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Course matters 

• Please attend tutorials! 
• Solutions to tutorial 1 are up
• Coursework will be released by this weekend



Today’s topics

• What neural networks can do: splitting the plane into cells by step 
activation
• Expressive power of deep neural networks with ReLU
• Softmax function and cross entropy loss
• Generalization and overfitting in neural networks 
• Pruning
• Shape of minima – flat and sharp



Creating shapes 

• Neurons with step activation
• Each hidden layer neuron 

identifies a half-plane
• The output neuron performs 

AND 
• We can create arbitrary  

polygons this way



More complex shapes

• Compute binary relations 
with respect to suitable half 
planes
• Use a Boolean formula to 

create the right area
• An optimization algorithm 

finds the right weights 
• to make the half planes 
• And make the Boolean 

expression



Optimisation in NNs

• Usually via SGD and its variants 
• Computing gradient: 

• Via chain rule of differentiation 
• Can be done for any sequence of operations 
• In NNs, each layer computes a function of output of the previous layer
• Chain rule is applied via backpropagation algorithm

• Note: ReLU is not differentiable
• Usually gradient computed via some local analysis
• There exisit approximate variants that are differentiable



Expressive power of neural 
networks
• Complex classification requires 

splitting the space into small 
cells (polygons)
• And assigning a class to each 

• Larger networks can create 
more smaller cells and make 
fine distinctions 
• Great ability or “expressive 

power”
• Also greater chances of 

overfitting



Observation: Non-convexity

• There are many possible 
assignments of weights 
• To separate the red points 

• E.g. 
• Use a different set of lines 
• Same set of lines realised by 

different neurons 

• There are many minima in the 
space of models (edge weights) 
• The optimisation problem is 

non-convex



Common activation: ReLU

• ReLU 
• 𝑓 𝑥 = max(0, 𝑥)

• ReLU does 2 things
• Creates a half plane separation 
• Gives a score of how deep (far from boundary)

• Effectively, a “score” function on the plane



What happens when we train a multi-layer 
ReLU? 
• A ReLU layer 

• Splits domain into cells
• Also outputs distance from the 

boundary 
• Acts as coordinate within the cell

• Next ReLU layer further splits each 
cell! 
• Creating even smaller cells

• Further layers split them into even 
smaller cells etc…



Expressive power of deep ReLU networks

• The complexity of the function 
that a ReLU neural network can 
compute grows exponentially 
with depth
• It can create more cells, create 

fine divisions among points
• And assign them suitable scores

• Raghu et al. On expressive 
power of deep neural networks. 
• ICML 2017. 



Popular Neural network structure

• Use ReLU or similar activation functions 
• More compatible with gradients
• Easy to compute 

• The middle layers produce a vector 𝒚 of ”scores” for each class, called 
logit values
• Final layer: apply “softmax” to logits: 

• 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝒚! = "!"

∑"
!# (improved the notation from the lecture)

• And output the softmax score for each class



Question: Why softmax? 



Hard max or exact max

• Take a vector of values eg. [2,3,5,2,6,4,9,2,2,4]
• Make one indicating the position of the max eg. [0,0,0,0,0,0,1,0,0,0]



Softmax

• Substitute for hard-max, but differentiable 
• Normalized, can be treated as probability 𝑝! for each class



Cross entropy loss

• Neural networks are usually trained on 
the cross entropy loss of their output 𝑝
• Given: 

• Data point 𝑥
• Probability estimate vector 𝑝
• Truth label vector 𝑡: indicator vector or one-

hot encoding where only the true class has 
value 1. 

• Cross entropy loss: ℓ!" = −∑𝑡# ln 𝑝#
• Measures difference between the two 

probability distributions 

p=[0.1, 0.5, 0.2, 0.2]
t= [0.0, 1.0, 0.0, 0.0]



Generalisaiton gap

• We can compute the training loss with cross entropy 
• And the test loss with cross entropy 

• Generalisation gap: difference between the two 



Generalisation gap for neural networks

• More training should create better models
• Suppose we plot training loss and test loss
• What do curves look like? 



Generalisation gap for neural networks 

What we might expect What we find



Overfitting in neural networks

• The role of cross entropy loss
• Consider probability outputs for this data and this data space

• One curve for each class 

• What should the curves look like? 



Probability curves for classification

• A reasonable model sacrifices the outlier for better generalization
• But what is the cross entropy loss at the outlier? 



Overfitting

• Optimiser tries to modify probability curves 
• Such that large CE losses become smaller 



Can this happen with a single neuron? 

• Or two hidden ReLU neurons: Red and blue? 



NN and overfitting

• The NN architecture restricts the possible arrangements of 
hyperplanes 
• The architecture and activation functions restrict the scores possible 

in any one cell
• Smaller networks have implicit regularisation
• In large networks, overfitting does occur, with a small peak at every 

point 
• Cross entropy loss is not zero until the vector is similar to [0, 1, 0, 0,…]
• Optimiser continues improving loss even at correctly classified points! 



Overparameterised neural networks

• Recap of statistical ML: data requirements 
grow with parameters/complexity
• Modern neural networks: 

• Many more parameters than data points 
• High complexity and therefore high estimation 

error 
• We expect heavy overfitting and high 

test/generalization loss/error



Paradox of Double descent 

• With very large number of 
parameters (more than number of 
data points) testing performs well 
again! 
• Out of many possible models with 

low training loss, SGD is finding ones 
that have low test loss! 

