



Regularization

Regularization

None

None

Activation

Regularization

Regularization rate

Regularization rate

Regularization rate

Learning rate

Learning rate

0.03

0.03

১ 🔲 M

১ 🕕

Epoc

001,209

001,048



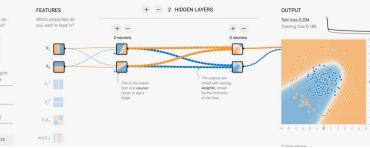
Problem type

Classification

Problem type

Classification

Problem type

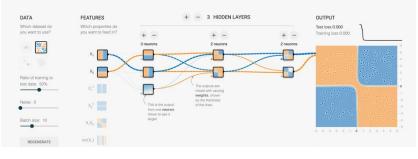


Regularization

Regularization rate

Classification





Activation

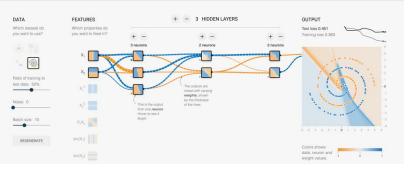
Tanh

Learning rate

0.03

5 🕕

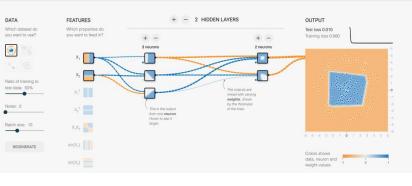
000,759

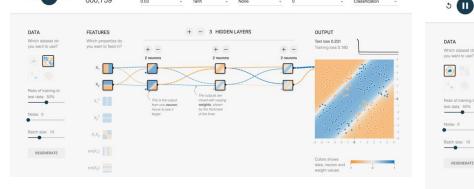


Activation

Tanh

Tanh





Regularization

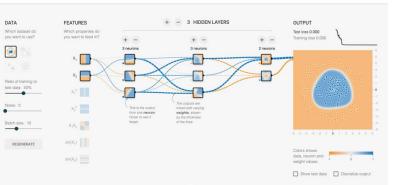
None

Regularization rate

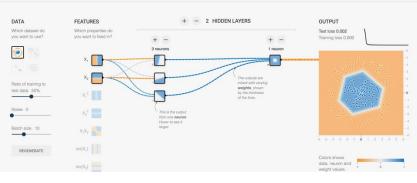
0

Problem type

Classification







Learning rate





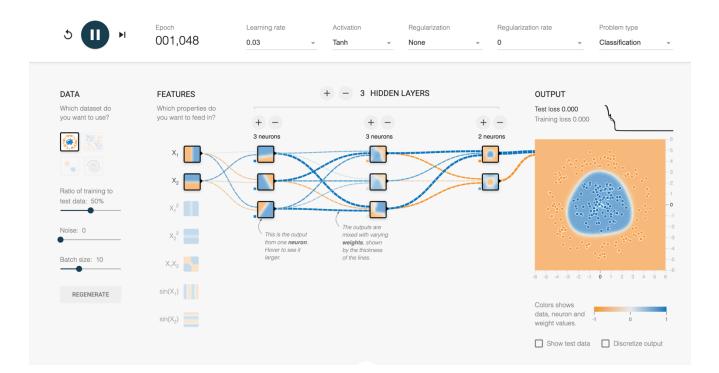


### Optimization Algorithms and Loss functions

Machine Learning Theory (MLT) Edinburgh Rik Sarkar

#### How does this program find good models?

- In a neural network, models are defined by weights on the edges
- Good models correspond to right selection *w* of weights



### Optimization: finding good models

- Our goal is to find  $h \in \mathcal{H}$
- Such that  $|L(h) L(h^*)|$  is small
  - Where  $h^*$  is the best possible model
- Optimization algorithms try to find a good h (represented by weight vector w)
  - That have a low loss

