

Optimization Algorithms
and Loss functions

Machine Learning Theory (MLT)

Edinburgh

Rik Sarkar

How does this program find good models?

• In a neural network, models are defined by weights on the edges

• Good models correspond to right selection 𝒘 of weights

Optimization: finding good models

• Our goal is to find ℎ ∈ ℋ

• Such that |𝐿 ℎ − 𝐿(ℎ∗)| is small
• Where ℎ∗ is the best possible model

• Optimization algorithms try to find a good ℎ (represented by weight
vector 𝒘)
• That have a low loss

Today’s lecture

• Finding weights for a single neuron (linear models)
• Logistic regression

• Convex functions and convex learning

• Gradient descent and Stochastic gradient descent
• Main training algorithms in ML and Deep learning

• Continuity properties of loss functions

• Regularization

• Stability

Course

• Tutorial 1 next week

• Tutorial sheet will be out soon (by thursday).

• Please go over it before the tutorial

Single neuron

• Perceptron with threshold activation
• 𝑤1, 𝑤2, 𝑏 ∈ ℝ

• 𝑦 = 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤0. 1 ≥ 0
• Truth value 0/1 (0r, -1/+1)

• We write
• 𝑧 = 𝑤 ⋅ 𝑥

• Optimization problem:
• Find the best possible 𝑤
• Represents model ℎ𝑤

x1

x2

w1

w2

∑

1

y

w0

Logistic regression (used for classification!)

• Suppose point 𝑥 has label 𝑦 ∈ −1, 1

• If 𝑧 and 𝑦 have the same sign
• Then the classification is correct

• If 𝑧 and 𝑦 have different signs
• Then classification is incorrect

• The logistic loss function is:
• ℓ ℎ𝑤 , 𝑥, 𝑦 = log(1 + exp(−𝑦 ⋅ 𝑧))
• If 𝑦, 𝑧 are same sign, ℓ gets smaller with 𝑧
• 𝑦, 𝑧 are different signs, ℓ is larger with 𝑧

Logistic loss of 𝑆

• For a training dataset 𝑆

• We use the average logistic loss

• So, the best model 𝑤 is the one with min logistic loss:

• 𝑎𝑟𝑔𝑚𝑖𝑛𝑤
1

𝑚
∑𝑖=1

𝑚 log(1 + 𝑒−𝑦𝑧)

• But we still need an algorithm to find this best 𝑤

Convexity and convex learning

• A set C is convex if for any 𝑢, 𝑣 ∈ 𝐶, the line segment connecting 𝒖, 𝒗
is in 𝐶. (Any intermediate point is in 𝐶)
• Can be written formally as:

• For any 𝛼 ∈ 0,1 , it is true that 𝛼𝒖 + 1 − 𝛼 𝒗 ∈ 𝐶

Convex function

• For a convex 𝐶, a function 𝑓: 𝐶 → ℝ is convex if

• 𝑓 𝛼𝒖 + 1 − 𝛼 𝒗 ≤ 𝛼𝑓 𝒖 + 1 − 𝛼 𝑓(𝒗)

• The graph of 𝑓 lies below the straight line connecting u and v

Properties of convex functions

• Every local minimum is also a global minimum
• Question: is the global minimum unique?

• For every 𝒘 the tangent at 𝒘 lies below 𝑓:
• ∀𝒖, 𝑓 𝒖 ≥ 𝑓 𝒘 + ⟨∇𝑓 𝒘 , 𝒖 − 𝒘⟩

• If 𝑓: ℝ → ℝ is twice differentiable, then
• 𝑓 is convex
• 𝑓′ is monotone nondecreasing
• 𝑓′′ is nonnegative

• Are equivalent

Examples of convex functions

Examples of functions that are not convex

Combining convex functions

• If 𝑔 is convex, then 𝑓 𝒘 = 𝑔(𝒘, 𝒙 + 𝑦) is convex

• If 𝑓𝑖 are convex functions

• 𝑔 𝑥 = max
𝑖

𝑓𝑖(𝑥) is convex

• 𝑔 𝑥 = ∑𝑖 𝑤𝑖𝑓𝑖 𝑥 is convex
• What is the consequence for loss functions?

Convex learning is easy!

