Recap: General ML

• Domain set \mathcal{X}.
• Label Set \mathcal{Y}. Eg. $\{0,1\}$ or $\{-1, +1\}$ red or blue.
• Training data (sample set): $S = \{(x_1, y_1), \ldots, (x_m, y_m)\}$
• Model, hypothesis, classifier, predictor h:
 • A function $h: \mathcal{X} \to \mathcal{Y}$. That is, $h(x)$ returns a predicted label y
• Hypothesis class \mathcal{H}: The set of functions from which h is chosen
• Algorithm A: Chooses hypothesis h based on S
• Data generating distribution \mathcal{D}
• Success measure: Loss/error function L
Empirical risk minimization

• Empirical risk: Average loss in experiment
• For now, define empirical loss or risk of any hypothesis $h \in \mathcal{H}$ as:

$$L_S(h) \overset{\text{def}}{=} \frac{|\{i \in [m] : h(x_i) \neq y_i\}|}{m}$$

• ERM algorithm (A):
 • Find the h with min loss: $\arg\min_{h \in \mathcal{H}} L_S(h)$
 • We can write $h_S = A(S)$ to mean that h was computed by A based on S
 • For a finite \mathcal{H}, A can just test all hypothesis and pick the one with the smallest loss.
Overview

• Machine learning has two questions:
 • Sample and prepare data
 • Question: How much data do we need?
 • Apply an algorithm to find a good model in class \mathcal{H}
 • Question: What is an algorithm that finds good models for a particular class?
 • What loss function to use
 • What steps the algorithm should take
 • How to modify the algorithm to get desirable properties like privacy, fairness etc

• In the course
 • We will do the data sampling first. (this week and next)
 • Algorithms and their properties in succeeding weeks
 • General approach start with simple cases to build intuition and analysis. Then discuss complex cases
Today’s questions

• How much data do we need for good guarantees?
• What kind of problems are “learnable”?
 • Observe that just because we would like to find a good model does not mean that it is possible!
• Approach: we will start with simple problems and finite hypothesis classes to build intuition and go toward more complex ones
• We will use formal mathematical notations and proofs
 • The ideas are not that hard, but takes getting used to the notations
 • Ask if you have questions
 • This lecture is harder than others. You will need to do some study afterwards!
• It gives us practice at how to think precisely and clearly. This will be useful in later parts of the course
 • You do not need to recreate these proofs in exam. Just make use that you follow the ideas
• Also read from the book
A simple classifier (exercise)

• A supermarket has asked us to build a model to classify ripe papayas
• Green is unripe, yellow is ripe
• A sensor reads the colour
• And returns a value in [0,1]
• Assume the supermarket sends us a random sample of labelled readings
• There is a color threshold \(t^* \) of ripe papayas but we don’t know it.
Sample size problem

• Show that sample size $m \geq \frac{1}{\epsilon} \ln \frac{2}{\delta}$ suffices to get ϵ, δ accuracy:
 • With probability at least $1 - \delta$
 • At most ϵ fraction of unseen papayas will be misclassified
Sample size problem

• Show that sample size $m \geq \frac{1}{\varepsilon} \ln \frac{2}{\delta}$ suffices to get ε, δ accuracy.
 • With probability at least $1 - \delta$
 • At most ε fraction of unseen papayas will be misclassified

• Assume that papayas are uniformly distributed in $[0,1]$ (the result works without this, but we are doing the easier version in class)
Algorithm

• Draw enough samples
 • So that there are samples in ϵ intervals to the left and right of t^*

• Take the highest “unripe” label and lowest “ripe” label.

• Select any point between these two
Sketch of proof

• Of sample size
• Consider only one interval r of size ϵ
• And a sample size of $m \geq \frac{1}{\epsilon} \ln \frac{2}{\delta}$
• Show that there is a sample in r, with probability at least $1 - \frac{\delta}{2}$
• Hints:
 • Use the probability that none of the m samples are in r
 • Use the inequality that $(1 - p)^\frac{1}{p} \leq \frac{1}{e}$
Finite hypothesis classes

- To start with, we assume the number of possible hypotheses is finite.

