DATA

Wrich dataset do
you want to uss?

Ratio of raining o
test data: 50%

Noise: 0

Batch size: 10

REGENERATE

Q-

DATA

Epoch Learning rate Actvation Requiarzation Reguiaization rate Problom type
000,681 003 ~ Tah - None) - Classiicaton v
FEATURES + — 2 HIDDEN LAYERS OUTPUT

Which properties do Test loss 0.001

you want to foed in? 5 - s @ Training loss 0.000

you want to use?

Ratio of training 10
tost data: 50%

Noise: 0

Batch size: 10

REGENERATE

DATA

‘Wihich dataset do
You want 1o use?

Ratio of raining to
tost data: 50%

Noise: 0

Batchsize: 10

REGENERATE

sn(X,)
Epoch Learning rate Activation Regularization Regularization rate Problem type
001,101 003 < Tamh ~ Nome -0 « Classification -
FEATURES + — 3 HIDDEN LAYERS OUTPUT
go Test loss 0.000
you want to feed in? 2 5 = T Training loss 0.000

sn(Xy)
Epoch Loarming rata Actaton Reguiarzaton Reguiarizatn rate Problem type
000,759 003 < Tamh ~ None - 0 - Classification .

FEATURES + = 3 HIDDEN LAYERS ouTPUT

Which properties do Test loss 0.231

you want 1o feed in? S 3 & e Training koss 0.180

sin(X,)
Colors shows
data, nouronang M | —
sin(X;) woight values. ¥ x

0 \ Epoch Learning rate Activation Regularization Regularization rate Problem type
»
000,586 w0 SN < o - 0 © Cmsstnton
DATA FEATURES + — 3 HIDDENLAYERS oUTPUT
do Test loss 0.467
you want 1o use? youwant 1o leed in? @ o @ - e

Ratioof raining to
test data: 50%

Noise: 0
P

Batsh sze: 10

REGENERATE

Q-

DATA

Which dataset do
you want to use?

Ratio of raining to
test data: 50%

Noiso: 0

Batch size: 10

0

DATA

‘Which dataset do
You want 10 use?

Ratio of raining to
test data: 50%

Q-

DATA

-

sinX,)

sing;)

Regularization rate

Epoch Leaming rate Actvation Regularizaton

001,209 003 « Tanh « None .

o -

OUTPUT
Test loss 0.451
Training loss 0.363

FEATURES + — 3 HIDDEN LAYERS

Wrich properties do
You want o feed in? g

XX
‘ o B
ol

Colors shows.

Colors shows . — —
st Pyt o '
Epoch Learning rate Actvation Regularization Regularization rate Prodlem type
001,048 003 - Tam < None -0 - Classification e

FEATURES + = 3 HIDDEN LAYERS ouTPUT
Which propertes do Testfoss 0.000
You want 1o feed in? o) = 5 Training foss 0.000

sinfX,)

Colors shows:
data, neuron and _' 58 —.

Ll weight values.

O srowtestowa [Discretzs ouput

You want to use?

Ratio of training to
test data: 50%

Noise: 0

Batch size: 10

REGENERATE

Q-

DATA

Which dataset do
you want 1o use?

Ratio of raining to
test data: 50%

Noise: 0
e

Batch size: 10

- @

DATA

Which dataset do
You want o use?

Ratio of training to
test data: 50%

Noise: 0

Batch size: 10

REGENERATE

Epocn Learning rate
000,848 003

FEATURES

Which properties do

you want to feed in? DE

X e

sinfx,)

Leaming rate

Epoch
001,662 003

FEATURES

Wihich properties do
you want to feed In?

+

Actvation

Tanh

Activation

—= 2 H

Regularization
~ None

2 HIDDEN LAYERS

Regularization
~ None
IDDEN LAYERS

Regularization rate Problem type

0 ~ Classificaion .
OUTPUT
Test loss 0.234
Training loss 0,184

Pieee chowie

Regularization rate Problem type
0 - Classification s
OouTPUT
Test loss 0010
Training l0ss 0.000

sin(X;)

sinfy)

Epoch

000,579

FEATURES

Which properties do
You want to feed in?

sn(X,)

sin(X;)

Learming rate

0.03

R

Activation
RelU

Regularization
~ None
2 HIDDEN LAYERS

Colors shows.
data, neuron and) —
‘weight values. 4 2 1)

Regularization rate Problem type

0 ~ Classification B
OUTPUT
Testloss 0.002
Training foss 0.000

Colors shows
data, neuron ang.

weight vaiues. ' 2 !

Edinburgh
Rik Sarkar

How does this program find good models?