• Start with any model 𝒘0

• Take a step in a direction that
makes the loss smaller

• Repeat until we are close to 𝒘∗
with smallest loss

• Gradient descent
• Compute the derivative at current 𝒘,

move a step in that direction

𝒘𝟎𝒘𝟏𝒘𝟐𝒘∗

Gradient

• Gradient (a vector derivative in multiple dimensions)
• The direction and speed of fastest increase

• (here a 𝑤𝑖 is a parameter or dimension of the model)

• Partial derivatives
• Compute the derivative along each dimension, put them in a vector

Gradient descent

• Gradient is

• Gradient represents the direction in which 𝑓 increases fastest

• Gradient Descent: At every step 𝑡 :
• 𝑤𝑡+1 = 𝑤𝑡 − 𝜂∇𝑓(𝑤𝑡)

• (Move in the direction that 𝑓 decreases fastest With a step scale of 𝜂)

• After T steps, output the average vector ഥ𝒘 =
1

𝑇
∑𝑡=1

𝑇 𝒘𝑡

• Other version: output final vector 𝒘𝑻

• For us, 𝑓 is the average loss 𝐿

Theorem (14.2 in book)

• For convex lipschitz bounded learning

• Setting 𝜂 =
𝐵2

𝜌2𝑇

• We can get

• Alternatively, to achieve 𝑓 ഥ𝒘 − 𝑓 𝒘∗ ≤ 𝜖 the number of rounds is:

Stochastic gradient descent

• Computing the gradient of empirical loss is expensive
• Because empirical loss depends on all training data
• And every step requires a pass through entire dataset

• Idea: Instead of computing gradient on the entire dataset each time,
compute them on small samples:
• Small batches of data
• Or even a single data point

• (Each i.i.d data point is treated like a tiny sample of data)

• While any single data point does not represent the set, on average they
behave simmilarly

GD vs SGD

• SGD takes a more random path, but follows similar trends

w w

Finding the best model by looking for the
lowest point of the loss function

ww

Stochastic gradient descent (from book)

Stochastic gradient descent other version

• Initialize 𝒘1 randomly (uniform or gaussian)

• For 𝑡 = 1 … 𝑇
• Take a random small sample of data (mini batch)

• Compute gradient 𝒗𝑡 on this sample

• Update 𝒘𝑡+1 = 𝒘𝑡 − 𝜂𝒗𝑡

• Output 𝒘𝑇

Theorem (14.8)

• Similar result to deterministic GD:

Practical modifications

• For large neural nets
• Simply put all edge weights in the same vector
• SGD algorithm does not depend on what your model type is
• As along as all parameters are real valued

• Mini batching:
• Instead of one data item at time, take them in batches of a few at a time.
• Faster, and fewer unhelpful moves

• Run in epochs. In each epoch
• Order the data points in a random permutation
• For each data point (or mini-batch)

• Compute the gradient and move the modes

• Other modifications:
• Change learning rates
• Add momentum, add dropout etc

Other properties of loss functions

Strong Convexity

• Function 𝑓 is 𝜆-strongly convex if

Lipschitzness

• A function 𝑓 is 𝜌-Lipschitz if
• 𝑓 𝒘1 − 𝑓 𝒘2 ≤ 𝜌| 𝒘1 − 𝒘2 |

• A function that does not change too fast
• If the derivative is bounded by 𝜌,

• What can we say about its lipschitzness?

• Then the function is also 𝜌-Lipschitz

• But lipschitzness can be defined/computed even when the derivative does not exist

Smoothness

• Gradient (a vector derivative in multiple dimensions)
• The direction and speed of fastest increase

• 𝑓 is 𝛽-smooth if ∇𝑓 is 𝛽-Lipschitz:
• ∇𝑓 𝒗 − ∇𝑓 𝒘 ≤ 𝛽| 𝒗 − 𝒘 |

Convex-Lipschitz-Bounded learning problems

• A learning problem ℋ, 𝒵, ℓ where:

• ℋis convex, ∀𝒘 ∈ ℋ, 𝒘 ≤ 𝐵

• ∀𝑧 ∈ 𝒵 the loss ℓ(⋅, 𝑧) is convex and 𝜌-Lipschitz (for some 𝜌)

Convex-smooth-bounded learning

• A learning problem ℋ, 𝒵, ℓ where:

• ℋis convex, ∀𝒘 ∈ ℋ, 𝒘 ≤ 𝐵

• ∀𝑧 ∈ 𝒵 the loss ℓ(⋅, 𝑧) is convex, nonnegative and 𝛽-smooth (for
some 𝛽)

Why do we want convexity, smoothness,
lipschitzness etc?

