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Today’s topics 

• Uniform convergence and PAC learning for finite ℋ

• No free lunch theorem 

• Error and bias-complexity tradeoff

• Infinite ℋ

• VC dimension and fundamental theorem of statistical learning

• Algorithms and loss functions



Uniform convergence 

• 𝑆 is 𝜖 −representative w.r.t (𝒵,ℋ,𝒟) if: 
• ∀ℎ ∈ ℋ, 𝐿𝑆 ℎ − 𝐿𝒟 ℎ ≤ 𝜖

• S gives a good estimate of the true loss for each ℎ

• ℋ has uniform convergence if there is 𝑚ℋ
𝑈𝐶: 0,1 2 → ℕ

• Such that a random sample 𝑆 ∼ 𝒟𝑚 of size 𝑚 ≥ 𝑚ℋ
𝑈𝐶(𝜖, 𝛿)

• Is 𝜖 −representative with probability at least 1 − 𝛿

• That is, a hypothesis class is said to have uniform convergence 
• if for any 𝜖, 𝛿:
• Any random sample S of large enough sample size 𝑚 (a function of 𝜖, 𝛿) 
• Is 𝜖 – representative with probability of at least 1 − 𝛿

• Will give a good estimate of 



• Theorem:

• Every finite ℋ has uniform convergence
• i.e. Given a suitably sized random S, ℙ ∃ℎ ∈ ℋ: 𝐿𝑆 ℎ − 𝐿𝒟 ℎ > 𝜖 ≤ 𝛿

• We proved this using the Chernoff-hoeffding bound: 

• ℙ
1

𝑚
σ𝑖=1
𝑚 𝜃𝑖 − 𝜇 > 𝜖 ≤ 2𝑒−2𝑚𝜖2



Representativeness and learnability 

• Lemma: If 𝑆 is 
𝜖

2
-representative then 

• 𝐿𝒟 ℎ𝑆 ≤ min
ℎ∈ℋ

𝐿𝒟 ℎ + 𝜖

• Proof: [in book]
• For every ℎ ∈ ℋ

• 𝐿𝒟(ℎ𝑆) ≤ 𝐿𝑆 ℎ𝑆 +
𝜖

2

≤ 𝐿𝑆 ℎ +
𝜖

2

≤ 𝐿𝒟(ℎ) +
𝜖

2
+

𝜖

2
= 𝐿𝒟(ℎ) + 𝜖

Can you explain each step?



So, we have 

• Any finite ℋ has uniform convergence [theorem]

• Therefore, any 𝑆 ∈ 𝒟𝑚 of suitable size 𝑚 ≥ 𝑚ℋ
𝑈𝐶(

𝜖

2
, 𝛿)

• Is 
𝜖

2
-representative for ℋ with probability at least 1 − 𝛿

• By definition

• Therefore, 
• 𝐿𝒟 ℎ𝑆 ≤ min

ℎ∈ℋ
𝐿𝒟 ℎ + 𝜖 with probability at least 1 − 𝛿 [Lemma]

• ℋ is PAC learnable [check yourself!]



• So, we have proved finite classes are all PAC learnable 

• How useful is it? 



• So, we have proved finite classes are all PAC learnable 

• How useful is it? 

• ℋ is described by some parameters 
• E.g. coefficients of polynomials, weights on edges…

• We can always discretize by taking closely spaced discrete points
• An the log implies that sample size will not be too bad

• In fact in a computer, numbers are always discretized 
• And thus practical hypothesis classes are technically finite 

• Though searching the entire class may not be practical…



Do we need to think about hypothesis 
classes? 
• In class, we discussed why we cannot have “all possible” hypotheses 

as our class. 
• Challenges in computation

• Challenges in enumerating 

• We now see a theorem that says there is no universal PAC learner

• Whatever the algorithm 𝐴,
• There is a learning problem described where it fails

• To achieve PAC guarantee



No Free Lunch theorem (thm 5.1 in book) 

• Given 𝒳,𝒴

• Assume 0-1 loss. Assume 𝑚 <
𝒳

2
: less than half of all possible data

• Suppose 𝑓 is the “perfect” classifier (that is, the “truth”)
• We would like to know 𝑓, but we can’t 

• There exists 𝒟, 𝑓 such that 
• 𝐿𝒟 𝑓 = 0
• For a random 𝑆 ∼ 𝒟𝑚

• With probability ≥
1

7
, the true loss 𝐿𝒟 𝐴 𝑆 ≥

1

8

• This violates the guarantees of PAC that should hold for any 𝜖, 𝛿
• Unless we use more than half of all possible data 

• We skip the proof



Conclusion: Prior knowledge is necessary

• ℋ represents what we know or can guess about the problem

• A more restricted (smaller) class is suitable when we have a pretty 
good idea, or prior knowledge

• A more complex (larger) class is suitable when we have less 
knowledge about the problem

• Taking the set of all possible hypotheses or functions will imply no 
knowledge of domain 

• Corollary (5.2 in book): If 𝒳 is infinite, and ℋ is set of all possible 
functions from 𝒳 to 0,1 , then ℋ is not PAC learnable 



Impact of Prior knowledge: Bias – complexity 
tradeoff
• So, we have to choose a fixed ℋ

• We make some assumptions about the type of solution that can work

• This introduces a Bias we are looking for certain types of solutions instead of 
all possible solutions 