* In a neural network, models are defined by weights on the edges
* Good models correspond to right selection w of weights

Epoct 2arning rate Activation Regularization legularization rate Problem type
o » g J J
001 ,048 0.03 Tanh None 0 Classification
DATA + 3 HIDDENLAYERS ~ QUTPUT
Which dataset ¢ 000
you Want to use’ @ Y = s 0.000
3 neurons 2 neurons
3 iy L} ={}
. ~ —=
o
3 B>~ Ct
78,
Ratio of trainin, . B
’
test data: 50 _-
— 3 {5
Nolse: O)
L m one neuro
—e

REGENERATE

Optimization: finding good models

e Qurgoalistofind h € H

* Such that |L(h) — L(h™)| is small
* Where h” is the best possible model

e Optimization algorithms try to find a good h (represented by weight

vector w)
e That have a low loss

Today’s lecture

* Finding weights for a single neuron (linear models)
* Logistic regression

* Convex functions and convex learning

e Gradient descent and Stochastic gradient descent
* Main training algorithms in ML and Deep learning

e Continuity properties of loss functions
* Regularization
e Stability

Course

e Tutorial 1 next week
 Tutorial sheet will be out soon (by thursday).
* Please go over it before the tutorial

Single neuron

* Perceptron with threshold activation
* Wq, Wz,b ER

*y = (W1x1 + Wy X- + Wo.l > O)
* Truth value 0/1 (Or, -1/+1)

* We write
* Z=W:+* X

* Optimization problem:
* Find the best possible w
* Represents model h,,

wl

w2

wO

Logistic regression (used for classification!)

* Suppose point x has label y € {—1, 1}

* If z and y have the same sign
* Then the classification is correct

* If z and y have different signs
 Then classification is incorrect

* The logistic loss function is:

. {’(hw, (x, y)) = log(1 + exp(—y - 2))
* If y, z are same sign, ¥ gets smaller with z
* v,z are different signs, € is larger with z T -y-z

Logistic loss of §

e For a training dataset S
* We use the average logistic loss
* So, the best model w is the one with min logistic loss:

. a,ﬂgminwiz’gl log(1 + e™¥%)

* But we still need an algorithm to find this best w

Convexity and convex learning

 Aset Cis convex if forany u,v € C, the line segment connecting u, v
isin C. (Any intermediate pointis in C)

e Can be written formally as:
 Forany a € [0,1], itistruethatau + (1 —a)v € C

non-convex convex

@9 ©9Q

Convex function

* For a convex C, a function f: C = R is convex if

*flau+ (1 —a)v) < af (w) + (1 —a)f(v)

* The graph of f lies below the straight line connecting u and v

f(}/
o af(u) + (1 -) f(¥)

flau+ (1 —a)v)

u v

'au—{— (I —a)v

Properties of convex functions

* Every local minimum is also a global minimum
e Question: is the global minimum unique?

* For every w the tangent at w lies below f:
* vu,f(u) = f(w) +(Vf(w),u —w)

* If f:R = Ris twice differentiable, then

* fis convex
* f'is monotone nondecreasing
* f""is nonnegative

* Are equivalent

Examples of convex functions

Examples of functions that are not convex

Combining convex functions

* If g is convex, then f(w) = g({w, x) + y) is convex
* If f; are convex functions

c g(x) = ml_axfi(x) is convex

* g(x) = X, w;f;(x) is convex

 What is the consequence for loss functions?

Convex learning is easy!

e Start with any model w,

* Take a step in a direction that
makes the loss smaller

* Repeat until we are close to w*
with smallest loss

e Gradient descent

 Compute the derivative at current w,
move a step in that direction

Wy Wq Wy

Gradient

* Gradient (a vector derivative in multiple dimensions)
* The direction and speed of fastest increase

Viw) = (%50, o)

) de

* (here a w; is a parameter or dimension of the model)

 Partial derivatives
 Compute the derivative along each dimension, put them in a vector

Gradient descent o
[Of(w) Of(w)
* Gradient is Vf(w) _ (ow([l] ?*°) Owl|d])

* Gradient represents the direction in which f increases fastest

* Gradient Descent: At every step t :

o Wt+1 = w! — an(Wt)
* (Move in the direction that f decreases fastest With a step scale of)

_ 1
* After T steps, output the average vector w = ;Zzﬂ wt

* Other version: output final vector wr
* For us, f is the average loss L

Theorem (14.2 in book)

* For convex lipschitz bounded learning

: BZ
* Settingn = E
 We can get f(W) — f(w*) < %

* Alternatively, to achieve f(w) — f(w") < € the number of rounds is:

2 .2
7> 2P

Stochastic gradient descent

* Computing the gradient of empirical loss is expensive

* Because empirical loss depends on all training data
* And every step requires a pass through entire dataset

* |dea: Instead of computing gradient on the entire dataset each time,
compute them on small samples:

