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Today’s topic

• ML models are trained using random samples 

• How many random samples do we need to train a good model? 

• On what quantities does this number depend? What is the formula? 



What is a good model? 

• Given a sample S, there is always perfect model for S! 

• What is the trivial way to build a perfect model, and why don’t we use 
it? 



Models in a hypothesis class

• We use models from a hypothesis class 𝓗

• E.g. Linear separators 𝑎, 𝑏, 𝑐
• Representing 𝑎𝑥 + 𝑏𝑦 + 𝑐 ≥ 0

• There are an infinite number of lines ℋ = ∞
• Perfect solution may not be always easy 

Good (perfect)
solution

Bad
solution



Realizable and agnostic case 

• Realizable (Separable) case
• When there is a model that separates perfectly 
• There is ℎ∗ ∈ 𝓗 that achieves perfect separation between classes
• i.e. zero true loss: 𝐿(𝒟,𝑓) ℎ∗ = 0 

• So the in-sample loss 𝐿𝑆 ℎ∗ = 0

• Agnostic case 
• When there is no perfect separator
• We just have to find the best imperfect one



We start with realizable and finite ℋ

• To simplify, suppose ℋ is finite
• That is, it consists of a few fixed 

shapes at fixed locations

• See example with ℋ = 6



Finite hypothesis classes

• Suppose the sensor values are in range [0,100] and we can choose 
thresholds at only integer positions. What is |ℋ| ? 

• Suppose sensor values are in range [0, 1] and we are choosing from 
pre-fixed thresholds at intervals of 𝜖. How many thresholds (classes) 
are there? 



Empirical risk

• Empirical loss or risk of any hypothesis ℎ ∈𝓗as:



Sampling and simple algorithm

• Assumption (iid): 
• Examples in training set are independent and identically distributed according 

to 𝒟
• Written as 𝑆 ∼ 𝒟𝑚

• ERM Algorithm 𝐴: 
• Check all ℎ ∈ ℋ
• Pick ℎ𝑆 = argmin

ℎ∈ℋ
𝐿𝑆 ℎ

• This ℎ𝑆 is the best we can do with the data, but may not be perfect on 
unseen data 



Question

• Assuming realizability 
• There is a perfect ℎ∗ corresponding to unseen data 𝒟 

• But we do not know which one

• Can we make sure that we get an ℎ that is close to ℎ∗? 
• That is, may be not zero error, but small error?



Recap: General ML Notations

• Domain set 𝒳. 

• Label Set 𝒴. Eg. {0,1} or {-1, +1} red or blue. 

• Training data (sample set): 𝑺 = 𝑥1, 𝑦1 , … 𝑥𝑚, 𝑦𝑚

• Model, hypothesis, classifier, predictor 𝒉: 
• A function ℎ:𝒳 → 𝒴. That is, ℎ 𝑥  returns a predicted label 𝑦

• Hypothesis class 𝓗: The set of functions from which ℎ is chosen

• Algortihm A: Chooses hypothesis ℎ based on 𝑆

• Data generating distribution 𝒟

• Error on a single item: ℓ 𝑥𝑖

• Success measure: Overall Loss/error function L



Sampling bound in realizable finite case 

• With assumptions of realizability and finite ℋ, we can show that 

• Samples suffice for 𝜖, 𝛿 guarantee: ℙ 𝐿𝒟,𝑓 ℎ𝑆 ≤ 𝜖 ≥ 1 − 𝛿
• The best hypothesis on training data has small true loss

• With probability 1 − 𝛿, 



Useful relations

• For 0 < 𝑝 < 1 (e.g. p is a probability)

1 − 𝑝
1

𝑝 ≤ 1/𝑒

• Union bound:
• If A and B are event, then: 𝑃 𝐴 𝑜𝑟 𝐵 ≤ 𝑃 𝐴 + 𝑃(𝐵)

• Writing A and B as sets: 𝑃(𝐴 ∪ 𝐵) ≤ 𝑃 𝐴 + 𝑃(𝐵)



Proof
• The algorithm expects and finds 0 empirical loss in the training set

• Outputs an ℎ with 0 empirical loss (there can be many of these)
• All these “Look good” in data

• A Perfect hypothesis also has 0 true loss in 𝒟 (realizability in the general 
case)

