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Coursework

• Keep an eye on piazza
• Note that submission deadline is 13 march at 12:00. 
• Submit early. Don’t keep till last minute! 



Recap: DP example: Make output 
probabilities similar for n and n-1 
• Problem: count the number of people in the 

meeting
• Solution: 
• Find real count 𝑛
• Publish 𝑛 + 𝑦 where 𝑦 is noise (a random number)

• Draw 𝑦 from Laplace distribution

• Pr 𝑦 = !
"#
𝑒$

!"#
$ 	

• 𝜇 is the mean, 2𝑏" is variance 

• We will write 𝐿𝑎𝑝(𝑏) to mean Laplace 
distribution with mean 0 and variance 2𝑏* 



What about privacy other than one person? 

• What about a group of k?
• Suppose there is a group of k people who 

may not have attended. 
• Neighboring databases differ in count of k
• A more general notion of neighboring 

databases
• And we want to hide this from the 

observer/adversary
• Should have similar probabilities for n and n-k 

• Exercise : Show that an 𝜖-DP algorithm is 
𝑘𝜖-DP for any group of size 𝑘



• Any published 𝑤 can occur in two ways: 
• 𝑛 + 𝑦
• 𝑛 − 𝑘 + 𝑦 + 𝑘

• The ratio +,[./01234]
+,[./0123467]

=?
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• Remember that 𝑘𝜖 is worse privacy than 𝜖
• Larger groups are harder to privatise! 
• How can we get 𝜖-DP for 𝑘 people?  



𝜖-DP for a group of 𝑘-people

• Add a noise of 𝐿𝑎𝑝 !
"

 
• The larger variance makes the red and 

blue distributions more similar 
• Similar output probabilities 

• Attains 𝜖-DP

• Observe that it works to hide any 
group of k people not attending



How much noise do we need?  

• The variance of the noise depends on how much 
𝑓 can change due to a unit change between 
neighboring databases 
• If 𝑓 𝐷  and 𝑓 𝐷#  are every close, we need only 

a little noise to make them indistinguishable
• If they are very different, we need a large noise 

• Sensitivity of 𝑓 is written as Δ𝑓 :
• Δ𝑓 = 	max

!,!!
|𝑓 𝐷 − 𝑓(𝐷′)| 

• The maximum possible difference in 𝑓 between 
neighboring datasets. 



Laplace mechanism 

• Given a database 𝐷 and a function 𝑓,

• Output 𝐴 𝐷 = 𝑓 𝐷 + 𝑦, where 𝑦 ∼ 𝐿𝑎𝑝 9:
8
	

• This ensures 𝜖 differential privacy. 



Privacy and utility 

• Adding noise gains privacy
• Adding more noise (from a distribution of higher variance) gains more 

privacy
• But more noise decreases accuracy of the eventual use of the value, 

so it is less useful
• We say it has less utility 

• The challenge is to balance utility and privacy
• By adding the minimum necessary noise 

• If sensitivity is larger, noise is larger. Utility is less. 



Examples

• When 𝑓 is the count of number of people
• Δ𝑓 = 1

• Suppose the max height of a person is assumed to be 7ft. 
• If 𝑓 is the sum of heights of a group in feet, then sensitivity is 7.

• Suppose the max salary in a company is capped at £50K
• We are analysing total salaries in groups of size 4. That is, a group is either 

present or absent. Then the sensitivity is £200K. 



Another example

• Suppose 𝑓 = ;
.
∑𝑋0, where 𝑋0 ∈ [0,1]

• Sensitivity is ;
.

 (if we replace one number by another)
• Note that we are using the replacement version for convenience. 

• Thus, the noise required is 𝑦 ∼ 𝐿𝑎𝑝 ;
8.



Utility of Laplace mechanism

• We add noise 𝑦 ∼ 𝐿𝑎𝑝 9:
8
	

• But noise hurts the utility. 
• Is the output of Laplace mechanism useful? 

• We can show that the error from Laplace mechanism is limited
• Laplace method has an error bound (utility guarantee):
• Expected error 𝔼 |𝐴 𝐷 − 𝑓 𝐷 | = !"

