Bias and VC dimension

Machine Learning Theory (MLT)

Edinburgh

Rik Sarkar

Today's topics

- ullet Uniform convergence and PAC learning for finite ${\cal H}$
- No free lunch theorem
- Error and bias-complexity tradeoff
- Infinite ${\cal H}$
- VC dimension and fundamental theorem of statistical learning
- Algorithms and loss functions

Uniform convergence

- S is ϵ —representative w.r.t $(\mathcal{Z}, \mathcal{H}, \mathcal{D})$ if:
 - $\forall h \in \mathcal{H}, |L_S(h) L_D(h)| \leq \epsilon$
- S gives a good estimate of the true loss for each h
- \mathcal{H} has uniform convergence if there is $m_{\mathcal{H}}^{\mathit{UC}}$: $(0,1)^2 \to \mathbb{N}$
 - Such that a random sample $S \sim \mathcal{D}^m$ of size $m \geq m_{\mathcal{H}}^{UC}(\epsilon, \delta)$
 - Is ϵ —representative with probability at least $1-\delta$
- That is, a hypothesis class is said to have uniform convergence
 - if for any ϵ , δ :
 - Any random sample S of large enough sample size m (a function of ϵ,δ)
 - Is ϵ representative with probability of at least $1-\delta$
 - Will give a good estimate of

- Theorem:
- Every finite ${\mathcal H}$ has uniform convergence
 - i.e. Given a suitably sized random S, $\mathbb{P}[\exists h \in \mathcal{H}: |L_S(h) L_D(h)| > \epsilon] \leq \delta$
- We proved this using the Chernoff-hoeffding bound:

•
$$\mathbb{P}\left[\left|\frac{1}{m}\sum_{i=1}^{m}\theta_{i}-\mu\right|>\epsilon\right]\leq 2e^{-2m\epsilon^{2}}$$

Representativeness and learnability

- Lemma: If S is $\frac{\epsilon}{2}$ -representative then
 - $L_{\mathcal{D}}(h_S) \leq \min_{h \in \mathcal{H}} L_{\mathcal{D}}(h) + \epsilon$
- Proof: [in book]
 - For every $h \in \mathcal{H}$

•
$$L_{\mathcal{D}}(h_S) \le L_S(h_S) + \frac{\epsilon}{2}$$

 $\le L_S(h) + \frac{\epsilon}{2}$
 $\le L_{\mathcal{D}}(h) + \frac{\epsilon}{2} + \frac{\epsilon}{2} = L_{\mathcal{D}}(h) + \epsilon$

Can you explain each step?

So, we have

- Any finite ${\mathcal H}$ has uniform convergence [theorem]
- Therefore, any $S \in \mathcal{D}^m$ of suitable size $m \geq m_{\mathcal{H}}^{UC}(\frac{\epsilon}{2}, \delta)$
 - Is $\frac{\epsilon}{2}$ -representative for ${\mathcal H}$ with probability at least $1-\delta$
 - By definition
- Therefore,
 - $L_{\mathcal{D}}(h_S) \leq \min_{h \in \mathcal{H}} L_{\mathcal{D}}(h) + \epsilon$ with probability at least 1δ [Lemma]
 - ${\mathcal H}$ is PAC learnable [check yourself!]

- So, we have proved finite classes are all PAC learnable
- How useful is it?

- So, we have proved finite classes are all PAC learnable
- How useful is it?
- ${\mathcal H}$ is described by some parameters
 - E.g. coefficients of polynomials, weights on edges...
- We can always discretize by taking closely spaced discrete points
 - An the log implies that sample size will not be too bad
- In fact in a computer, numbers are always discretized
 - And thus practical hypothesis classes are technically finite
- Though searching the entire class may not be practical...

Do we need to think about hypothesis classes?