#### Today's lecture

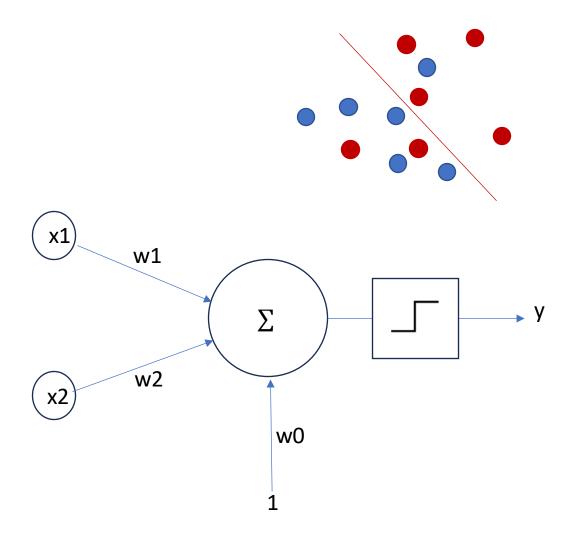
- Finding weights for a single neuron (linear models)
  - Logistic regression
- Convex functions and convex learning
- Gradient descent and Stochastic gradient descent
  - Main training algorithms in ML and Deep learning
- Continuity properties of loss functions
- Regularization
- Stability

#### Course

- Tutorial 1 next week
- Tutorial sheet will be out soon (by thursday).
- Please go over it before the tutorial

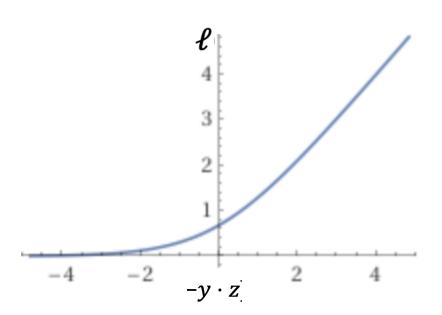
### Single neuron

- Perceptron with threshold activation
  - $w_1, w_2, b \in \mathbb{R}$
- $y = (w_1 x_1 + w_2 x_2 + w_0, 1 \ge 0)$ 
  - Truth value 0/1 (0r, -1/+1)
- We write
  - $z = w \cdot x$
- Optimization problem:
  - Find the best possible *w*
  - Represents model  $h_w$



#### Logistic regression (used for classification!)

- Suppose point x has label  $y \in \{-1, 1\}$
- If z and y have the same sign
  - Then the classification is correct
- If z and y have different signs
  - Then classification is incorrect
- The logistic loss function is:
  - $\ell(h_w, (x, y)) = \log(1 + \exp(-y \cdot z))$
  - If y, z are same sign,  $\ell$  gets smaller with z
  - y, z are different signs,  $\ell$  is larger with z

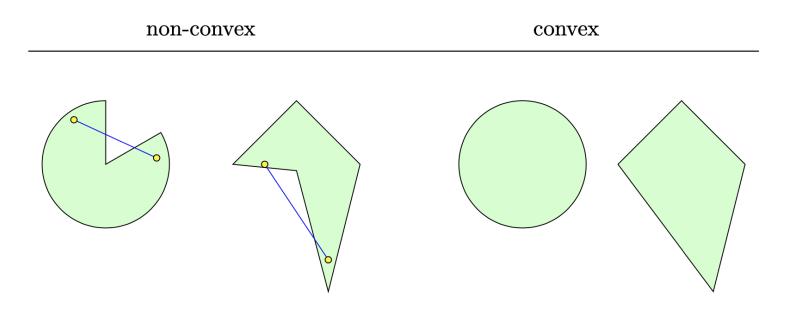


#### Logistic loss of S

- For a training dataset *S*
- We use the average logistic loss
- So, the best model w is the one with min logistic loss:
  - $\operatorname{argmin}_{w} \frac{1}{m} \sum_{i=1}^{m} \log(1 + e^{-yz})$
- But we still need an algorithm to find this best w

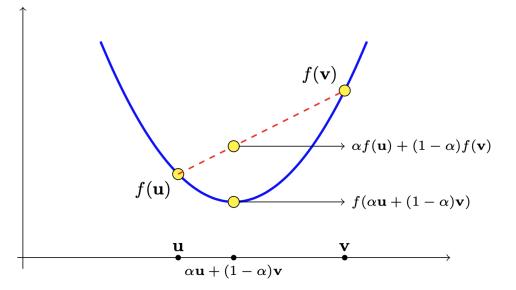
#### Convexity and convex learning

- A set C is convex if for any u, v ∈ C, the line segment connecting u, v
   is in C. (Any intermediate point is in C)
  - Can be written formally as:
  - For any  $\alpha \in [0,1]$ , it is true that  $\alpha u + (1 \alpha)v \in C$