- Suppose the sensor values are in range $[0,100]$ and we can choose thresholds at only integer positions. What is $|\mathcal{H}|$?

- Suppose sensor values are in range $[0, 1]$ and we are choosing from pre-fixed thresholds at intervals of ϵ. How many thresholds are there?
Simplifying assumptions for basic analysis

• Assumption 1: Finite \mathcal{H}
 • Limit the hypothesis class to have a finite number of hypotheses
 • What

• Assumption 2: Realizability:
 • There is $h^* \in \mathcal{H}$ that achieves perfect separation between classes
 • i.e. zero loss: $L(\mathcal{D}, f)(h^*) = 0$
 • It implies that the in-sample loss $L_S(h^*) = 0$
Sampling assumption (i.i.d)

• Assumption:
 • Examples in training set are independent and identically distributed according to \mathcal{D}
 • Written as $S \sim \mathcal{D}^m$

• Algorithm A:
 • Check all $h \in \mathcal{H}$
 • Pick $h_S = \underset{h \in \mathcal{H}}{\arg\min} L_S(h)$
 • Note that h_S is best (zero loss) in training data, but may not be good in true loss on \mathcal{D}
Sampling bound

• With these assumptions, we can show that

\[m \geq \frac{\log(|\mathcal{H}|/\delta)}{\epsilon} \]

• Samples suffice for \(\epsilon, \delta \) guarantee: \(\mathbb{P}[L_{D,f}(h_S) \leq \epsilon] \)
 • The best hypothesis on training data has small true loss
 • With probability 1 − \(\delta \),
Proof

• The algorithm expects and finds 0 empirical loss in the training set
 • Outputs an h with 0 empirical loss (there can be many of these)
 • These “Look good” in data
• A “really good” hypothesis also has 0 true loss in \mathcal{D} (realizability)
• Certain hypothesis are “bad”: have a true loss $L_{\mathcal{D},f}(h) > \epsilon$
Proof

• The algorithm expects and finds 0 empirical loss in the training set
 • Outputs an h with 0 empirical loss (there can be many of these)
 • These “Look good” in data
• A “really good” hypothesis also has 0 true loss in \mathcal{D} (realizability)
• Certain hypothesis are “bad”: have a true loss $L_{\mathcal{D},f}(h) > \epsilon$
• We get a bad output only if a bad hypothesis has zero empirical loss in the sample. Let’s compute the probability
• For a bad hypothesis h, the probability of getting one training label right is:
 • $1 - L_{\mathcal{D},f}(h) \leq 1 - \epsilon$
• The probability of h getting m labels right is $\leq (1 - \epsilon)^m \leq e^{-\epsilon m}$
 • This is the probability that a bad hypothesis h looks good
• If H_B is the subset of bad hypotheses
• Then by union bound, probability of some bad hypothesis looking good is
 • $\leq |H_B|e^{-\epsilon m} \leq |\mathcal{H}|e^{-\epsilon m}$

• Substitute m to get probability of a bad h succeeding $\leq \delta$

• The probability of not getting a bad result is $\geq 1 - \delta$

QED
Observe

• The proof says that if h^* is the best hypothesis in a finite \mathcal{H},
 • It is always possible to get as close to h^* in accuracy as we want
 • Just need large enough m

• That is, with some assumptions a good enough h_S can always be “learned” from big enough dataset
PAC Learnability

- We have just seen that every finite class is “PAC learnable”

- If \mathcal{H} is finite and realizable, then there is an algorithm that can
 - get as close to the optimum* model as we want,
 - with as high a probability as we want
 - Provided we give it enough data
 - (and happily, that data is not too much!)

