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Recap: General ML

* Domain set X.
* Label Set Y. Eg. {0,1} or {-1, +1} red or blue.
* Training data (sample set): S = {(x{, ¥1), ... (1, Vi) }

* Model, hypothesis, classifier, predictor h:
 Afunction h: X — Y. Thatis, h(x) returns a predicted label y

* Hypothesis class J: The set of functions from which h is chosen
 Algortihm A: Chooses hypothesis h based on S

* Data generating distribution D

* Success measure: Loss/error function L



Empirical risk minimization

* Empirical risk: Average loss in experiment
* For now, define empirical loss or risk of any hypothesis h EH as:

def {7 € [m] : h(x;) # y: }]

m

Ls(h)

* ERM algorithm (A):
* Find the h with min loss: argmin Lg(h)
heH

* We can write hg = A(S) to mean that h was computed by A based on S

* For a finite H, A can just test all hypothesis and pick the one with the
smallest loss.



Overview

* Machine learning has two questions:

 Sample and prepare data
* Question: How much data do we need?

* Apply an algorithm to find a good model in class H

e Question: What is an algorithm that finds good models for a particular class?
* What loss function to use
* What steps the algorithm should take
* How to modify the algorithm to get desirable properties like privacy, fairness etc

* In the course
* We will do the data sampling first. (this week and next)

* Algorithms and their properties in succeeding weeks

* General approach start with simple cases to build intuition and analysis. Then discuss
complex cases



Today’s questions

 How much data do we need for good guarantees?

 What kind of problems are “learnable”?
* Observe that just because we would like to find a good model does not mean that it is possible!

* Approach: we will start with simple problems and finite hypothesis classes to build
intuition and go toward more complex ones

* We will use formal mathematical notations and proofs
* The ideas are not that hard, but takes getting used to the notations
* Ask if you have questions
* This lecture is harder than others. You will need to do some study afterwards!

* |t gives us practice at how to think precisely and clearly. This will be useful in later parts
of the course

* You do not need to recreate these proofs in exam. Just make use that you follow the ideas
e Also read from the book



A simple classifier (exercise)

* A supermarket has asked us to build a model
to classify ripe papayas

* Green is unripe, yellow is ripe
* A sensor reads the colour
* And returns a value in [0,1]

* Assume the supermarket sends us a random
sample of labelled readings

* There is a color threshold t* of ripe papayas
but we don’t know it.




Sample size problem

: 1, 2 :
* Show that sample size m = ZlnE suffices to get €, accuracy:

* With probability atleast 1 — 6
* At most € fraction of unseen papayas will be misclassified



Sample size problem

: 1, 2 :
* Show that sample size m = ZlnE suffices to get €, accuracy.

* With probability atleast 1 — 6
* At most € fraction of unseen papayas will be misclassified

* Assume that papayas are uniformly distributed in [0,1] (the
result works without this, but we are doing the easier version in
class)



Algorithm

* Draw enough samples

e So that there are samples in € intervals to the left
and right of t*

* Take the highest “unripe” label and lowest
“ripe” label.

* Select any point between these two




Sketch of proof

* Of sample size

* Consider only one interval r of
Size €

2

o)

e Show that there is a sampleinr,

with probability at least 1 —g

 Hints:

* Use the probability that none of the
m samples are inr

: 1
 And a sample size of m > Eln

1

* Use the inequality that (1 — p)P < i



Finite hypothesis classes

 To start with, we assume the number of possible hypotheses is finite.

* Suppose the sensor values are in range [0,100] and we can choose
thresholds at only integer positions. What is |H| ?

e Suppose sensor values are in range [0, 1] and we are choosing from
pre-fixed thresholds at intervals of €. How many thresholds are there?



Simplitying assumptions for basic analysis

* Assumption 1: Finite H

* Limit the hypothesis class to have a finite number
of hypotheses

e What

* Assumption 2: Realizability:

 Thereis h® € H that achieves perfect separation
between classes

* i.e. zero Ioss:L(D’f)(h*) =0 © o © © o ©

* It implies that the in-sample loss Lg(h*) = 0 o 3°°° o 200




Sampling assumption (i.i.d)

* Assumption:

* Examples in training set are independent and identically distributed according
toD

e Writtenas S ~ D™

* Algorithm A:

e Checkallh e H

* Pick hg = argmin Lg(h)
heH

* Note that hg is best (zero loss) in training data, but may not be good
in true loss on D



Sampling bound

* With these assumptions, we can show that

>, log(|#|/9)

€

m

* Samples suffice for €, § guarantee: P[Lyp (hs) < €]

* The best hypothesis on training data has small true loss
e With probability 1 — 0,



Proof

* The algorithm expects and finds O empirical loss in the training
set

e Outputs an h with 0 empirical loss (there can be many of these)
* These “Look good” in data

* A “really good” hypothesis also has O true loss in D (realizability)
* Certain hypothesis are “bad”: have a true loss LD,f(h) > €



Proof

* The algorithm expects and finds O empirical loss in the training set

e QOutputs an h with 0 empirical loss (there can be many of these)
* These “Look good” in data

* A “really good” hypothesis also has 0 true loss in D (realizability)
* Certain hypothesis are “bad”: have a true loss LD’f(h) > €

* We get a bad output only if a bad hypothesis has zero empirical loss
in the sample. Let’s compute the probability

* For a bad hypothesis h, the probability of getting one training label
right is:
. 1_LD,f(h) <1l-¢€
* The probability of h getting m labels rightis< (1 — )™ < e~ €™
* This is the probability that a bad hypothesis h looks good



* If Hg is the subset of bad hypotheses

* Then by union bound, probability of some bad hypothesis looking
good is
* < |Hple™™™ < |H|e™™