- In class, we discussed why we cannot have "all possible" hypotheses as our class.
 - Challenges in computation
 - Challenges in enumerating
- We now see a theorem that says there is no universal PAC learner
- Whatever the algorithm *A*,
 - There is a learning problem described where it fails
 - To achieve PAC guarantee

No Free Lunch theorem (thm 5.1 in book)

- Given X, Y
- Assume 0-1 loss. Assume $m < \frac{|\mathcal{X}|}{2}$: less than half of all possible data
- Suppose f is the "perfect" classifier (that is, the "truth")
 - We would like to know f, but we can't
- There exists \mathcal{D} , f such that
 - $L_{\mathcal{D}}(f) = 0$
 - For a random $S \sim \mathcal{D}^m$
 - With probability $\geq \frac{1}{7}$, the true loss $L_{\mathcal{D}}(A(S)) \geq \frac{1}{8}$

- This violates the guarantees of PAC that should hold for any ϵ, δ
 - Unless we use more than half of all possible data
- We skip the proof

Conclusion: Prior knowledge is necessary

- ullet represents what we know or can guess about the problem
- A more restricted (smaller) class is suitable when we have a pretty good idea, or prior knowledge
- A more complex (larger) class is suitable when we have less knowledge about the problem
- Taking the set of all possible hypotheses or functions will imply no knowledge of domain
- Corollary (5.2 in book): If $\mathcal X$ is infinite, and $\mathcal H$ is set of all possible functions from $\mathcal X$ to $\{0,1\}$, then $\mathcal H$ is not PAC learnable

Impact of Prior knowledge: Bias – complexity tradeoff

- ullet So, we have to choose a fixed ${\mathcal H}$
 - We make some assumptions about the type of solution that can work
 - This introduces a Bias we are looking for certain types of solutions instead of all possible solutions
- Less complex ${\mathcal H}$ means more restrictive assumptions
 - And greater bias
- More complex ${\mathcal H}$ means less restrictive assumptions
 - And less bias

The various losses and errors

• Suppose an algorithm A computes model $h_{\mathcal{S}}$ on training data \mathcal{S}

• Training Loss: $L_S(h_S)$

• Generalisation Loss or true loss: $L_{\mathcal{D}}(h_S)$

• Generalisation Gap: $L_{\mathcal{D}}(h_S) - L_S(h_S)$

Decomposition of true loss

- True loss: $L_{\mathcal{D}}(h_S) = \epsilon_{app} + \epsilon_{est}$
- Approximation error $\epsilon_{app} = L_{\mathcal{D}}(h^*)$
 - Min true error in the hypothesis class
 - Limitation of the choice of hypothesis class
- Estimation error $\epsilon_{est} = L_{\mathcal{D}}(h_S) L_{\mathcal{D}}(h^*)$:
 - Difference between approximation error and true error
 - Error due to sampling and overfitting choosing suboptimal $h_{\mathcal{S}}$

Bias complexity tradeoff

- ullet Small, restricted, less complex ${\mathcal H}$
 - Small estimation error
 - Needs less data
 - Large approximation error
- Large, rich, complex ${\cal H}$
 - Large estimation error (due to overfitting)
 - Needs more data
 - Small approximation error

- A lot of ML is about designing good ${\mathcal H}$, balancing errors
 - Often by making use of our knowledge of the domain

Infinite hypothesis classes

- We have proved that finite ${\cal H}$ are PAC learnable
- What about infinite \mathcal{H} ?

- ullet We already proved PAC guarantee for an infinite ${\cal H}$
 - The threshold classifier for ripe papayas: real numbers [t, 1]
- Why were we able to prove the guarantees?

Observation

- Sample complexity $m \geq \frac{\log\left(\frac{2|\mathcal{H}|}{\delta}\right)}{2\epsilon^2}$ can be written as $m \geq \frac{\log(|\mathcal{H}|) + \log\left(\frac{2}{\delta}\right)}{2\epsilon^2}$
- It has two components
 - Complexity (size) of hypothesis class
 - Confidence probability

- For finite classes: $|\mathcal{H}|$ is a measure of complexity
- For infinite classes, we can use dimensionality
 - As a measure of complexity of ${\cal H}$
 - Allows us to get efficient results in the 1-D case
- VC-dimension: A complexity measure for infinite classes
 - ullet Ability of ${\mathcal H}$ to split different arrangements of points into different subsets

Shattering

- Take a point set $C \subset \mathcal{X}$
- C is shattered by ${\mathcal H}$ if
- Any classification of points in $\mathcal C$ can be achieved by $\mathcal H$
- That is, for each possible 0-1 labelling of points in C
 - There is an $h \in \mathcal{H}$ that selects all of the ones and none of the zeros