- *optimum model or hypothesis within \mathcal{H}
 - How good that is in absolute accuracy depends on how good an \mathcal{H} we select
PAC learnability (formal definition)

- A hypothesis class \mathcal{H} is PAC learnable if
 - There exists a function $m_{\mathcal{H}}(0,1)^2 \to \mathbb{N}$ (means: depending on ϵ, δ, there is a suitable number of samples)
 - And an algorithm that:
 - For every ϵ, δ
 - For \mathcal{D} over \mathcal{X}
 - With realizability assumption
 - On $m \geq m_{\mathcal{H}}(\epsilon, \delta)$ i.i.d samples from \mathcal{D},f
 - Finds an h that satisfies
 - $L(\mathcal{D},f)(h) \leq \epsilon$ (finds a good h)
 - with probability at least $1 - \delta$
More general learning

• In general, realizability is not true
 • There may be no perfect \(h = f \)
• Called Agnostic PAC learning

• E.g. Our \(\mathcal{H} \) consists of squares
 • But the data needs a circle to separate classes

• To extend to more general scenarios, let’s change our assumptions
More general model – agnostic learning

- Modified data generating distribution:
 - Define \mathcal{D} to be probability distribution over $\mathcal{X} \times \mathcal{Y}$
 - Consequence: The same $x \in \mathcal{X}$ may have labels 0 or 1 probabilistically

- Redefine true risk:

 $$L_D(h) \overset{\text{def}}{=} \mathbb{P}_{(x,y) \sim \mathcal{D}}[h(x) \neq y] \overset{\text{def}}{=} \mathcal{D}(\{(x,y) : h(x) \neq y\}).$$

- (homework: compare this with how we defined true risk earlier)

- Question: Where can this happen in a real example?
Agnostic PAC learnability

• A hypothesis class \mathcal{H} is Agnostic PAC learnable if
 • There exists a function $m_{\mathcal{H}}(0,1)^2 \rightarrow \mathbb{N}$
 • And an algorithm that:
 • For every ϵ, δ
 • For \mathcal{D} over $\mathcal{X} \times \mathcal{Y}$
 • With realizability assumption
 • On $m \geq m_{\mathcal{H}}(\epsilon, \delta)$ i.i.d samples from \mathcal{D}, f
 • Finds an h that satisfies
 • $L_D(h) \leq \min_{h' \in \mathcal{H}} L_D(h') + \epsilon$ (gets ϵ close to the best $h' \in \mathcal{H}$)
 • with probability at least $1 - \delta$
Other types of learning problems (defined by suitable loss)

• We have looked at binary classification
• Other possibilities:
 • Multi-class classification
 • E.g, Measure loss as the probability of predicting a wrong label
• Regression: labels are real numbers i.e. $\mathcal{Y} = \mathbb{R}$

\[
L_{\mathcal{D}}(h) \overset{\text{def}}{=} \mathbb{E}_{(x,y) \sim \mathcal{D}} (h(x) - y)^2
\]
Generalised loss

• Instead of $\mathcal{X} \times \mathcal{Y}$, we consider a single domain \mathcal{Z} (which may be $\mathcal{X} \times \mathcal{Y}$, or something else)
 • Loss functions are: $\ell: \mathcal{H} \times \mathcal{Z} \to \mathbb{R}_+$
 • The loss measured for a single element: $\ell(h, z)$

• Generalises to more ML problems e.g. clustering (unsupervised learning)

• True risk function: Expected loss: $L_D(h) = \mathbb{E}_{z \in \mathcal{D}}[\ell(h, z)]$

• Empirical risk function: $L_S(h) = \frac{1}{m} \sum_{i=1}^{m} \ell(h, z_i)$

• Exercise: Define k-means clustering as a formal ML problem, with hypothesis class, loss function etc.
Agnostic PAC learning with general loss function

• Defined in terms of \mathcal{Z} and general loss functions
• Learning in absence of realizability
Representative data sets