 Small batches of data

* Or even a single data point
e (Eachi.i.d data point is treated like a tiny sample of data)

* While any single data point does not represent the set, on average they
behave simmilarly

GD vs SGD

* SGD takes a more random path, but follows similar trends

-inding the best model by looking for the
owest point of the loss function

Stochastic gradient descent (from book)

Stochastic Gradient Descent (SGD) for minimizing
f(w)

parameters: Scalar n > 0, integer 7" > 0

initialize: w(l) =0

fort=1,2,...,T
choose v; at random from a distribution such that E[v; | w®] € 0f(w(®)
update w1 = w®) — py,

output w = & 3, w®

Stochastic gradient descent other version

* Initialize w! randomly (uniform or gaussian)

cFort=1..T

* Take a random small sample of data (mini batch)
 Compute gradient v* on this sample
e Update wttl = wt — ot

 Output w'

Theorem (14.8)

e Similar result to deterministic GD:

Ef(w)] = f(w")

<

9IS

Practical modifications

For large neural nets
e Simply put all edge weights in the same vector
e SGD algorithm does not depend on what your model type is
* Asalong as all parameters are real valued

Mini batching:
* |nstead of one data item at time, take them in batches of a few at a time.
* Faster, and fewer unhelpful moves

Run in epochs. In each epoch
* Order the data points in a random permutation

* For each data point (or mini-batch)
e Compute the gradient and move the modes

Other modifications:
e Change learning rates
* Add momentum, add dropout etc

Other properties of loss functions

Strong Convexity

* Function f is A-strongly convex if

flaw + (1 - 0)u) < af (w) + (1 - @) f(w) ~ 2a(l - a) |w — ul?

Lipschitzness

* A function f is p-Lipschitz if
|f (wy) _f(Wz)” < pllw; —wyl|

e A function that does not change too fast

* If the derivative is bounded by p,
* What can we say about its lipschitzness?
* Then the function is also p-Lipschitz
» But lipschitzness can be defined/computed even when the derivative does not exist

Smoothness

* Gradient (a vector derivative in multiple dimensions)
* The direction and speed of fastest increase

Viw) = (%50, o)

(9’(1)1) de

* fis f-smooth if Vf is f-Lipschitz:
Vf(w) = VfFW)I| < Bllv —wl|

Convex-Lipschitz-Bounded learning problems

* Alearning problem (¥, Z,£) where:

* H{is convex, Yw € I, IWH <B
* Vz € Z theloss €(+, z) is convex and p-Lipschitz (for some p)

Convex-smooth-bounded learning

* Alearning problem (¥, Z,£) where:

* H{is convex, Yw € I, IWH <B

* Vz € Z theloss £(+, z) is convex, nonnegative and f-smooth (for
some [5)

Why do we want convexity, smoothness,
lipschitzness etc?

Why do we want convexity, smoothness,
lipschitzness etc?

e Avoids sudden changes in function and its gradients
e Easier to compute and apply gradients as optimization steps

* Most theoretical analysis assume some of these properties

* Most practical situations have similar properties
* For most regions of data space and model space
* |t is hard to make SGD, or any algorithm work if it does not

What is the problem of 0-1 empirical risk as
loss function?

* Remember that we had defined the average empirical error as the
loss.

e Can we use that for gradient descent?

Surrogate loss functions

e Some loss functions are hard to work with. E.g.
* They are not convex
 They are hard to optimize for
* E.g. 0-1loss in linear classification

 Solution
* Use a “surrogate” loss function
* That is kind of similar, but easier to manage, e.g. convex

e Usual rule for surrogate loss
* Should be convex
e Should upper bound (be larger than original loss.)

Example: Hinge loss

Ehinge(w’ (X, y)) déf m&X{O’ 1 — y(W, X>}
hinge ’0“"
’0
.0
*
g0 .’0
41
0.’
’0
‘0
*
Mx)

Regularization

* Instead of the pure loss, minimize loss with a regularization term:

argmin (Lgs(w) + R(w))

W

2
e« Commonly used: R(w) = /1||w||
* Called Tikhonov regularization

Try yourself:

Go to wolfram alpha and plot a polynomial: y = azx> + a,x* +
asx> + a,x* + a;x + a,

* With numbers of your choice in place of coefficients aq;

* Now scale the coefficients: multiply all the coefficients with the same
number (may be fractions too). What do you see?

Ridge regression

* Linear regression with Tikhonov regularization

wERd

1 1
argmin ()\|w§ _Zi W, X;)

* R(w) = /1“W||2 is 2A-strongly convex

* If f is A-strongly convex and g is convex, then f + g is A-strongly
convex

* Thus, Ridge regression is strongly convex

» Strongly convex loss implies stability — useful property in SGD and
other methods

Stability

* Intuitively: A learning algorithm is stable if

* A small change to training set does not cause a big change to the output
(model or hypothesis)

* This is a desirable property because...