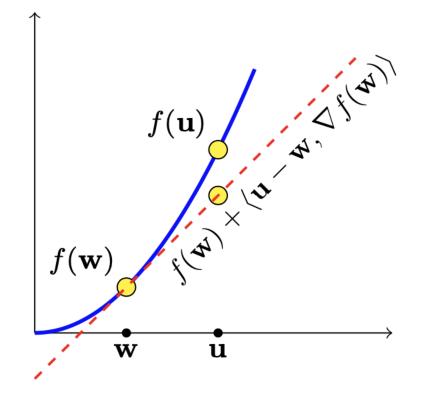
#### Convex function

- For a convex C, a function  $f: C \to \mathbb{R}$  is convex if
- $f(\alpha \boldsymbol{u} + (1 \alpha)\boldsymbol{v}) \le \alpha f(\boldsymbol{u}) + (1 \alpha)f(\boldsymbol{v})$
- The graph of f lies below the straight line connecting u and v



#### Properties of convex functions

- Every local minimum is also a global minimum
  - Question: is the global minimum unique?
- For every *w* the tangent at *w* lies below *f* :
  - $\forall u, f(u) \ge f(w) + \langle \nabla f(w), u w \rangle$
- If  $f: \mathbb{R} \to \mathbb{R}$  is twice differentiable, then
  - *f* is convex
  - f' is monotone nondecreasing
  - *f*<sup>''</sup> is nonnegative
- Are equivalent



#### Examples of convex functions

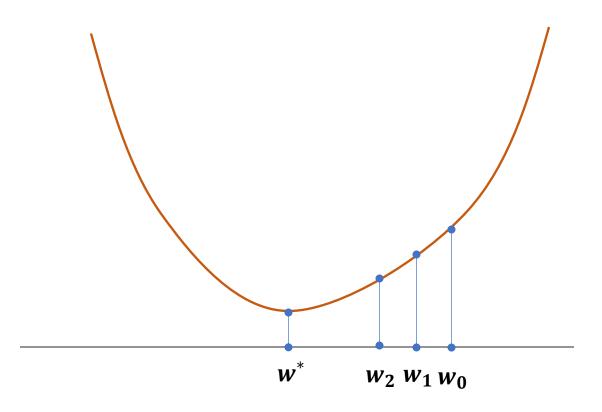
#### Examples of functions that are not convex

#### Combining convex functions

- If g is convex, then  $f(w) = g(\langle w, x \rangle + y)$  is convex
- If  $f_i$  are convex functions
- $g(x) = \max_{i} f_i(x)$  is convex
- $g(x) = \sum_{i} w_{i} f_{i}(x)$  is convex
  - What is the consequence for loss functions?

#### Convex learning is easy!

- Start with any model  $oldsymbol{w}_0$
- Take a step in a direction that makes the loss smaller
- Repeat until we are close to  $w^*$  with smallest loss



- Gradient descent
  - Compute the derivative at current *w*, move a step in that direction

#### Gradient

- Gradient (a vector derivative in multiple dimensions)
  - The direction and speed of fastest increase

$$\nabla f(\mathbf{w}) = \left(\frac{\partial f(\mathbf{w})}{\partial w_1}, \dots, \frac{\partial f(\mathbf{w})}{\partial w_d}\right)$$

- (here a w<sub>i</sub> is a parameter or dimension of the model)
- Partial derivatives
  - Compute the derivative along each dimension, put them in a vector

#### Gradient descent

• Gradient is 
$$\nabla f(\mathbf{w}) = \left(\frac{\partial f(\mathbf{w})}{\partial w[1]}, \dots, \frac{\partial f(\mathbf{w})}{\partial w[d]}\right)$$

- Gradient represents the direction in which f increases fastest
- Gradient Descent: At every step t :
  - $w^{t+1} = w^t \eta \nabla f(w^t)$ 
    - (Move in the direction that f decreases fastest With a step scale of  $\eta$ )
- After T steps, output the average vector  $\overline{w} = \frac{1}{T} \sum_{t=1}^{T} w^{t}$
- Other version: output final vector  $w_T$
- For us, f is the average loss L

#### Theorem (14.2 in book)

- For convex lipschitz bounded learning
- Setting  $\eta = \sqrt{\frac{B^2}{\rho^2 T}}$
- We can get  $f(\bar{\mathbf{w}}) f(\mathbf{w}^{\star}) \leq \frac{B \rho}{\sqrt{T}}$
- Alternatively, to achieve  $f(\overline{w}) f(w^*) \le \epsilon$  the number of rounds is:

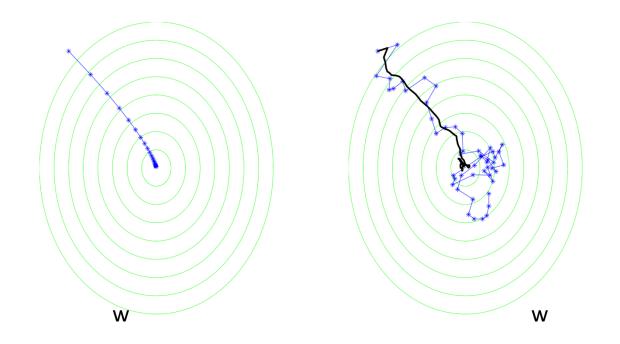
$$T \geq \frac{B^2 \rho^2}{\epsilon^2}$$

#### Stochastic gradient descent

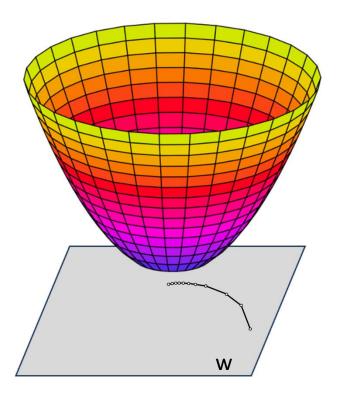
- Computing the gradient of empirical loss is expensive
  - Because empirical loss depends on all training data
  - And every step requires a pass through entire dataset
- Idea: Instead of computing gradient on the entire dataset each time, compute them on small samples:
  - Small batches of data
  - Or even a single data point
    - (Each i.i.d data point is treated like a tiny sample of data)
  - While any single data point does not represent the set, on average they behave simmilarly

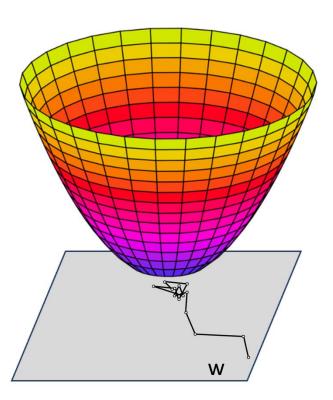
#### GD vs SGD

• SGD takes a more random path, but follows similar trends



## Finding the best model by looking for the lowest point of the loss function





#### Stochastic gradient descent (from book)

```
Stochastic Gradient Descent (SGD) for minimizing
                                          f(\mathbf{w})
parameters: Scalar \eta > 0, integer T > 0
initialize: \mathbf{w}^{(1)} = \mathbf{0}
for t = 1, 2, ..., T
   choose \mathbf{v}_t at random from a distribution such that \mathbb{E}[\mathbf{v}_t | \mathbf{w}^{(t)}] \in \partial f(\mathbf{w}^{(t)})
   update \mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \eta \mathbf{v}_t
output \bar{\mathbf{w}} = \frac{1}{T} \sum_{t=1}^{T} \mathbf{w}^{(t)}
```

#### Stochastic gradient descent other version

- Initialize  $w^1$  randomly (uniform or gaussian)
- For t = 1 ... T
  - Take a random small sample of data (mini batch)
  - Compute gradient  $oldsymbol{v}^t$  on this sample
  - Update  $w^{t+1} = w^t \eta v^t$
- Output  $\boldsymbol{w}^T$

#### Theorem (14.8)

• Similar result to deterministic GD:

$$\mathbb{E}\left[f(\bar{\mathbf{w}})\right] - f(\mathbf{w}^{\star}) \le \frac{B\rho}{\sqrt{T}}$$

#### Practical modifications

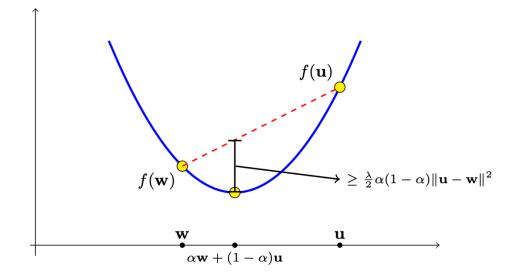
- For large neural nets
  - Simply put all edge weights in the same vector
  - SGD algorithm does not depend on what your model type is
  - As along as all parameters are real valued
- Mini batching:
  - Instead of one data item at time, take them in batches of a few at a time.
  - Faster, and fewer unhelpful moves
- Run in epochs. In each epoch
  - Order the data points in a random permutation
  - For each data point (or mini-batch)
    - Compute the gradient and move the modes
- Other modifications:
  - Change learning rates
  - Add momentum, add dropout etc