• Certain hypothesis are “bad”: have a true loss 𝐿𝒟,𝑓 ℎ > 𝜖

• We need one that is Good enough: true loss 𝐿𝒟,𝑓 ℎ ≤ 𝜖

Perfect

Looks good
But actually bad

Bad

Good Enough 
Data in training sample

Unseen Data not in training sample



Proof
• We get a bad output only if a bad hypothesis has zero empirical loss 

in the sample. Let’s compute the probability
• For a bad hypothesis ℎ, 𝐿𝒟,𝑓 ℎ > 𝜖, so the probability of getting 

one training label right is: 
• 1 − 𝐿𝒟,𝑓 ℎ ≤ 1 − 𝜖

• The probability of ℎ getting m labels right is ≤ 1 − 𝜖 𝑚 ≤ 𝑒−𝜖𝑚

• This is the probability that a bad hypothesis ℎ looks good

Perfect

Looks good
But actually bad

Bad and 
Looks bad

Good Enough 



• If 𝐻𝐵 is the subset of bad hypotheses

• Probability that a single bad ℎ ∈ 𝐻𝐵 looks good is 𝑒−𝜖𝑚

• Probability of some bad hypothesis looking good is
• ≤ 𝐻𝐵 𝑒−𝜖𝑚 ≤ |𝓗|𝑒−𝜖𝑚

• Using union bound 
• So we want 𝓗 𝑒−𝜖𝑚 ≤ 𝛿: Probability that is bad hypothesis looks good is small
• The probability of not getting a bad result is ≥ 1 − 𝛿

• Solve for 𝑚 to to get 𝑚 ≥
ln(|ℋ|/𝛿)

𝜖

QED



Observe 

• The proof says that if ℎ∗ is the best hypothesis in a finite ℋ, 
• It is always possible to get as close to ℎ∗ in accuracy as we want 

• Just need large enough 𝑚

• That is, with some assumptions a good enough ℎ𝑆 can always be 
“learned” from big enough dataset 



PAC Learnability 

• We have just seen that every finite class is “PAC learnable”

• If 𝓗 is finite and realizable, then there is an algorithm that can 
• get as close to the optimum model as we want (small 𝜖), 

• with as high a probability as we want (small 𝛿)

• Provided we give it enough data 
• (and happily, that data is not too much!)



PAC learnability (formal definition)

• A hypothesis class 𝓗 is PAC learnable if 
• There exists a function 𝑚𝓗 0,1 2 → ℕ (means: depending on 𝜖, 𝛿, there is a 

suitable number of samples)

• And an there exists an algorithm that:
• For every 𝜖, 𝛿

• For 𝒟 over 𝒳

• With realizability assumption

• On 𝑚 ≥ 𝑚𝓗 𝜖, 𝛿  i.i.d samples from 𝒟,𝒇

• Finds an ℎ that satisfies

• 𝐿(𝒟,𝑓) ℎ ≤ 𝜖  (finds a good ℎ)

• with probability at least 1 − 𝛿



Non realizable, or agnostic case 

• In general, realizability is not true
• There may be no perfect ℎ = 𝑓

• We just have to do our best and find 
the best ℎ ∈ ℋinstead of the ideal one
• Called Agnostic PAC learning

• E.g. Our ℋconsists of squares
• But the data needs a circle to separate 

classes
• Or, separation can be achieved by a 

square but that square is not in our 
selected fixed set of squares in ℋ

• To extend to more general scenarios, 
let’s change our assumptions



More general model – agnostic learning

• Modified data generating distribution: 
• Define 𝒟 to be probability distribution over 𝒳 × 𝒴
• Consequence: The same 𝑥 ∈ 𝒳 may have labels 0 or 1 probabilistically 

• Redefine true risk:

• (homework: compare this with how we defined true risk earlier)

• Observe: 𝒟 is a probability distribution over 𝒳 × 𝒴 allows same 𝑥 to 
have different labels! -- Suggest an example where this is possible



Agnostic PAC learnability 

• A hypothesis class 𝓗 is Agnostic PAC learnable if 
• There exists a function 𝑚𝓗 0,1 2 → ℕ

