Every finite ℋ has uniform convergence
• i.e. Given a random suitable sized  S, ℙ ∃ℎ ∈ ℋ: 𝐿# ℎ − 𝐿𝒟 ℎ > 𝜖 ≤ 𝛿

• And therefore every finite ℋ is agnostic PAC-learnable

• Proof next week, using Chernoff-hoeffding bound



Chernoff-Hoeffding bound

• Very important result in theoretical CS and ML 
• Suppose 𝜃> are random variables with average !

"
∑>?!" 𝜃>

• Suppose 𝜇 is the expected value of a random 𝜃
• Law of large numbers: with increasing 𝑚, !

"
∑>?!" 𝜃> approaches 𝜇

• Ie, $
*
∑BC$* 𝜃B − 𝜇 becomes smaller

• But how fast? What 𝑚 do we need to get 𝜖-close to 𝜇?
• Chernoff-Hoeffding bound:

• ℙ !
"
∑>?!" 𝜃> − 𝜇 > 𝜖 ≤ 2𝑒@%"$!



• Proof of uniform convergence for finite ℋ: next week.

• (you can look up in the book!)



• So, we have proved finite classes are all PAC learnable 

• Next week, we will cover
• The proof of uniform convergence
• No free lunch theorem: There is no universal learner
• Bias-complexity tradeoff 
• Infinite hypothesis classes and fundamental theorem of statistical learning 
• Starting with ML algorithms