#### Other properties of loss functions

#### Strong Convexity

• Function f is  $\lambda$ -strongly convex if

$$f(\alpha \mathbf{w} + (1 - \alpha)\mathbf{u}) \le \alpha f(\mathbf{w}) + (1 - \alpha)f(\mathbf{u}) - \frac{\lambda}{2}\alpha(1 - \alpha)\|\mathbf{w} - \mathbf{u}\|^2$$



#### Lipschitzness

- A function f is  $\rho$ -Lipschitz if
  - $||f(w_1) f(w_2)|| \le \rho ||w_1 w_2||$
- A function that does not change too fast
  - If the derivative is bounded by ho,
    - What can we say about its lipschitzness?
    - Then the function is also  $\rho$ -Lipschitz
    - But lipschitzness can be defined/computed even when the derivative does not exist

#### Smoothness

- Gradient (a vector derivative in multiple dimensions)
  - The direction and speed of fastest increase

$$\nabla f(\mathbf{w}) = \left(\frac{\partial f(\mathbf{w})}{\partial w_1}, \dots, \frac{\partial f(\mathbf{w})}{\partial w_d}\right)$$

- *f* is  $\beta$ -smooth if  $\nabla f$  is  $\beta$ -Lipschitz:
  - $||\nabla f(\boldsymbol{v}) \nabla f(\boldsymbol{w})|| \le \beta ||\boldsymbol{v} \boldsymbol{w}||$

#### Convex-Lipschitz-Bounded learning problems

- A learning problem  $(\mathcal{H}, \mathcal{Z}, \ell)$  where:
- $\mathcal{H}$  is convex,  $\forall w \in \mathcal{H}, ||w|| \leq B$
- $\forall z \in \mathbb{Z}$  the loss  $\ell(\cdot, z)$  is convex and  $\rho$ -Lipschitz (for some  $\rho$ )

#### Convex-smooth-bounded learning

- A learning problem  $(\mathcal{H}, \mathcal{Z}, \ell)$  where:
- $\mathcal{H}$  is convex,  $\forall w \in \mathcal{H}$ ,  $||w|| \leq B$
- $\forall z \in \mathcal{Z}$  the loss  $\ell(\cdot, z)$  is convex, nonnegative and  $\beta$ -smooth (for some  $\beta$ )

### Why do we want convexity, smoothness, lipschitzness etc?

# Why do we want convexity, smoothness, lipschitzness etc?

- Avoids sudden changes in function and its gradients
- Easier to compute and apply gradients as optimization steps
- Most theoretical analysis assume some of these properties
- Most practical situations have similar properties
  - For most regions of data space and model space
  - It is hard to make SGD, or any algorithm work if it does not

# What is the problem of 0-1 empirical risk as loss function?

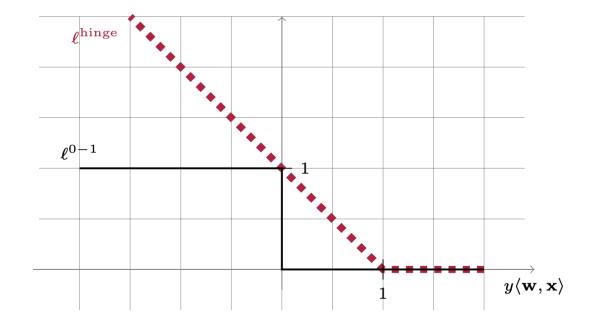
- Remember that we had defined the average empirical error as the loss.
  - Can we use that for gradient descent?

### Surrogate loss functions

- Some loss functions are hard to work with. E.g.
  - They are not convex
  - They are hard to optimize for
  - E.g. 0-1 loss in linear classification
- Solution
  - Use a "surrogate" loss function
  - That is kind of similar, but easier to manage, e.g. convex
- Usual rule for surrogate loss
  - Should be convex
  - Should upper bound (be larger than original loss.)

Example: Hinge loss

$$\ell^{\mathrm{hinge}}(\mathbf{w},(\mathbf{x},y)) \stackrel{\mathrm{def}}{=} \max\{0,1-y\langle\mathbf{w},\mathbf{x}
angle\}$$



#### Regularization

• Instead of the pure loss, minimize loss with a regularization term:

$$\operatorname*{argmin}_{\mathbf{w}} \left( L_S(\mathbf{w}) + R(\mathbf{w}) \right)$$

- Commonly used:  $R(w) = \lambda ||w||^2$ 
  - Called Tikhonov regularization

# Try yourself:

Go to wolfram alpha and plot a polynomial:  $y = a_5 x^5 + a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0$ 

- With numbers of your choice in place of coefficients  $a_i$
- Now scale the coefficients: multiply all the coefficients with the same number (may be fractions too). What do you see?