Why do we want convexity, smoothness,
lipschitzness etc?

• Avoids sudden changes in function and its gradients

• Easier to compute and apply gradients as optimization steps

• Most theoretical analysis assume some of these properties

• Most practical situations have similar properties
• For most regions of data space and model space

• It is hard to make SGD, or any algorithm work if it does not

What is the problem of 0-1 empirical risk as
loss function?

• Remember that we had defined the average empirical error as the
loss.
• Can we use that for gradient descent?

Surrogate loss functions

• Some loss functions are hard to work with. E.g.
• They are not convex
• They are hard to optimize for
• E.g. 0-1 loss in linear classification

• Solution
• Use a “surrogate” loss function
• That is kind of similar, but easier to manage, e.g. convex

• Usual rule for surrogate loss
• Should be convex
• Should upper bound (be larger than original loss.)

Example: Hinge loss

Regularization

• Instead of the pure loss, minimize loss with a regularization term:

• Commonly used: 𝑅 𝒘 = 𝜆 𝒘
2

• Called Tikhonov regularization

Try yourself:

Go to wolfram alpha and plot a polynomial: 𝑦 = 𝑎5𝑥5 + 𝑎4𝑥4 +
𝑎3𝑥3 + 𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0

• With numbers of your choice in place of coefficients 𝑎𝑖

• Now scale the coefficients: multiply all the coefficients with the same
number (may be fractions too). What do you see?

Ridge regression

• Linear regression with Tikhonov regularization

• 𝑅 𝒘 = 𝜆 𝒘
2

 is 2𝜆-strongly convex

• If 𝑓 is 𝜆-strongly convex and g is convex, then 𝑓 + 𝑔 is 𝜆-strongly
convex

• Thus, Ridge regression is strongly convex

• Strongly convex loss implies stability – useful property in SGD and
other methods

Stability

• Intuitively: A learning algorithm is stable if
• A small change to training set does not cause a big change to the output

(model or hypothesis)

• This is a desirable property because…

Stability

• Intuitively: A learning algorithm is stable if
• A small change to training set does not cause a big change to the output

(model or hypothesis)

• This is a desirable property because
• It implies that it is not too sensitive to specific S. does not overfit

• If we continue to use it, it will not abruptly change behavior

• Suppose in 𝑆, we replace 𝑧𝑖 with 𝑧′ ∼ 𝒟

• Let us write this as 𝑆𝑖

• A good algorithm 𝐴 should have small value for
• |ℓ 𝐴 𝑆𝑖 , 𝑧𝑖 − ℓ 𝐴 𝑆 , 𝑧𝑖 |

• The loss on 𝑧𝑖 does not depend too much on it being in the sample

Stability definition and result

• Algorithm 𝐴 is on-average-replace-one-stable with rate 𝜖(𝑚)

• If
• 𝔼 ℓ 𝐴 𝑆𝑖 , 𝑧𝑖 − ℓ 𝐴 𝑆 , 𝑧𝑖 ≤ 𝜖(𝑚)

Stability definition and result

• Algorithm 𝐴 is on-average-replace-one-stable with rate 𝜖(𝑚)

• If
• 𝔼 ℓ 𝐴 𝑆𝑖 , 𝑧𝑖 − ℓ 𝐴 𝑆 , 𝑧𝑖 ≤ 𝜖(𝑚)

• Theorem:
• 𝔼 𝐿𝒟 𝐴 𝑆 − 𝐿𝑆 𝐴 𝑆 = 𝔼 ℓ 𝐴 𝑆𝑖 , 𝑧𝑖 − ℓ 𝐴 𝑆 , 𝑧𝑖

• The generalization gap is bounded by the stability

Generalisation Gap

• Empirical or training loss: 𝐿𝑆 ℎ

• Generalisation loss or true loss : 𝐿𝒟(ℎ)

