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How does this program find good models? 

• In a neural network, models are defined by weights on the edges

• Good models correspond to right selection 𝒘 of weights



Optimization: finding good models 

• Our goal is to find ℎ ∈ ℋ

• Such that |𝐿 ℎ − 𝐿(ℎ∗)| is small
• Where ℎ∗ is the best possible model 

• Optimization algorithms try to find a good ℎ (represented by weight 
vector 𝒘)
• That have a low loss



Today’s lecture

• Finding weights for a single neuron (linear models) 
• Logistic regression 

• Convex functions and convex learning

• Gradient descent and Stochastic gradient descent
• Main training algorithms in ML and Deep learning

• Continuity properties of loss functions

• Regularization 

• Stability 



Course 

• Tutorial 1 next week

• Tutorial sheet will be out soon (by thursday). 

• Please go over it before the tutorial



Single neuron 

• Perceptron with threshold activation 
• 𝑤1, 𝑤2, 𝑏 ∈ ℝ

• 𝑦 = 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤0. 1 ≥ 0
• Truth value 0/1 (0r, -1/+1)

• We write 
• 𝑧 = 𝑤 ⋅ 𝑥

• Optimization problem: 
• Find the best possible 𝑤
• Represents model ℎ𝑤
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Logistic regression (used for classification!)

• Suppose point 𝑥 has label 𝑦 ∈ −1, 1

• If 𝑧 and 𝑦 have the same sign
• Then the classification is correct

• If 𝑧 and 𝑦 have different signs 
• Then classification is incorrect

• The logistic loss function is: 
• ℓ ℎ𝑤 , 𝑥, 𝑦 = log(1 + exp(−𝑦 ⋅ 𝑧))
• If 𝑦, 𝑧 are same sign, ℓ gets smaller with 𝑧 
• 𝑦, 𝑧 are different signs, ℓ is larger with 𝑧 



Logistic loss of 𝑆

• For a training dataset 𝑆

• We use the average logistic loss

• So, the best model 𝑤 is the one with min logistic loss: 

• 𝑎𝑟𝑔𝑚𝑖𝑛𝑤
1

𝑚
∑𝑖=1

𝑚 log(1 + 𝑒−𝑦𝑧)

• But we still need an algorithm to find this best 𝑤 



Convexity and convex learning 

• A set C is convex if for any 𝑢, 𝑣 ∈ 𝐶, the line segment connecting 𝒖, 𝒗 
is in 𝐶. (Any intermediate point is in 𝐶)
• Can be written formally as: 

• For any 𝛼 ∈ 0,1 , it is true that 𝛼𝒖 + 1 − 𝛼 𝒗 ∈ 𝐶 



Convex function

• For a convex 𝐶, a function 𝑓: 𝐶 → ℝ is convex if 

• 𝑓 𝛼𝒖 + 1 − 𝛼 𝒗 ≤ 𝛼𝑓 𝒖 + 1 − 𝛼 𝑓(𝒗)

• The graph of 𝑓 lies below the straight line connecting u and v



Properties of convex functions

• Every local minimum is also a global minimum
• Question: is the global minimum unique?

• For every 𝒘 the tangent at 𝒘 lies below 𝑓: 
• ∀𝒖, 𝑓 𝒖 ≥ 𝑓 𝒘 + ⟨∇𝑓 𝒘 , 𝒖 − 𝒘⟩

• If 𝑓: ℝ → ℝ is twice differentiable, then 
• 𝑓 is convex
• 𝑓′ is monotone nondecreasing
• 𝑓′′ is nonnegative

• Are equivalent



Examples of convex functions



Examples of functions that are not convex



Combining convex functions

• If 𝑔 is convex, then 𝑓 𝒘 = 𝑔( 𝒘, 𝒙 + 𝑦) is convex 

• If 𝑓𝑖  are convex functions

• 𝑔 𝑥 = max
𝑖

𝑓𝑖(𝑥) is convex

• 𝑔 𝑥 = ∑𝑖 𝑤𝑖𝑓𝑖 𝑥  is convex 
• What is the consequence for loss functions? 



Convex learning is easy!

• Start with any model 𝒘0 

• Take a step in a direction that 
makes the loss smaller

• Repeat until we are close to 𝒘∗ 
with smallest loss

• Gradient descent
• Compute the derivative at current 𝒘, 

move a step in that direction

𝒘𝟎𝒘𝟏𝒘𝟐𝒘∗



Gradient

• Gradient ( a vector derivative in multiple dimensions)
• The direction and speed of fastest increase

• (here a 𝑤𝑖  is a parameter or dimension of the model)

• Partial derivatives
• Compute the derivative along each dimension, put them in a vector



Gradient descent 

• Gradient is

• Gradient represents the direction in which 𝑓 increases fastest 

• Gradient Descent: At every step 𝑡 : 
• 𝑤𝑡+1 = 𝑤𝑡 − 𝜂∇𝑓(𝑤𝑡)

