
Neural Networks and
Non-convex Optimisation

Machine Learning Theory (MLT)
Edinburgh
Rik Sarkar

Course matters

• Please attend tutorials!
• Solutions to tutorial 1 are up
• Coursework will be released by this weekend

Today’s topics

• What neural networks can do: splitting the plane into cells by step
activation
• Expressive power of deep neural networks with ReLU
• Softmax function and cross entropy loss
• Generalization and overfitting in neural networks
• Pruning
• Shape of minima – flat and sharp

Creating shapes

• Neurons with step activation
• Each hidden layer neuron

identifies a half-plane
• The output neuron performs

AND
• We can create arbitrary

polygons this way

More complex shapes

• Compute binary relations
with respect to suitable half
planes
• Use a Boolean formula to

create the right area
• An optimization algorithm

finds the right weights
• to make the half planes
• And make the Boolean

expression

Optimisation in NNs

• Usually via SGD and its variants
• Computing gradient:

• Via chain rule of differentiation
• Can be done for any sequence of operations
• In NNs, each layer computes a function of output of the previous layer
• Chain rule is applied via backpropagation algorithm

• Note: ReLU is not differentiable
• Usually gradient computed via some local analysis
• There exisit approximate variants that are differentiable

Expressive power of neural
networks
• Complex classification requires

splitting the space into small
cells (polygons)
• And assigning a class to each

• Larger networks can create
more smaller cells and make
fine distinctions
• Great ability or “expressive

power”
• Also greater chances of

overfitting

Observation: Non-convexity

• There are many possible
assignments of weights
• To separate the red points

• E.g.
• Use a different set of lines
• Same set of lines realised by

different neurons

• There are many minima in the
space of models (edge weights)
• The optimisation problem is

non-convex

Common activation: ReLU

• ReLU
• 𝑓 𝑥 = max(0, 𝑥)

• ReLU does 2 things
• Creates a half plane separation
• Gives a score of how deep (far from boundary)

• Effectively, a “score” function on the plane

What happens when we train a multi-layer
ReLU?
• A ReLU layer

• Splits domain into cells
• Also outputs distance from the

boundary
• Acts as coordinate within the cell

• Next ReLU layer further splits each
cell!
• Creating even smaller cells

• Further layers split them into even
smaller cells etc…

Expressive power of deep ReLU networks

• The complexity of the function
that a ReLU neural network can
compute grows exponentially
with depth
• It can create more cells, create

fine divisions among points
• And assign them suitable scores

• Raghu et al. On expressive
power of deep neural networks.
• ICML 2017.

Popular Neural network structure

• Use ReLU or similar activation functions
• More compatible with gradients
• Easy to compute

• The middle layers produce a vector 𝒚 of ”scores” for each class, called
logit values
• Final layer: apply “softmax” to logits:

• 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝒚! = "!"

∑"
!# (improved the notation from the lecture)

• And output the softmax score for each class

Question: Why softmax?

Hard max or exact max

• Take a vector of values eg. [2,3,5,2,6,4,9,2,2,4]
• Make one indicating the position of the max eg. [0,0,0,0,0,0,1,0,0,0]

Softmax

• Substitute for hard-max, but differentiable
• Normalized, can be treated as probability 𝑝! for each class

Cross entropy loss

• Neural networks are usually trained on
the cross entropy loss of their output 𝑝
• Given:

• Data point 𝑥
• Probability estimate vector 𝑝
• Truth label vector 𝑡: indicator vector or one-

hot encoding where only the true class has
value 1.

• Cross entropy loss: ℓ!" = −∑𝑡# ln 𝑝#
• Measures difference between the two

probability distributions

p=[0.1, 0.5, 0.2, 0.2]
t= [0.0, 1.0, 0.0, 0.0]

Generalisaiton gap

• We can compute the training loss with cross entropy
• And the test loss with cross entropy

• Generalisation gap: difference between the two

Generalisation gap for neural networks

• More training should create better models
• Suppose we plot training loss and test loss
• What do curves look like?

Generalisation gap for neural networks

What we might expect What we find

Overfitting in neural networks

• The role of cross entropy loss
• Consider probability outputs for this data and this data space

• One curve for each class

• What should the curves look like?

Probability curves for classification

• A reasonable model sacrifices the outlier for better generalization
• But what is the cross entropy loss at the outlier?

Overfitting

• Optimiser tries to modify probability curves
• Such that large CE losses become smaller

Can this happen with a single neuron?

• Or two hidden ReLU neurons: Red and blue?

NN and overfitting

• The NN architecture restricts the possible arrangements of
hyperplanes
• The architecture and activation functions restrict the scores possible

in any one cell
• Smaller networks have implicit regularisation
• In large networks, overfitting does occur, with a small peak at every

point
• Cross entropy loss is not zero until the vector is similar to [0, 1, 0, 0,…]
• Optimiser continues improving loss even at correctly classified points!

Overparameterised neural networks

• Recap of statistical ML: data requirements
grow with parameters/complexity
• Modern neural networks:

• Many more parameters than data points
• High complexity and therefore high estimation

error
• We expect heavy overfitting and high

test/generalization loss/error

Paradox of Double descent

• With very large number of
parameters (more than number of
data points) testing performs well
again!
• Out of many possible models with

low training loss, SGD is finding ones
that have low test loss!