• 𝐿𝒟 ℎ − 𝐿𝑆 ℎ

• A measure of overfitting
• (sometimes generalization gap is referred to as generalization loss)

Uniform Stability

• Suppose we get 𝑆𝑖 by replacing one element 𝑧𝑖 at position 𝑖 of 𝑆 with a
new element 𝑧𝑖

′

• And suppose that 𝑧 ∈ 𝒵 is some possible input element

• As before, 𝐴 𝑆 refers to the model that algorithm 𝐴 computes using 𝑆

• We can write the loss on 𝑧 as ℓ(𝐴 𝑆 , 𝑧)

• Algorithm 𝐴 is 𝜖-uniformly stable if
• Sup𝑧∈𝒵 𝐸𝐴ℓ 𝐴(𝑆𝑖 , 𝑧 − 𝐸𝐴ℓ(𝐴 𝑆 , 𝑧)] ≤ 𝜖

• 𝐸𝐴 means expectation taken over all possible random behaviour of 𝐴

Uniform Stability implies generalization

• Theorem:

• If Randomized Algorithm 𝐴 is 𝜖-uniformly stable then
• 𝐸𝑆𝐸𝐴ℓ 𝐴 𝑆 , 𝒟 ≤ 𝐸𝑆𝐸𝐴ℓ 𝐴 𝑆 , 𝑆 + 𝜖

• True loss ≤ Training loss + 𝜖

Uniform Stability implies generalization

• Theorem:

• If Algorithm 𝐴 is 𝜖-uniformly stable then
• 𝐸𝑆𝐸𝐴ℓ 𝐴 𝑆 , 𝒟 ≤ 𝐸𝑆𝐸𝐴ℓ 𝐴 𝑆 , 𝑆 + 𝜖

• Expected true loss ≤ Training loss + 𝜖

• Proof: Omitted (for now).

Observe

• Regularization creates strong convexity

• Strong convexity implies stability

• Stability implies generalization

Next

• Larger neural networks
• Losses are non-convex

• What happens with non-convex loss?

• Shapes of loss functions

• Overfitting and overparameterization in neural networks

	Slide 1
	Slide 2: Optimization Algorithms and Loss functions
	Slide 3: How does this program find good models?
	Slide 4: Optimization: finding good models
	Slide 5: Today’s lecture
	Slide 6: Course
	Slide 7: Single neuron
	Slide 8: Logistic regression (used for classification!)
	Slide 9: Logistic loss of S
	Slide 10: Convexity and convex learning
	Slide 11: Convex function
	Slide 12: Properties of convex functions
	Slide 13: Examples of convex functions
	Slide 14: Examples of functions that are not convex
	Slide 15: Combining convex functions
	Slide 16: Convex learning is easy!
	Slide 17: Gradient
	Slide 18: Gradient descent
	Slide 19: Theorem (14.2 in book)
	Slide 20: Stochastic gradient descent
	Slide 21: GD vs SGD
	Slide 22: Finding the best model by looking for the lowest point of the loss function
	Slide 23: Stochastic gradient descent (from book)
	Slide 24: Stochastic gradient descent other version
	Slide 25: Theorem (14.8)
	Slide 26: Practical modifications
	Slide 27: Other properties of loss functions
	Slide 28: Strong Convexity
	Slide 29: Lipschitzness
	Slide 30: Smoothness
	Slide 31: Convex-Lipschitz-Bounded learning problems
	Slide 32: Convex-smooth-bounded learning
	Slide 33: Why do we want convexity, smoothness, lipschitzness etc?
	Slide 34: Why do we want convexity, smoothness, lipschitzness etc?
	Slide 35: What is the problem of 0-1 empirical risk as loss function?
	Slide 36: Surrogate loss functions
	Slide 37: Example: Hinge loss
	Slide 38: Regularization
	Slide 39: Try yourself:
	Slide 40: Ridge regression
	Slide 41
	Slide 42: Stability
	Slide 43: Stability
	Slide 44
	Slide 45: Stability definition and result
	Slide 46: Stability definition and result
	Slide 47: Generalisation Gap
	Slide 48: Uniform Stability
	Slide 49: Uniform Stability implies generalization
	Slide 50: Uniform Stability implies generalization
	Slide 51: Observe
	Slide 52: Next