#  
• So the error induced is determined by sensitivity, but is not much larger



Local differential privacy 

• Suppose 𝑋$, 𝑋%, … are in [0, 1] and represent how frequently person 𝑖 uses 
their phone
• Suppose they are recorded by mobile phones of person 1,2, . . . and 

transmitted to a server 
• The problem: Each person wants their data to be private

• E.g. when they do not trust the server collecting and computing 
• Solution: 

• Add noise before transmitting the variables
• Ie. Each phone 𝑖	Transmits 𝑋# + 𝑦#, where 𝑦# ∼ 𝐿𝑎𝑝 $

%
• Either the server, or anyone snooping the line cannot be sure of the data transmitted 
• Data is protected by DP right from the source. 
• Disadvantage: A lot more noise than adding noise once 



Approximate differential privacy 

• Algorithm 𝐴 is (𝜖, 𝛿)-differentially private if :
• For every neighbouring 𝐷,𝐷′
• Pr[𝐴 𝐷 ∈ 𝑆] ≤ 𝑒# ⋅ Pr 𝐴 𝐷$ ∈ 𝑆 +𝛿

• In theory, 𝛿 must be very small to be useful, like 𝑜 ;
.

. 
• In practice, it is sometimes a bit larger. 

• When 𝛿 = 0, we have pure DP (the version we saw already) 



Gaussian mechanism 

• Gaussian distribution: 𝒩 𝜇, 𝜎* = ;
< *=

𝑒 > #!' (

()(

• Compute 𝑓(𝐷) and Δ𝑓
• Draw noise from Gaussian distribution 𝑦 ∼ 𝒩(0, 𝜎*)

• Where 𝜎 =
% &' !.#$

% ⋅!"

#

• Output 𝑓 𝐷 + 𝑦	

• Theorem: Gaussian mechanism satisfies (𝜖, 𝛿)-DP



Composition 

• Suppose we run algorithms 𝐴$, 𝐴%, … .
• Where 𝐴# is (𝜖# , 𝛿#)-DP

• E.g. we perform different computations on the same data and publish the 
results
• Then the end result (𝐴$ 𝐷 , 𝐴% 𝐷 ,…𝐴& 𝐷 ) is
• (𝜖, 𝛿)- DP for 

• 𝜖 = ∑𝜖#, 
• 𝛿 = ∑𝛿#

• Thus, 𝜖, 𝛿 increase and we lose privacy as more computations are released



Repeated computation

• The same idea holds if we carry out the same operation multiple 
times
• E.g. if 𝐴;, 𝐴*, … are all the same computation and each adds a noise, 

then, while each may be  (𝜖, 𝛿) DP, the overall privacy loss can be 
large for many repetitions  



With 𝑘 repetitions of the same query

• How can we get 𝜖-DP?  



Resilience to post processing 

• Differential privacy holds for further use of the output

• E.g. if a model or output 𝑚 is obtained with an 𝜖-DP algorithm, then 
we can use	𝑚 as many times as we wish without any additional loss 
of privacy 
• We are not using the raw database 𝐷 any more, and using 𝑚 again does not 

lose more privacy 
• If a computation uses 𝐷 again, then it loses more privacy. 



Notes on differential privacy

• DP is a property of the randomized algorithm
• The algorithm depends on the assumptions and computation objective

• Not on the dataset 
• Noise depends on sensitivity (from what is known/assumed about the data)

• Note that sensitivity is not computed from the data, as this itself will leak privacy
• It is assumed that whatever is needed to compute sensitivity is known to  everyone

• Noise is computed for the objective, for all possible inputs
• Noise is not computed for specific input points

• DP is determined based on the assumptions about the data, but not on the 
actual data. 
• If your DP mechanism depends on anything computed from the data, be very 

careful!  



Algorithms with multi-dimensional outputs

• Till now, we have considered algorithms with real valued outputs
• Now, consider algorithms with 𝑘-dimensional outputs
• E.g. ML models with 𝑘 parameters 

• Similar to applying 𝑘 different algorithms



• Suppose 𝑓: 𝒵. → ℝ7 	
• Produces a 𝑘-dim output 

• On changing the input 𝐷, all 𝑘 different parameters may change
• How do we measure sensitivity?