#### Ridge regression

• Linear regression with Tikhonov regularization

$$\underset{\mathbf{w}\in\mathbb{R}^d}{\operatorname{argmin}} \left(\lambda\|\mathbf{w}\|_2^2 + \frac{1}{m}\sum_{i=1}^m \frac{1}{2}(\langle \mathbf{w}, \mathbf{x}_i \rangle - y_i)^2\right)$$

- $R(w) = \lambda ||w||^2$  is  $2\lambda$ -strongly convex
- If f is  $\lambda$ -strongly convex and g is convex, then f+g is  $\lambda$ -strongly convex
- Thus, Ridge regression is strongly convex
- Strongly convex loss implies stability useful property in SGD and other methods

# Stability

- Intuitively: A learning algorithm is stable if
  - A small change to training set does not cause a big change to the output (model or hypothesis)

• This is a desirable property because...

# Stability

- Intuitively: A learning algorithm is stable if
  - A small change to training set does not cause a big change to the output (model or hypothesis)

- This is a desirable property because
  - It implies that it is not too sensitive to specific S. does not overfit
  - If we continue to use it, it will not abruptly change behavior

- Suppose in S, we replace  $z_i$  with  $z' \sim D$
- Let us write this as S<sup>i</sup>
- A good algorithm A should have small value for •  $|\ell(A(S^i), z_i) - \ell(A(S), z_i)|$
- The loss on  $z_i$  does not depend too much on it being in the sample

## Stability definition and result

- Algorithm A is on-average-replace-one-stable with rate  $\epsilon(m)$
- If
  - $\mathbb{E}\left[\ell\left(A(S^{i}), z_{i}\right) \ell(A(S), z_{i})\right] \leq \epsilon(m)$

#### Stability definition and result

- Algorithm A is on-average-replace-one-stable with rate  $\epsilon(m)$
- If
  - $\mathbb{E}\left[\ell\left(A(S^{i}), z_{i}\right) \ell(A(S), z_{i})\right] \leq \epsilon(m)$
- Theorem:

• 
$$\mathbb{E}[L_{\mathcal{D}}(A(S)) - L_{S}(A(S))] = \mathbb{E}[\ell(A(S^{i}), z_{i}) - \ell(A(S), z_{i})]$$

• The generalization gap is bounded by the stability

## Generalisation Gap

- Empirical or training loss:  $L_S(h)$
- Generalisation loss or true loss :  $L_{\mathcal{D}}(h)$
- $L_{\mathcal{D}}(h) L_{S}(h)$
- A measure of overfitting
  - (sometimes generalization gap is referred to as generalization loss)

## Uniform Stability

- Suppose we get  $S^i$  by replacing one element  $z_i$  at position i of S with a new element  $z'_i$
- And suppose that  $z \in \mathcal{Z}$  is some possible input element
- As before, A(S) refers to the model that algorithm A computes using S
- We can write the loss on z as  $\ell(A(S), z)$
- Algorithm A is  $\epsilon$ -uniformly stable if
  - $\operatorname{Sup}_{z\in\mathcal{Z}}\left[E_A\ell(A(S^i),z) E_A\ell(A(S),z)\right] \le \epsilon$
- $E_A$  means expectation taken over all possible random behaviour of A

# Uniform Stability implies generalization

- Theorem:
- If Randomized Algorithm A is  $\epsilon$ -uniformly stable then
  - $E_S E_A \ell(A(S), \mathcal{D}) \leq E_S E_A \ell(A(S), S) + \epsilon$
  - True loss  $\leq$  Training loss +  $\epsilon$

# Uniform Stability implies generalization

#### • Theorem:

- If Algorithm A is  $\epsilon$ -uniformly stable then
  - $E_S E_A \ell(A(S), \mathcal{D}) \leq E_S E_A \ell(A(S), S) + \epsilon$
  - Expected true loss  $\leq$  Training loss +  $\epsilon$
- Proof: Omitted (for now).

#### Observe

- Regularization creates strong convexity
- Strong convexity implies stability
- Stability implies generalization

#### Next

- Larger neural networks
  - Losses are non-convex
- What happens with non-convex loss?
- Shapes of loss functions
- Overfitting and overparameterization in neural networks