Training

Testing

Number of parameters

Ri
sk

 (e
rr

or
s)

Distribution of weights on trained NNs

• A large fraction of weights are close to zero
• Small fraction is far from zero
• Observation:

• Zero weight edges have no effect – do not conduct
information

• Almost zero weights: Little effect

• Conclusion: While NNs have large number of
parameters, after training, many of them have little
to no effect!

Histogram of weights

Pruning

• Idea: take all the edges that are
tiny weights, and remove them!

• Observations
• Can sometimes remove 80% - 90%

of edges
• Retains comparable performance

and sometimes better
generalization

Lottery ticket hypothesis

• Hypothesis: A randomly initialised dense NN already contains a subnetwork
(a winning ticket) that can give good performance.

• Algorithm to find the winning ticket
• Initialise a network to random weights
• Train for some iterations
• Prune p% of edges with small weights
• Reset the remaining edge to their original random weights

• Works surprisingly well on MNIST, CIFAR with test performance comparable
to a well trained network [Frankle and Carbin, 2019]

29

Standard pruning methods

• One shot:
• Train
• Remove small weights
• Return to initialization weights and retrain
• Stop

• Iterative
• Set random weights
• Train
• Remove edges with small weights
• Start over

30

Other results

• Theoretical proofs (special cases, few layers etc)
• [Malach et al. 2020, Bartoldson et al. 2020]

• Pruning and finding winning tickets without data
• [Wang et al. 2020, Tanaka et al. 2020]

31

Pruning and dimension

• The dimension of ℋ is determined by the number of parameters
• The pruning and lottery tickets papers suggest that there are lower

dimensional subspaces of ℋ that contain good solutions

32

Question

• If a small network is good enough, why are we using a large one?

Shape of minima

• Recap:
• In the space of models 𝑊
• SGD or similar methods try to find a “good” model

• A minimum of the loss function

• Why it is important
• Hessians and epsilon curvature

w

Flat and sharp minima

• A minimum of the loss function can be flat or sharp

• Which is better?

35

Flat and sharp minima

• Flat minima generalize better
• Sharper minima likely to represent overfitting

• If we take a slightly different model or slightly different data
• The loss will jump

Flat minima are also more likely to be stable

𝜖-Sharpness

• At min 𝜃 take ball 𝐵(𝜃, 𝜖) of radius 𝜖
• Set of all points within a distance 𝜖 of 𝜃

• Sharpness is:

𝜃

𝐵(𝜃, 𝜖)

𝜃!

Model spaces are high dimensional

• 𝜖	– Sharpness definition applies directly

• Alternative definition: Curvature
• Requires considering the Hessian – high dim representation of 2nd derivative

Curvature as a sharpness measure

• Mathematical notion of curvature
• For the min of a real valued function in 1-D we can measure curvature

as the second derivative
• *

$+
*,$

• For loss over models
• *$-
*.$

• Larger second derivative => sharper min

Partial derivatives

• Suppose 𝑓 is a function of many variables 𝑥, 𝑦, 𝑧, …

• We can ask how 𝑓 changes with 𝑥. This is written as "#"$
• Same as */

*,
, but implying that there are other variables to potentially consider

• And we can write the curvature along 𝑥 as 0
$/
0,$

 : how 0/
0,

 changes with 𝑥

Partial derivatives

• Now we can also ask how 0/
0,

 changes with 𝑦

• This is written as 0
$/

0+0,
= 0

0+
0/
0,

• Hessian is just a collection of all these
written as a matrix

• With two variable models (with 𝑓 as loss):

•

0$/
0.%$

0$/
0.%0.$

0$/
0.$0.%

0$/
0.$$

Curvature directions

• The problem is that strongest directions of curvature may not align
exactly with 𝑤%, 𝑤& etc
• So, we need to take eigen values and eigen vectors of the hessian
• The eigen values represent the principal curvatures

• Corresponding eigen vectors represent the directions of these curvatures

• Larger eigen values of hessian imply sharper minima

• (Think Principal components of curvature matrix)

So, the method is

• Take the hessian
• Compute its eigen values
• Look at their distributions
• If there are more of large values, that implies a sharper min

Algorithms

• Shapness aware minimization
• Use 𝜖 sharpness
• Minimize 𝐿 𝜃 + [𝐿 𝜃 + 𝜖1 − 𝐿(𝜃)]

• Entropy SGD
• Optimise a different function
• Computationally very expensive

• Stochastic weight averaging
• Average the weights of the last 𝑐 models
• Shown to produce flat minima

Flat minima

• Current topic of research
• While flat minima are generally agreed to be good, the full picture is

not clear
• There are some works showing that sometimes sharp minima can

work well
• Neural nets are highly redundant (e.g. symmetric) and many possible

weight assignments achieve the same effective function
• It is possible to reconfigure weights such that the effective prediction function

is same, therefore loss is same, but the curvature is different

SGD and Flat minima

• SGD is known to have a bias toward flat and well generalizable min
• Large batch sizes and small learning rate approximates a smooth gradient

• And more likely to find a sharp min

• Small batch sizes and larger learning rate makes a more random, jumpy
trajectory that can skip over sharp min.
• Also easy to jump away from sharp min neighborhood since that is likely a small

region

• However, a flat min means that even after step away from it, SGD is likely in
the same basin and will eventually converge to it

• We have done
• Statistical ML
• Neural networks
• Optimization

• Next
• Privacy
• Fairness
• Explainability