• (Move in the direction that 𝑓 decreases fastest With a step scale of 𝜂)

• After T steps, output the average vector ഥ𝒘 =
1

𝑇
∑𝑡=1

𝑇 𝒘𝑡

• Other version: output final vector 𝒘𝑻

• For us, 𝑓 is the average loss 𝐿



Theorem (14.2 in book)

• For convex lipschitz bounded learning 

• Setting 𝜂 =
𝐵2

𝜌2𝑇
 

• We can get 

• Alternatively, to achieve 𝑓 ഥ𝒘 − 𝑓 𝒘∗ ≤ 𝜖 the number of rounds is: 



Stochastic gradient descent

• Computing the gradient of empirical loss is expensive 
• Because empirical loss depends on all training data 
• And every step requires a pass through entire dataset 

• Idea: Instead of computing gradient on the entire dataset each time, 
compute them on small samples: 
• Small batches of data 
• Or even a single data point

• (Each i.i.d data point is treated like a tiny sample of data)

• While any single data point does not represent the set, on average they 
behave simmilarly



GD vs SGD

• SGD takes a more random path, but follows similar trends

w w



Finding the best model by looking for the 
lowest point of the loss function

ww



Stochastic gradient descent (from book) 



Stochastic gradient descent other version

• Initialize 𝒘1 randomly (uniform or gaussian)

• For 𝑡 = 1 … 𝑇
• Take a random small sample of data (mini batch)

• Compute gradient 𝒗𝑡  on this sample

•  Update 𝒘𝑡+1 = 𝒘𝑡 − 𝜂𝒗𝑡

• Output 𝒘𝑇 



Theorem (14.8 )

• Similar result to deterministic GD: 



Practical modifications 

• For large neural nets 
• Simply put all edge weights in the same vector
• SGD algorithm does not depend on what your model type is 
• As along as all parameters are real valued 

• Mini batching:
• Instead of one data item at time, take them in batches of a few at a time. 
• Faster, and fewer unhelpful moves

• Run in epochs. In each epoch
• Order the data points in a random permutation 
• For each data point (or mini-batch)

• Compute the gradient and move the modes

• Other modifications: 
• Change learning rates
• Add momentum, add dropout etc



Other properties of loss functions



Strong Convexity 

• Function 𝑓 is 𝜆-strongly convex if 



Lipschitzness

• A function 𝑓 is 𝜌-Lipschitz if
• 𝑓 𝒘1 − 𝑓 𝒘2 ≤ 𝜌| 𝒘1 − 𝒘2 |

• A function that does not change too fast
• If the derivative is bounded by 𝜌,

• What can we say about its lipschitzness?  

• Then the function is also 𝜌-Lipschitz 

• But lipschitzness can be defined/computed even when the derivative does not exist



Smoothness

• Gradient ( a vector derivative in multiple dimensions)
• The direction and speed of fastest increase

• 𝑓 is 𝛽-smooth if ∇𝑓 is 𝛽-Lipschitz:
• ∇𝑓 𝒗 − ∇𝑓 𝒘 ≤ 𝛽| 𝒗 − 𝒘 |



Convex-Lipschitz-Bounded learning problems

• A learning problem ℋ, 𝒵, ℓ  where: 

• ℋis convex, ∀𝒘 ∈ ℋ, 𝒘 ≤ 𝐵

• ∀𝑧 ∈ 𝒵 the loss ℓ(⋅, 𝑧) is convex and 𝜌-Lipschitz (for some 𝜌) 



Convex-smooth-bounded learning

• A learning problem ℋ, 𝒵, ℓ  where: 

• ℋis convex, ∀𝒘 ∈ ℋ, 𝒘 ≤ 𝐵

• ∀𝑧 ∈ 𝒵 the loss ℓ(⋅, 𝑧) is convex, nonnegative and 𝛽-smooth (for 
some 𝛽)



Why do we want convexity, smoothness, 
lipschitzness etc? 



Why do we want convexity, smoothness, 
lipschitzness etc? 

• Avoids sudden changes in function and its gradients 

• Easier to compute and apply gradients as optimization steps

• Most theoretical analysis assume some of these properties

• Most practical situations have similar properties
• For most regions of data space and model space 

• It is hard to make SGD, or any algorithm work if it does not



What is the problem of 0-1 empirical risk as 
loss function?

• Remember that we had defined the average empirical error as the 
loss. 
• Can we use that for gradient descent? 



Surrogate loss functions

• Some loss functions are hard to work with. E.g.
• They are not convex
• They are hard to optimize for 
• E.g. 0-1 loss in linear classification 

• Solution
• Use a “surrogate” loss function
• That is kind of similar, but easier to manage, e.g. convex 

• Usual rule for surrogate loss
• Should be convex
• Should upper bound (be larger than original loss.)