Training
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Distribution of weights on trained NNs

• A large fraction of weights are close to zero 
• Small fraction is far from zero 
• Observation: 

• Zero weight edges have no effect – do not conduct 
information 

• Almost zero weights: Little effect

• Conclusion: While NNs have large number of 
parameters, after training, many of them have little 
to no effect!  

Histogram of weights



Pruning

• Idea: take all the edges that are 
tiny weights, and remove them! 

• Observations
• Can sometimes remove 80% - 90% 

of edges
• Retains comparable performance 

and sometimes better 
generalization 



Lottery ticket hypothesis

• Hypothesis: A randomly initialised dense NN already contains a subnetwork 
(a winning ticket) that can give good performance. 

• Algorithm to find the winning ticket
• Initialise a network to random weights
• Train for some iterations 
• Prune p% of edges with small weights
• Reset the remaining edge to their original random weights

• Works surprisingly well on MNIST, CIFAR with test performance comparable 
to a well trained network [Frankle and Carbin, 2019]
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Standard pruning methods

• One shot:
• Train
• Remove small weights
• Return to initialization weights and retrain
• Stop 

• Iterative
• Set random weights
• Train 
• Remove edges with small weights
• Start over 
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Other results

• Theoretical proofs (special cases, few layers etc)
• [Malach et al. 2020, Bartoldson et al. 2020]

• Pruning and finding winning tickets without data
• [Wang et al. 2020, Tanaka et al. 2020]
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Pruning and dimension

• The dimension of ℋ is determined by the number of parameters 
• The pruning and lottery tickets papers suggest that there are lower 

dimensional subspaces of ℋ that contain good solutions
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Question

• If a small network is good enough, why are we using a large one?



Shape of minima

• Recap: 
• In the space of models 𝑊
• SGD or similar methods try to find a “good” model

• A minimum of the loss function 

• Why it is important
• Hessians and epsilon curvature

w



Flat and sharp minima

• A minimum of the loss function can be flat or sharp 

• Which is better? 
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Flat and sharp minima

• Flat minima generalize better 
• Sharper minima likely to represent overfitting

• If we take a slightly different model or slightly different data
• The loss will jump



Flat minima are also more likely to be stable



𝜖-Sharpness

• At min 𝜃 take ball 𝐵(𝜃, 𝜖) of radius 𝜖
• Set of all points within a distance 𝜖 of 𝜃

• Sharpness is: 

𝜃

𝐵(𝜃, 𝜖)

𝜃!



Model spaces are high dimensional 

• 𝜖	– Sharpness definition applies directly

• Alternative definition: Curvature 
• Requires considering the Hessian – high dim representation of 2nd derivative



Curvature as a sharpness measure

• Mathematical notion of curvature 
• For the min of a real valued function in 1-D we can measure curvature 

as the second derivative 
• *

$+
*,$

• For loss over models
• *$-
*.$

• Larger second derivative => sharper min 



Partial derivatives

• Suppose 𝑓 is a function of many variables 𝑥, 𝑦, 𝑧, …

• We can ask how 𝑓 changes with 𝑥. This is written as "#"$
• Same as */

*,
, but implying that there are other variables to potentially consider 

• And we can write the curvature along 𝑥 as 0
$/
0,$

 : how 0/
0,

 changes with 𝑥



Partial derivatives

• Now we can also ask how 0/
0,

 changes with 𝑦 

• This is written as 0
$/

0+0,
= 0

0+
0/
0,

• Hessian is just a collection of all these 
written as a matrix

• With two variable models (with 𝑓 as loss):  

•

0$/
0.%$

0$/
0.%0.$

0$/
0.$0.%

0$/
0.$$

 



Curvature directions

• The problem is that strongest directions of curvature may not align 
exactly with 𝑤%, 𝑤& etc
• So, we need to take eigen values and eigen vectors of the hessian 
• The eigen values represent the principal curvatures

• Corresponding eigen vectors represent the directions of these curvatures 

• Larger eigen values of hessian imply sharper minima 

• (Think Principal components of curvature matrix)



So, the method is

• Take the hessian
• Compute its eigen values
• Look at their distributions 
• If there are more of large values, that implies a sharper min 



Algorithms 

• Shapness aware minimization 
• Use 𝜖 sharpness 
• Minimize 𝐿 𝜃 + [𝐿 𝜃 + 𝜖1 − 𝐿(𝜃)]

• Entropy SGD
• Optimise a different function
• Computationally very expensive 

• Stochastic weight averaging
• Average the weights of the last 𝑐 models
• Shown to produce flat minima 



Flat minima

• Current topic of research
• While flat minima are generally agreed to be good, the full picture is 

not clear
• There are some works showing that sometimes sharp minima can 

work well 
• Neural nets are highly redundant (e.g. symmetric) and many possible 

weight assignments achieve the same effective function
• It is possible to reconfigure weights such that the effective prediction function 

is same, therefore loss is same, but the curvature is different 



SGD and Flat minima 

• SGD is known to have a bias toward flat and well generalizable min 
• Large batch sizes and small learning rate approximates a smooth gradient

• And more likely to find a sharp min

• Small batch sizes and larger learning rate makes a more random, jumpy 
trajectory that can skip over sharp min. 
• Also easy to jump away from sharp min neighborhood since that is likely a small 

region

• However, a flat min means that even after step away from it, SGD is likely in 
the same basin and will eventually converge to it



• We have done
• Statistical ML 
• Neural networks
• Optimization 

• Next
• Privacy
• Fairness
• Explainability