Stability

* Intuitively: A learning algorithm is stable if

* A small change to training set does not cause a big change to the output
(model or hypothesis)

* This is a desirable property because

* It implies that it is not too sensitive to specific S. does not overfit
* |If we continue to use it, it will not abruptly change behavior

* Suppose in S, we replace z; with z' ~ D

e Let us write this as S!

* A good algorithm A should have small value for
« [2(A(S?), z;) — 2(A(S), z))|

* The loss on z; does not depend too much on it being in the sample

Stability definition and result

* Algorithm A is on-average-replace-one-stable with rate e(m)
o If
- E[¢(A(SY),2) — £(A(S),)] < e(m)

Stability definition and result

* Algorithm A is on-average-replace-one-stable with rate e(m)

o If
- E[£(A(SY),z;) — €(A(S), z)] < e(m)

e Theorem:

« E[Lp(A(S)) — Ls(A(S))] = E[€(A(S?), z;) — £(A(S), z)]

* The generalization gap is bounded by the stability

Generalisation Gap

* Empirical or training loss: L¢(h)
* Generalisation loss or true loss : Ly (h)

* Lp(h) — Ls(h)

* A measure of overfitting
* (sometimes generalization gap is referred to as generalization loss)

Uniform Stability

e Suppose we get S* by replacing one element z; at position i of S with a
new element z;

* And suppose that z € Z is some possible input element
* As before, A(S) refers to the model that algorithm A computes using S
* We can write the loss on z as £(A(S), z)

e Algorithm A is e-uniformly stable if
* Sup,ez|Eat(A(S?), z) — Ex€(A(S),2)] < €

* £, means expectation taken over all possible random behaviour of A4

Uniform Stability implies generalization

e Theorem:

* If Randomized Algorithm A is e-uniformly stable then
o« EcE,2(A(S),D) < EqE,#(A(S),S) + €
* True loss < Training loss + €

Uniform Stability implies generalization

e Theorem:

* If Algorithm A is e-uniformly stable then
o ESE Y(A(S),D) < EGE #(A(S),S) + €
* Expected true loss < Training loss + €

* Proof: Omitted (for now).

Observe

e Regularization creates strong convexity
e Strong convexity implies stability
* Stability implies generalization

Next

 Larger neural networks
* Losses are non-convex

* What happens with non-convex loss?
e Shapes of loss functions
e Overfitting and overparameterization in neural networks

	Slide 1
	Slide 2: Optimization Algorithms and Loss functions
	Slide 3: How does this program find good models?
	Slide 4: Optimization: finding good models
	Slide 5: Today’s lecture
	Slide 6: Course
	Slide 7: Single neuron
	Slide 8: Logistic regression (used for classification!)
	Slide 9: Logistic loss of S
	Slide 10: Convexity and convex learning
	Slide 11: Convex function
	Slide 12: Properties of convex functions
	Slide 13: Examples of convex functions
	Slide 14: Examples of functions that are not convex
	Slide 15: Combining convex functions
	Slide 16: Convex learning is easy!
	Slide 17: Gradient
	Slide 18: Gradient descent
	Slide 19: Theorem (14.2 in book)
	Slide 20: Stochastic gradient descent
	Slide 21: GD vs SGD
	Slide 22: Finding the best model by looking for the lowest point of the loss function
	Slide 23: Stochastic gradient descent (from book)
	Slide 24: Stochastic gradient descent other version
	Slide 25: Theorem (14.8)
	Slide 26: Practical modifications
	Slide 27: Other properties of loss functions
	Slide 28: Strong Convexity
	Slide 29: Lipschitzness
	Slide 30: Smoothness
	Slide 31: Convex-Lipschitz-Bounded learning problems
	Slide 32: Convex-smooth-bounded learning
	Slide 33: Why do we want convexity, smoothness, lipschitzness etc?
	Slide 34: Why do we want convexity, smoothness, lipschitzness etc?
	Slide 35: What is the problem of 0-1 empirical risk as loss function?
	Slide 36: Surrogate loss functions
	Slide 37: Example: Hinge loss
	Slide 38: Regularization
	Slide 39: Try yourself:
	Slide 40: Ridge regression
	Slide 41
	Slide 42: Stability
	Slide 43: Stability
	Slide 44
	Slide 45: Stability definition and result
	Slide 46: Stability definition and result
	Slide 47: Generalisation Gap
	Slide 48: Uniform Stability
	Slide 49: Uniform Stability implies generalization
	Slide 50: Uniform Stability implies generalization
	Slide 51: Observe
	Slide 52: Next