Example: Hinge loss 



Regularization 

• Instead of the pure loss, minimize loss with a regularization term: 

• Commonly used: 𝑅 𝒘 = 𝜆 𝒘
2

 
• Called Tikhonov regularization 



Try yourself: 

Go to wolfram alpha and plot a polynomial: 𝑦 = 𝑎5𝑥5 + 𝑎4𝑥4 +
𝑎3𝑥3 + 𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0

• With numbers of your choice in place of coefficients  𝑎𝑖

• Now scale the coefficients: multiply all the coefficients with the same 
number (may be fractions too). What do you see? 



Ridge regression 

• Linear regression with Tikhonov regularization 



• 𝑅 𝒘 = 𝜆 𝒘
2

 is 2𝜆-strongly convex 

• If 𝑓 is 𝜆-strongly convex and g is convex, then 𝑓 + 𝑔 is 𝜆-strongly 
convex 

• Thus, Ridge regression is strongly convex 

• Strongly convex loss implies stability – useful property in SGD and 
other methods 



Stability 

• Intuitively: A learning algorithm is stable if
• A small change to training set does not cause a big change to the output 

(model or hypothesis)

• This is a desirable property because…



Stability 

• Intuitively: A learning algorithm is stable if
• A small change to training set does not cause a big change to the output 

(model or hypothesis)

• This is a desirable property because
• It implies that it is not too sensitive to specific S. does not overfit

• If we continue to use it, it will not abruptly change behavior 



• Suppose in 𝑆, we replace 𝑧𝑖 with 𝑧′ ∼ 𝒟

• Let us write this as 𝑆𝑖

• A good algorithm 𝐴 should have small value for 
• |ℓ 𝐴 𝑆𝑖 , 𝑧𝑖 − ℓ 𝐴 𝑆 , 𝑧𝑖 |

• The loss on 𝑧𝑖 does not depend too much on it being in the sample



Stability definition and result

• Algorithm 𝐴 is on-average-replace-one-stable with rate 𝜖(𝑚)

• If
• 𝔼 ℓ 𝐴 𝑆𝑖 , 𝑧𝑖 − ℓ 𝐴 𝑆 , 𝑧𝑖 ≤ 𝜖(𝑚)



Stability definition and result

• Algorithm 𝐴 is on-average-replace-one-stable with rate 𝜖(𝑚)

• If
• 𝔼 ℓ 𝐴 𝑆𝑖 , 𝑧𝑖 − ℓ 𝐴 𝑆 , 𝑧𝑖 ≤ 𝜖(𝑚)

• Theorem: 
• 𝔼 𝐿𝒟 𝐴 𝑆 − 𝐿𝑆 𝐴 𝑆 = 𝔼 ℓ 𝐴 𝑆𝑖 , 𝑧𝑖 − ℓ 𝐴 𝑆 , 𝑧𝑖

• The generalization gap is bounded by the stability 



Generalisation Gap 

• Empirical or training loss: 𝐿𝑆 ℎ

• Generalisation loss or true loss : 𝐿𝒟(ℎ)

• 𝐿𝒟 ℎ − 𝐿𝑆 ℎ

• A measure of overfitting
• (sometimes generalization gap is referred to as generalization loss)



Uniform Stability

• Suppose we get 𝑆𝑖 by replacing one element 𝑧𝑖 at position 𝑖 of 𝑆 with a 
new element 𝑧𝑖

′

• And suppose that 𝑧 ∈ 𝒵 is some possible input element 

• As before, 𝐴 𝑆  refers to the model that algorithm 𝐴 computes using 𝑆

• We can write the loss on 𝑧 as ℓ(𝐴 𝑆 , 𝑧)

• Algorithm 𝐴 is 𝜖-uniformly stable if
• Sup𝑧∈𝒵 𝐸𝐴ℓ 𝐴(𝑆𝑖 , 𝑧 − 𝐸𝐴ℓ(𝐴 𝑆 , 𝑧)] ≤ 𝜖

• 𝐸𝐴 means expectation taken over all possible random behaviour of 𝐴



Uniform Stability implies generalization 

• Theorem: 

• If Randomized Algorithm 𝐴 is 𝜖-uniformly stable then
• 𝐸𝑆𝐸𝐴ℓ 𝐴 𝑆 , 𝒟 ≤ 𝐸𝑆𝐸𝐴ℓ 𝐴 𝑆 , 𝑆 + 𝜖

• True loss ≤ Training loss + 𝜖



Uniform Stability implies generalization 

• Theorem: 

• If Algorithm 𝐴 is 𝜖-uniformly stable then
• 𝐸𝑆𝐸𝐴ℓ 𝐴 𝑆 , 𝒟 ≤ 𝐸𝑆𝐸𝐴ℓ 𝐴 𝑆 , 𝑆 + 𝜖

• Expected true loss ≤ Training loss + 𝜖

•  Proof: Omitted (for now). 



Observe 

• Regularization creates strong convexity 

• Strong convexity implies stability 

• Stability implies generalization 



Next

• Larger neural networks
• Losses are non-convex

• What happens with non-convex loss? 

• Shapes of loss functions

• Overfitting and overparameterization in neural networks 
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