VC dimension

- VC dimension of ${\mathcal H}$ is
- The size of the largest set $C \subset \mathcal{X}$ that can be shattered by \mathcal{H}

- For VC dim to be d, we have to show:
 - There is one set of size d that is shattered by ${\mathcal H}$
 - No set of size d+1 is shattered by ${\mathcal H}$

VC dim examples

- Threshold functions: Dim 1
- Intervals : Dim 2
- Axis aligned rectangles: Dim 4

Finite classes – relation to VC dimension

- On C there are $2^{|C|}$ possibly binary classifications
- Thus, C cannot be shattered if $|\mathcal{H}| < 2^{|C|}$
- Therefore: $VCdim(\mathcal{H}) \leq \log_2 |\mathcal{H}|$

Number of parametres

- ullet Number of parameters of ${\mathcal H}$ is a good measure of complexity
- Often equals VCdim
 - But not always

Fundamental theorem of statistical learning

THEOREM 6.7 (The Fundamental Theorem of Statistical Learning) Let \mathcal{H} be a hypothesis class of functions from a domain \mathcal{X} to $\{0,1\}$ and let the loss function be the 0-1 loss. Then, the following are equivalent:

- 1. H has the uniform convergence property.
- 2. Any ERM rule is a successful agnostic PAC learner for H.
- 3. H is agnostic PAC learnable.
- 4. H is PAC learnable.
- 5. Any ERM rule is a successful PAC learner for H.
- 6. \mathcal{H} has a finite VC-dimension.

In more detail

1. H has the uniform convergence property with sample complexity

$$C_1 \frac{d + \log(1/\delta)}{\epsilon^2} \le m_{\mathcal{H}}^{UC}(\epsilon, \delta) \le C_2 \frac{d + \log(1/\delta)}{\epsilon^2}$$

2. H is agnostic PAC learnable with sample complexity

$$C_1 \frac{d + \log(1/\delta)}{\epsilon^2} \le m_{\mathcal{H}}(\epsilon, \delta) \le C_2 \frac{d + \log(1/\delta)}{\epsilon^2}$$

3. H is PAC learnable with sample complexity

$$C_1 \frac{d + \log(1/\delta)}{\epsilon} \le m_{\mathcal{H}}(\epsilon, \delta) \le C_2 \frac{d \log(1/\epsilon) + \log(1/\delta)}{\epsilon}$$

Proof: Omitted

- Other types of loss functions:
 - Similar properties hold. But do search for exact results before use.

Structural Risk Minimization

• We have till now treated ${\cal H}$ as binary choice: hypothesis in the class are all equally valid, while outside the class are disallowed

• What if all $h \in \mathcal{H}$ are not equally desirable?

- Structural Risk Minimization
 - Assign different preferences to different hypothesis
- Examples:
 - Assign a weight w(h) to each hypothesis. Higher weight reflects higher preference
 - Divide hypothesis class into subclasses, assign a weight to each class

Some example weighting functions

- Polynomial degree
 - We would usually prefer lower degree polynomials
- Polynomial coefficients
 - We prefer smaller coefficients as that describes gentler/smoother functions
- Minimum description length
 - How many bits or characters does it take to represent the class?
 - Shorter description length (simpler class) is more desirable

Regularization

- A common way to achieve simpler models
- Include a "penalty" function to the loss
- E.g. sum of coefficients, or description length, sum of weights
- Minimizing the loss now includes minimizing the actual loss and minimizing the penalty
- More on regularization later

Discussion: PAC, VCDim and ML in practice

- The issue: PAC and VC analysis does not work too well on Deep learning
- VC dim of neural networks are hard to compute. A simple bound is VCDim = O(|E|)
 - Not so useful
 - Varies somewhat by activation function etc.

Recap till now

- Hypothesis classes
- Empirical and true loss. Empiricial loss minimization
- Sample complexity
- PAC learnability (realizable, finite)
- Agnostic PAC learnability (finite)
- Bias- complexity tradeoff
- VC dim
- PAC learning infinite classes: Fundamental theorem of statistical learning