• We use S as a representative of \mathcal{D}

• In general, we cannot be sure that
 • we will find an h that does well outside training data,
 • or that for an h, the performance on S matches general performance

• When it does, we say S is a representative sample
Representative sample

• S is ϵ—representative w.r.t $(Z, \mathcal{H}, \mathcal{D})$ if:
 • $\forall h \in \mathcal{H}, |L_S(h) - L_D(h)| \leq \epsilon$
Representative sample

• S is ϵ-representative w.r.t (Z, H, D) if:
 • $\forall h \in H, |L_S(h) - L_D(h)| \leq \epsilon$

• S gives a good estimate of the true loss for each h

• Observe:
 • A sample is representative with respect to H, Z
 • That is, it is representative with respect to a specific problem and hypothesis class

• Question: Can there be a notion of representativeness independent of H, Z?
Representative sample

• S is ϵ—representative w.r.t $(\mathcal{Z}, \mathcal{H}, \mathcal{D})$ if:
 • $\forall h \in \mathcal{H}, |L_S(h) - L_D(h)| \leq \epsilon$
 • S gives a good estimate of the true loss for each h

• Lemma:
 • If S is $\frac{\epsilon}{2}$—representative, and $h_S \in \arg\min_{h \in \mathcal{H}} L_S(h)$, then
 • $L_D(h_S) \leq \min_{h' \in \mathcal{H}} L_D(h') + \epsilon$

• With representative data, the best empirical (trained) model (h_S) is almost as good as the best model for true data
Uniform convergence

- \mathcal{H} has uniform convergence if there is $m_{\mathcal{H}}^{UC} : (0,1)^2 \to \mathbb{N}$
 - Such that a random sample $S \sim D^m$ of size $m \geq m_{\mathcal{H}}^{UC}(\epsilon, \delta)$
 - Is ϵ–representative with probability at least $1 - \delta$

- When \mathcal{H} has uniform convergence, it means we know a large enough m that gives accurate estimates for all h
Corollary

• If \mathcal{H} has uniform convergence with $m_{\mathcal{H}}^{UC}$,
 • Then \mathcal{H} is PAC learnable with $m_{\mathcal{H}}(\varepsilon, \delta) \leq m_{\mathcal{H}}^{UC}(\frac{\varepsilon}{2}, \delta)$
• Theorem:
• Every finite \mathcal{H} has uniform convergence
 • i.e. Given a random suitable sized S, \(\mathbb{P}[\exists h \in \mathcal{H}: |L_S(h) - L_D(h)| > \epsilon] \leq \delta \)

• And therefore every finite \mathcal{H} is agnostic PAC-learnable

• Proof next week, using Chernoff-hoeffding bound
Chernoff-Hoeffding bound

• Very important result in theoretical CS and ML
• Suppose θ_i are random variables with average $\frac{1}{m} \sum_{i=1}^{m} \theta_i$
• Suppose μ is the expected value of a random θ
• Law of large numbers: with increasing m, $\frac{1}{m} \sum_{i=1}^{m} \theta_i$ approaches μ
 • i.e, $\left| \frac{1}{m} \sum_{i=1}^{m} \theta_i - \mu \right|$ becomes smaller
• But how fast? What m do we need to get ϵ-close to μ?
• Chernoff-Hoeffding bound:
 • $\Pr \left[\left| \frac{1}{m} \sum_{i=1}^{m} \theta_i - \mu \right| > \epsilon \right] \leq 2e^{-2me^2}$
• Proof of uniform convergence for finite \mathcal{H}: next week.

• (you can look up in the book!)
• So, we have proved finite classes are all PAC learnable

• Next week, we will cover
 • The proof of uniform convergence
 • No free lunch theorem: There is no universal learner
 • Bias-complexity tradeoff
 • Infinite hypothesis classes and fundamental theorem of statistical learning
 • Starting with ML algorithms