 Substitute m to get probability of a bad h succeeding < 6
* The probability of not getting a bad resultis>1 — 6

QED



Observe

* The proof says that if h™ is the best hypothesis in a finite
* It is always possible to get as close to h™ in accuracy as we want
* Just need large enough m

* That is, with some assumptions a good enough h¢ can always be
“learned” from big enough dataset



PAC Learnability

* We have just seen that every finite class is “PAC learnable”

* If H is finite and realizable, then there is an algorithm that can
e get as close to the optimum™ model as we want,
* with as high a probability as we want

* Provided we give it enough data
* (and happily, that data is not too much!)

e *optimum model or hypothesis within H
 How good that is in absolute accuracy depends on how good an H we select



PAC learnability (formal definition)

* A hypothesis class H is PAC learnable if

* There exists a function mg.[(O,l)2 — N (means: depending on €, 6, there is a
suitable number of samples)
* And an algorithm that:
* Foreveryeg, o

* ForDover X
With realizability assumption

Onm = mgqr(€,6) i.i.dsamplesfromD,f
Finds an h that satisfies

. L(D,f)(h) < € (finds a good h)

* with probability at least 1 — &



More general learning

* In general, realizability is not true
* There may be no perfecth = f

* Called Agnostic PAC learning

e E.g. Our H consists of squares
* But the data needs a circle to separate classes

* To extend to more general scenarios, let’s change our assumptions



More general model — agnostic learning

* Modified data generating distribution:
* Define D to be probability distribution over X' XY
* Consequence: The same x € X may have labels 0 or 1 probabilistically

e Redefine true risk:

Lp(h) = P [h(z)#y] = D{(z9): h(z) # v}

* (homework: compare this with how we defined true risk earlier)

* Question: Where can this happen in a real example?



Agnostic PAC learnability

* A hypothesis class H is Agnostic PAC learnable if
* There exists a function m¢¢(0,1)* - N

* And an algorithm that:
* Foreveryeg, o
* For D over X XY
Wit lizabil .
* Onm =mgqr(€,8) iidsamplesfromD,f
* Finds an h that satisfies
 Ly(h) < ’Ill,lel;l[ Lp(h') + € (gets € close to the best h’' € ')

* with probability at least 1 — &



Other types of learning problems (defined by
suitable loss)

* We have looked at binary classification
e Other possibilities:

* Multi-class classification
* E.g, Measure loss as the probability of predicting a wrong label

* Regression: labels are real numbersi.e. Y = R

def
Lo(h) & E_(h@)-y)°



Generalised loss

* Instead of X' XU, we consider a single domain Z (which may be X' XY, or
something else)

* Loss functions are: £: HXZ - R,
* The loss measured for a single element: £(h, z)

e Generalises to more ML problems e.g. clustering (unsupervised learning)
* True risk function: Expected loss: Lp(h) = [E,ep[f(h, 2)]

* Empirical risk function: Lsny = %Zﬁ1 t(h, z;)

* Exercise: Define k-means clustering as a formal ML problem, with
hypothesis class, loss function etc.



Agnostic PAC learning with general loss
function

* Defined in terms of Z and general loss functions
* Learning in absence of realizability



Representative data sets

* We use S as a representative of D

* In general, we cannot be sure that
* we will find an h that does well outside training data,
 or that for an h, the performance on S matches general performance

* When it does, we say S is a representative sample



Representative sample

* S is € —representative w.r.t (Z,H,D) if:
* Vhe H,|Ls(h) — Lp(h)| < €



Representative sample

* S is € —representative w.r.t (Z,H,D) if:
* Vhe H,|Ls(h) — Lp(h)| < €

S gives a good estimate of the true loss for each h

* Observe:
* Asample is representative with respectto H, £

* That is, it is representative with respect to a specifc problem and hypothesis
class

* Question: Can there be a notion of represenativeness independent of
H,Z?



Representative sample

* S is € —representative w.r.t (Z,H,D) if:
* Vh € H,|Ls(h) — Lp(h)| < €
S gives a good estimate of the true loss for each h

* Lemma:
e IfSis g —representative, and hg € argminges,Ls(h), then

* Lp(hs) = min Lp(h') +€

* With representative data, the best empirical (trained) model (hg) is
almost as good as the best model for true data



Uniform convergence

* £ has uniform convergence if there is m35°: (0,1)> > N

e Such that a random sample S ~ D™ of size m > m¥* (¢, §)
* |s € —representative with probability at least 1 — 6

* When H has uniform convergence, it means we know a large enough
m that gives accurate estimates for all h



Corollary

* If 7 has uniform convergence with m>¢,

* Then H is PAC learnable with m4,(€,8) < mgf(g, 0)



e Theorem:

* Every finite H has uniform convergence
* i.e. Given a random suitable sized S, P[3h € H:|Ls(h) — Lp(h)| > €] <&

* And therefore every finite H is agnostic PAC-learnable

* Proof next week, using Chernoff-hoeffding bound



Chernoft-Hoeftding bound

* Very important result in theoretical CS and ML

* Suppose 6; are random variables with average %Z}Zl 0;

* Suppose u is the expected value of a random 6

e Law of large numbers: with increasing m, %Z’{Zl 6; approaches u
* le, ‘% m.0; — ,u‘ becomes smaller

* But how fast? What m do we need to get e-close to u?
* Chernoff-Hoeffding bound:

« P ”%2{11 0; — ,u‘ > E] < 2e74Mm€

2



* Proof of uniform convergence for finite H': next week.

* (you can look up in the book!)



* So, we have proved finite classes are all PAC learnable

* Next week, we will cover
* The proof of uniform convergence
No free lunch theorem: There is no universal learner
Bias-complexity tradeoff
Infinite hypothesis classes and fundamental theorem of statistical learning
Starting with ML algorithms