• Less complex ℋ means more restrictive assumptions
• And greater bias

• More complex ℋ means less restrictive assumptions
• And less bias



The various losses and errors 

• Suppose an algorithm 𝐴 computes model ℎ𝑆 on training data 𝑆

• Training Loss:  𝐿𝑆(ℎ𝑆)

• Generalisation Loss or true loss: 𝐿𝒟(ℎ𝑆)

• Generalisation Gap: 𝐿𝒟 ℎ𝑆 − 𝐿𝑆(ℎ𝑆)



Decomposition of true loss

• True loss: 𝐿𝒟 ℎ𝑆 = 𝜖𝑎𝑝𝑝 + 𝜖𝑒𝑠𝑡

• Approximation error 𝜖𝑎𝑝𝑝 = 𝐿𝒟(ℎ
∗)

• Min true error in the hypothesis class

• Limitation of the choice of hypothesis class 

• Estimation error 𝜖𝑒𝑠𝑡 = 𝐿𝒟 ℎ𝑆 − 𝐿𝒟(ℎ
∗):

• Difference between approximation error and true error

• Error due to sampling and overfitting choosing suboptimal ℎ𝑆



Bias complexity tradeoff 

• Small, restricted, less complex ℋ
• Small estimation error

• Needs less data
• Large approximation error

• Large, rich, complex ℋ
• Large estimation error (due to overfitting)

• Needs more data
• Small approximation error

• A lot of ML is about designing good ℋ, balancing errors
• Often by making use of our knowledge of the domain



Infinite hypothesis classes 

• We have proved that finite ℋ are PAC learnable 

• What about infinite ℋ? 

• We already proved PAC guarantee for an infinite ℋ
• The threshold classifier for ripe papayas: real numbers [t, 1]

• Why were we able to prove the guarantees? 



Observation

• Sample complexity 𝑚 ≥
log

2 ℋ

𝛿

2𝜖2
can be written as 

𝑚 ≥
log ℋ +log

2

𝛿

2𝜖2

• It has two components
• Complexity (size) of hypothesis class

• Confidence probability 



• For finite classes: ℋ is a measure of complexity 

• For infinite classes, we can use dimensionality
• As a measure of complexity of ℋ

• Allows us to get efficient results in the 1-D case

• VC-dimension: A complexity measure for infinite classes
• Ability of ℋ to split different arrangements of points into different subsets



Shattering

• Take a point set 𝐶 ⊂ 𝒳

• 𝐶 is shattered by ℋ if 

• Any classification of points in 𝐶 can be achieved by ℋ

• That is, for each possible 0-1 labelling of points in 𝐶
• There is an ℎ ∈ ℋ that selects all of the ones and none of the zeros



VC dimension

• VC dimension of ℋ is 

• The size of the largest set 𝐶 ⊂ 𝒳 that can be shattered by ℋ

• For VC dim to be 𝑑, we have to show:  
• There is one set of size 𝑑 that is shattered by ℋ

• No set of size 𝑑 + 1 is shattered by ℋ



VC dim examples

• Threshold functions: Dim 1 

• Intervals : Dim 2 

• Axis aligned rectangles: Dim 4



Finite classes – relation to VC dimension 

• On 𝐶 there are 2 𝐶 possibly binary classifications

• Thus, 𝐶 cannot be shattered if ℋ < 2 𝐶

• Therefore: 𝑉𝐶𝑑𝑖𝑚 ℋ ≤ log2 ℋ



Number of parametres

• Number of parameters of ℋ is a good measure of complexity 

• Often equals VCdim
• But not always 



Fundamental theorem of statistical learning



In more detail 



• Proof: Omitted 

• Other types of loss functions:
• Similar properties hold. But do search for exact results before use. 



Structural Risk Minimization 

• We have till now treated ℋ as binary choice: hypothesis in the class are all 
equally valid, while outside the class are disallowed 

• What if all ℎ ∈ ℋ are not equally desirable? 

• Structural Risk Minimization
• Assign different preferences to different hypothesis

• Examples: 
• Assign a weight 𝑤(h) to each hypothesis. Higher weight reflects higher preference

• Divide hypothesis class into subclasses, assign a weight to each class



Some example weighting functions

• Polynomial degree
• We would usually prefer lower degree polynomials 

• Polynomial coefficients 
• We prefer smaller coefficients as that describes gentler/smoother functions

• Minimum description length 
• How many bits or characters does it take to represent the class? 

• Shorter description length (simpler class) is more desirable



Regularization 

• A common way to achieve simpler models

• Include a “penalty” function to the loss

• E.g. sum of coefficients, or description length, sum of weights

• Minimizing the loss now includes minimizing the actual loss and 
minimizing the penalty 

• More on regularization later 



Discussion: PAC, VCDim and ML in practice

• The issue: PAC and VC analysis does not work too well on Deep 
learning 

• VC dim of neural networks are hard to compute. A simple bound is 
VCDim = 𝑂(|𝐸|)
• Not so useful 

• Varies somewhat by activation function etc. 



Recap till now

• Hypothesis classes

• Empirical and true loss. Empiricial loss minimization 

• Sample complexity 

• PAC learnability (realizable, finite)

• Agnostic PAC learnability (finite)

• Bias- complexity tradeoff

• VC dim 

• PAC learning infinite classes: Fundamental theorem of statistical 
learning 
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