𝐿!Norms

• 𝐿? norms are defined as: 
• 𝑥 ) = 𝑥*

) + 𝑥%
) +⋯+ 𝑥+

) */)

• Most relevant for us:
• 𝑥	 − 𝑦 * = 𝑥* − 𝑦* + 𝑥% 	− 𝑦% +⋯+ 𝑥+ − 𝑦+
• 𝑥	 − 𝑦 % = 𝑥* − 𝑦* % + 𝑥% − 𝑦% % +⋯+ 𝑥+ − 𝑦+ %



𝐿" and 𝐿#Sensitivity 

• 𝑓: 𝒵. → ℝ7 	
• Produces a 𝑘-dim output 

• Sensitivity measured as the norms: 
• Δ;𝑓 = max

@,@*
𝑓 𝐷 − 𝑓 𝐷B ; 

• Δ*𝑓 = max
@,@*

𝑓 𝐷 − 𝑓 𝐷B * 



𝑘-dim Laplace mechanism 

• Compute Δ;𝑓

• For 𝑖 = 1,…𝑘,	draw 𝑦0 ∼ 𝐿𝑎𝑝 9+:
8

• Output 𝑓 𝐷 + 𝑌, where 𝑌 = (𝑦;, 𝑦*, … 𝑦7)



𝑘-dim Gaussian mechanism 

• Compute Δ*𝑓
• For 𝑖 = 1,…𝑘,	draw 𝑦0 ∼ 𝒩(0, 𝜎*)

• Where 𝜎 =
% &' !.#$

% ⋅!#"

#

• Output 𝑓 𝐷 + 𝑌, where 𝑌 = (𝑦;, 𝑦*, … 𝑦7)



Which is better? 
• Consider L1 and L2 norms for 𝑘 dimensions
• Assume x – y = [1,1,1,1,1,…]
• 𝑥 − 𝑦 ; = 𝑘
• 𝑥 − 𝑦 * = 𝑘

• Thus, in high dimensions, L2 sensitivity is smaller. 
• Gaussian mechanism can use L2 sensitivity

• Since Sensitivity determines standard deviation of distribution, 
gaussian mechanism has smaller standard deviation (or variance).
• But remember that gaussian mechanism also has the additive 𝛿



Perturbation mechanisms

• Input perturbation:
• Modify the data (add noise to each point) before any computation is applied 
• Similar to local DP

• Output perturbation 
• Compute output, then add the noise 
• E.g. add noise to the aggregate, or to the ML model parameters 

• Gradient or internal perturbation
• Add noise to the operation of the algorithm
• E.g. to the gradients of SGD



Differentially Private Empirical Risk 
Minimisation 
• Regularized ERM:
• @𝒘 = 𝑎𝑟𝑔𝑚𝑖𝑛𝒘(𝐿. 𝒘 + 𝑅(𝒘)) : Optimal regularized model 
• 𝑅(𝒘) is a regularizer
• Common choice: 𝑅 𝒘 = 𝜆 𝒘 %

 is 2𝜆-strongly convex
• Makes (𝐿. 𝒘 + 𝑅(𝒘)) strongly convex 

• Theorem: 𝐿* sensitivity for ERM:
• If loss function 𝐿 is 𝜆-strongly convex
• If 𝐿 is convex, differentiable, 𝐺-Lipschitz 
• Then the 𝐿% sensitivity is at most /012



DP-ERM using output perturbation

• Optimal solution: V𝒘 = 𝑎𝑟𝑔𝑚𝑖𝑛𝒘(𝐿D 𝒘 + 𝑅(𝒘))
•  For 𝑖 = 1,…𝑘,	draw 𝑦0 ∼ 𝒩(0, 𝜎*)

• Where 𝜎 =
/0 % &' !.#$

%

12#

• V𝒘 + 𝑌, where 𝑌 = (𝑦;, 𝑦*, … 𝑦7)

