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Today’s topic
ML models are trained using random samples
* How many random samples do we need to train a good model?

* On what quantities does this number depend? What is the formula?



What is a good model?

* Given a sample S, there is always perfect model for S!

* What is the trivial way to build a perfect model, and why don’t we use
it?



Models in a hypothesis class

* We use models from a hypothesis class H

 E.g. Linear separators (a, b, ¢)
* Representingax + by +c =0

O

* There are an infinite number of lines |H| = o
* Perfect solution may not be always easy

Bad
solution



Realizable and agnostic case

* Realizable (Separable) case
 When there is a model that separates perfectly
* Thereis h* € H that achieves perfect separation between classes
* j.e. zero true loss: L(D’f)(h*) =0

* So the in-sample loss L¢(h*) = 0

* Agnostic case
 When there is no perfect separator
* We just have to find the best imperfect one




We start with realizable and finite H

* To simplify, suppose H is finite
 Thatis, it consists of a few fixed
shapes at fixed locations

* See example with H = 6

N




Finite hypothesis classes

e Suppose the sensor values are in range [0,100] and we can choose
thresholds at only integer positions. What is |H| ?

e Suppose sensor values are in range [0, 1] and we are choosing from
pre-fixed thresholds at intervals of €. How many thresholds (classes)
are there?



Empirical risk

 Empirical loss or risk of any hypothesis h €} as:

def {2 € [m| : h(x;) # yi}

Lgs(h) -




Sampling and simple algorithm

e Assumption (iid):
e Examples in training set are independent and identically distributed according
toD

e Writtenas S ~ D™

* ERM Algorithm A:

e Checkallh € H

* Pick hg = argmin L¢(h)
heH

* This hg is the best we can do with the data, but may not be perfect on
unseen data



Question

* Assuming realizability

* There is a perfect h™ corresponding to unseen data D
e But we do not know which one

e Can we make sure that we get an h that is close to h™?
* Thatis, may be not zero error, but small error?



Recap: General ML Notations

* Domain set X.
* Label Set Y. Eg. {0,1} or {-1, +1} red or blue.
* Training data (sample set): S = {(x1, ¥1), ... (X1, Vi) }

 Model, hypothesis, classifier, predictor h:
« Afunction h: X — Y. Thatis, h(x) returns a predicted label y

* Hypothesis class H: The set of functions from which h is chosen
* Algortihm A: Chooses hypothesis h based on S

* Data generating distribution D

* Error on a single item: £(x;)

* Success measure: Overall Loss/error function L



Sampling bound in realizable finite case

* With assumptions of realizability and finite H, we can show that

. log(/9)

€

m

» Samples suffice for €, 0 guarantee: IP’[LD,f(hS) < 6] >1—-0

* The best hypothesis on training data has small true loss
e With probability 1 — 6,



Useful relations

* For0 < p < 1 (e.g. pisaprobability)
1
*(1-p)p <1/e

e Union bound:

* If A and B are event, then: P(A or B) < P(A) + P(B)
 Writing A and B as sets: P(AU B) < P(4) + P(B)



Proof

* The algorithm expects and finds O empirical loss in the training set

e QOutputs an h with 0 empirical loss (there can be many of these)

e All these “Look good” in data

* A Perfect hypothesis also has 0 true loss in D (realizability in the general

case)

* Certain hypothesis are “bad”: have a true loss LD,f(h) > €

* We need one that is Good enough: true loss LD,f(h) <E€
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Proof

* We get a bad output only if a bad hypothesis has zero empirical loss

in the sample. Let’s compute the probability

* For a bad hypothesis h, L f(h) > ¢, so the probability of getting

one training label right is: ~
. 1_LD,f(h) <1-—¢€

* The probability of h getting m labels right is < (1 — )™ < e~ €™

* This is the probability that a bad hypothesis h looks good

Good Enough
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* If Hg is the subset of bad hypotheses

—€Em

* Probability that a single bad h € Hg looks good is e

* Probability of some bad hypothesis looking good is
* < |Hple™" < |H e~ ™
* Using union bound
* Sowe want |H|e €™ < §: Probability that is bad hypothesis looks good is small
* The probability of not getting a bad resultis > 1 — 6
In(|H|/5)
€

e Solve formtotogetm =

QED



Observe

* The proof says that if h™ is the best hypothesis in a finite H,
* It is always possible to get as close to A™ in accuracy as we want
* Just need large enough m

* That is, with some assumptions a good enough hg can always be
“learned” from big enough dataset



PAC Learnability

* We have just seen that every finite class is “PAC learnable”

* If H is finite and realizable, then there is an algorithm that can
e get as close to the optimum model as we want (small €),
* with as high a probability as we want (small §)

* Provided we give it enough data
* (and happily, that data is not too much!)