• Apply gaussian mechanism with the right sensitivity 
• Guarantees (𝜖, 𝛿)-DP



DP-SGD 

• At every step: 
• Sample a point or batch 𝑧
• Compute Gradient g3 = ∇𝑓𝒘𝒕 𝑧     (privacy risk: gradient is a function of 𝑧)
•  clip 𝑔4 to length at most 𝐶 : Q𝑔4 ← 𝑔4 ⋅

*

567(*,| () |* )

• Add noise Q𝑔4 = Q𝑔4 + 𝑟 where 𝑟 ∼ 𝒩(0, 𝜎%𝐶%)	(in suitable dimensions..) 
• Update model 𝒘4;* = 𝒘4 − 𝜂𝑔4

• At end, return final model 
 



Differential privacy of DP-SGD 

• The impact of data point(s) used in any one step is limited to a vector of 
length 𝐶

• For 𝜎 =
% '(&.()*
"

 , every step is (𝜖, 𝛿)-DP 

• Overall, for 𝑇 steps with batches that are 𝑞 fraction of data, we get 
𝑞𝑇𝜖, 𝑞𝑇𝛿 -DP 

• More tighter bounds available, e.g. (𝑞𝜖 𝑇, 𝛿)
• Proofs omitted 



Amplification by sampling

• If 𝐴 is an (𝜖, 𝛿)-DP  algorithm for 𝐷 
• If 𝑆(𝐷) returns a sample of 𝐷 where each element is present with 

probability  𝑝

• Then 𝐴(𝑆 𝐷 ) is (𝜖B, 𝑝𝛿)-DP, where
• 𝜖$ = ln(1 + 𝑝(𝑒# − 1))
• Note that ln(1 + 𝑝(𝑒# − 1)) ≤ 2𝑝𝜖

• Sampling improves the privacy of a private algorithm (e.g. in 
randomly selected batches)



DP machine learning

• Current research area, with connections to all aspects of ML
• Complexity, optimization, stability, dimension reduction…. 

• For any datascience/ML algorithm it is possible to ask: What is the DP 
version of this algorithm? Can we get a good enough privacy – utility 
tradeoff? 

• Current situation with DP-SGD and differentially private training 
• Works well on smaller models 
• On large neural networks, the extra noise with many parameters makes them 

inaccurate
• Ongoing research in making differential privacy more useful 

• Typical approacg: argue that overall small levels of noise added carefully actually suffices to 
get required levels of privacy



Non-numerical queries

• Our basic output perturbation mechanism: 𝐴 𝐷 = 𝑓 𝐷 + 𝑌
• Works only with numeric values

• How can we privatise non-numeric queries? 
• What is the most popular movie? 
• Which date is likely to work best to schedule a meeting? 
• What are other examples of non-numeric or selection queries?
• How can we privatize them?



Non-numerical queries

• Suppose 𝑓: 𝒵. → 𝒪 (for dataset 𝐷 ∈ 𝒵.)
• 𝒪 is a set of discrete possibilities 

• E.g. set of movies, set of computers, set of web sites etc 

• While 𝒪 is discrete, we can imagine a numerical score or utility to 
elements of 𝒪 
• E.g. the popularity of a movie, the number of people that can attend the 

meeting on a date etc
• 𝑠: 𝒵1×𝒪 → ℝ
• 𝑠(𝐷, 𝑜) represents the score of 𝑜 as an approximation of 𝑓 𝐷



Sensitivity of 𝑠 

• For	neighbouring	𝐷, 𝐷′

• Δ𝑠 = max
/∈𝒪

max
@,@B

|𝑠 𝐷, 𝑜 − 𝑠(𝐷B, 𝑜)|

• Worst case difference in output between neighboring datasets 



Exponential mechanism 

• Task is to find f(D)
• Compute 𝑠 and Δ𝑠
• Output 𝑜 with probability 

• Pr 𝑜 = +
" #,% &
'"

∑%!∈𝒪 +
" #,%! &

'"

• Sample 𝑜 with probability proportional to its score 
• Denominator is just normalisation 

• Probability drops off exponentially with decreasing score
• Compare with Laplace mechanism 



Theorem

• Exponential mechanism satisfies 𝜖-DP 