PAC learnability (formal definition)

* A hypothesis class H is PAC learnable if
* There exists a function mg.[(O,l)2 — N (means: depending on €, §, there is a
suitable number of samples)

* And an there exists an algorithm that:

 Foreverye,§

For D over X
With realizability assumption

Onm = mgqr(e,6) i.i.d samples from D,f
Finds an h that satisfies

. L(‘D,f)(h) < € (findsa good h)

e with probability at least 1 — 6



Non realizable, or agnostic case

* In general, realizability is not true
* There may be no perfect h = f

 We just have to do our best and find
the best h € Hinstead of the ideal one

* Called Agnostic PAC learning

E.g. Our H consists of squares

* But the data needs a circle to separate
classes

* Or, separation can be achieved by a
square but that square is not in our
selected fixed set of squares in H

To extend to more general scenarios,
let’s change our assumptions




More general model — agnostic learning

* Modified data generating distribution:

* Define D to be probability distribution over X’ X Y
* Consequence: The same x € X may have labels 0 or 1 probabilistically

e Redefine true risk:

Lo(h) = P [h(z)#y] = D{(zy): h(z) # v}

* (homework: compare this with how we defined true risk earlier)

* Observe: D is a probability distribution over X X Y allows same x to
have different labels! -- Suggest an example where this is possible



Agnostic PAC |learnability

* A hypothesis class H is Agnostic PAC learnable if

* There exists a function m¢r(0,1)* -» N

* And an algorithm that:
* Foreverye, o
* ForDover X XY
* Onm =mgr(€,6) i.i.dsamples from D
* Finds an h that satisfies
« Lp(h) < ’rllllel;} Lp(h') + € (gets € close to the best h' € H')

* with probability at least 1 — 6



Other types of learning problems (defined by
suitable loss)

* We have looked at binary classification
e Other possibilities:

e Multi-class classification
* E.g, Measure loss as the probability of predicting a wrong label

* Regression: labels are real numbersi.e. Y = R

Lp(h) = E (h(z)—y)’



Generalised loss

* Instead of X X Y, we consider a single domain Z (which may be X’ X U,
or something else)

* Loss functionsare: £: H X Z = R,
* The loss measured for a single item z on hypothesis h is written as £(h, z)

* Generalises to more ML problems e.g. clustering (unsupervised learning)

* True risk function: Expected loss: Lp(h) = E, ep[£(h, 2)]

* Empirical risk function: Lgp) = %Z{Zl t(h, z;)

» Exercise: Define k-means clustering as a formal ML problem, with
hypothesis class, loss function etc.



Representative data sets

* We use S as a representative of D

* We hope that

 We will find an h that does well outside training data,
* the performance on S matches general performance on D

* When it does, we say S is a representative sample



Representative sample

* Sis € —representative w.r.t (Z,H, D) if:
e VYh € H,|Ls(h) — Lp(h)| < €



Representative sample

* Sis € —representative w.r.t (Z,H, D) if:
e VYh € H,|Ls(h) — Lp(h)| < €

S gives a good estimate of the true loss for each h

e Observe:

* A sample is representative with respect to H, 2

* Thatis, it is representative with respect to a specifc problem and hypothesis
class

e Question: Can there be a notion of represenativeness independent of
H,Z7?



Representative sample

e Sis € —representative w.r.t (Z,H, D) if:
 Vh € H,|Ls(h) — Lp(h)| < €
S gives a good estimate of the true loss for each h

* Lemma:
¢ IfSis g —representative, and hg € argming,c+ Ls(h), then
* LD (hs) < }{I;ll;l[ LD(h,) + €
€

* With representative data, the best empirical (trained) model (hg) is
almost as good as the best model for true data



Uniform convergence

 H has uniform convergence if there is function mé’[c: (0,1)? - N
e Such that a random sample S ~ D™ of size m > mi* (¢, )
* |s € —representative with probability atleast 1 — §

* When H has uniform convergence, it means we know a large enough
m that gives accurate estimates for all h



Corollary

* If 7 has uniform convergence with m&¢,

* Then H is PAC learnable with m4.(€,6) < mg’f(g, 0)



e Theorem:

e Every finite H has uniform convergence
* i.e. Given a random suitable sized S, P[3h € H:|Ls(h) — Lp(h)| > €] <6

* And therefore every finite H is agnostic PAC-learnable

* Proof, using Chernoff-hoeffding bound



Chernoff-Hoefftding bound

* Very important result in theoretical CS and ML
* Suppose 8; are random variables with average %Z’i’;l i
* Suppose u is the expected value of a random 6

e Law of large numbers: with increasing m, Z 1 0; approaches
* le, ‘—2;"19 u‘ becomes smaller

* But how fast? What m do we need to get e-close to u?
* Chernoff-Hoeffding bound:

BlEsm o u]> ] = 20



e Theorem:

e Every finite H has uniform convergence
* i.e. Givenarandom S, P[Ih € H:|Ls(h) — Lp(h)| > €] <6

* (And therefore every finite H is agnostic PAC-learnable)

* To prove this, we need the Chernoff-hoeffding bound



 Proof that P[3h € H:|Ls(h) — Lp(h)| > €] < & [from book]
e Takeanyh € H
* Now take a random sample S

* Let us write u = E[Ls(h)] = Lp(h)

* |.e. note that the expected value of empirical loss is the true loss

* For every z; € S, we write its loss on h as 0;. l.e. 8; = £(h, z;)

* Then the empirical loss is Lg(h) = iZ’-”l

 So, what is the probability that Z > €7



* What is the probability that |% m.0;—ul>e?
* Using Chernoff bound, probability that any one h has large error is:

2

" P ”%Zyilel _.u‘ > E] < Ze—Zme

 Summing over all h € H, probability that one or more has large error is:
e < 2|H]|e~2m€* (by union bound)

e Substitute m > —log( l}[l) to get a probability bound 6



* So, we can proved finite hypothesis classes are all PAC learnable (see next
lecture)

* Next week, we will cover

* No free lunch theorem: There is no universal learner

* Bias-complexity tradeoff

* Infinite hypothesis classes and fundamental theorem of statistical learning
 Starting with ML algorithms/models

* Read chapters3 & 4
* Lecture notes for last week up now.
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