• And an algorithm that:
• For every 𝜖, 𝛿

• For 𝒟 over 𝒳 × 𝒴

• With realizability assumption

• On 𝑚 ≥ 𝑚𝓗 𝜖, 𝛿  i.i.d samples from 𝒟

• Finds an ℎ that satisfies

• 𝑳𝓓(𝒉) ≤ 𝐦𝐢𝐧
𝒉′∈𝓗

𝑳𝓓 𝒉′ + 𝝐 (gets 𝜖 close to the best ℎ′ ∈ ℋ )

• with probability at least 1 − 𝛿



Other types of learning problems (defined by 
suitable loss)
• We have looked at binary classification

• Other possibilities: 

• Multi-class classification
• E.g, Measure loss as the probability of predicting a wrong label

• Regression: labels are real numbers i.e. 𝒴 = ℝ



Generalised loss 

• Instead of 𝒳 × 𝒴,  we consider a single domain 𝒵 (which may be 𝒳 × 𝒴, 
or something else)
• Loss functions are: ℓ: ℋ × 𝒵 → ℝ+

• The loss measured for a single item 𝑧 on hypothesis ℎ is written as ℓ ℎ, 𝑧

• Generalises to more ML problems e.g. clustering (unsupervised learning)

• True risk function: Expected loss: 𝐿𝒟 ℎ =  𝔼𝑧∈𝒟[ℓ(ℎ, 𝑧)]

• Empirical risk function: 𝐿𝑆 ℎ =
1

𝑚
σ𝑖=1

𝑚 ℓ(ℎ, 𝑧𝑖)

• Exercise: Define 𝑘-means clustering as a formal ML problem, with 
hypothesis class, loss function etc.



Representative data sets

• We use 𝑆 as a representative of 𝒟

• We hope that
• We will find an ℎ that does well outside training data, 

• the performance on 𝑆 matches general performance on 𝒟 

• When it does, we say 𝑆 is a representative sample



Representative sample

• 𝑆 is 𝜖 −representative w.r.t (𝒵, ℋ, 𝒟) if: 
• ∀ℎ ∈ ℋ, 𝐿𝑆 ℎ − 𝐿𝒟 ℎ ≤ 𝜖



Representative sample

• 𝑆 is 𝜖 −representative w.r.t (𝒵, ℋ, 𝒟) if: 
• ∀ℎ ∈ ℋ, 𝐿𝑆 ℎ − 𝐿𝒟 ℎ ≤ 𝜖

• S gives a good estimate of the true loss for each ℎ

• Observe:
• A sample is representative with respect to ℋ, 𝒵

• That is, it is representative with respect to a specifc problem and hypothesis 
class 

• Question: Can there be a notion of represenativeness independent of 
ℋ, 𝒵?



Representative sample

• 𝑆 is 𝜖 −representative w.r.t (𝒵, ℋ, 𝒟) if: 
• ∀ℎ ∈ ℋ, 𝐿𝑆 ℎ − 𝐿𝒟 ℎ ≤ 𝜖

• S gives a good estimate of the true loss for each ℎ

• Lemma: 
• If 𝑆 is 

𝜖

2
−representative, and ℎ𝑆 ∈ argminℎ∈ℋ𝐿𝑆(ℎ), then

• 𝐿𝒟(ℎ𝑆) ≤ min
ℎ′∈ℋ

𝐿𝒟 ℎ′ + 𝜖 

• With representative data, the best empirical (trained) model (ℎ𝑆) is 
almost as good as the best model for true data



Uniform convergence 

• ℋ has uniform convergence if there is function 𝑚ℋ
𝑈𝐶: 0,1 2 → ℕ 

• Such that a random sample 𝑆 ∼ 𝒟𝑚 of size 𝑚 ≥ 𝑚ℋ
𝑈𝐶(𝜖, 𝛿)

• Is 𝜖 −representative with probability at least 1 − 𝛿

• When ℋ has uniform convergence, it means we know a large enough 
𝑚 that gives accurate estimates for all ℎ



Corollary 

• If ℋ has uniform convergence with 𝑚ℋ
𝑈𝐶, 

• Then ℋ is PAC learnable with 𝑚ℋ 𝜖, 𝛿 ≤ 𝑚ℋ
𝑈𝐶(

𝜖

2
, 𝛿)



• Theorem:

•  Every finite ℋ has uniform convergence
• i.e. Given a random suitable sized  S,  ℙ ∃ℎ ∈ ℋ: 𝐿𝑆 ℎ − 𝐿𝒟 ℎ > 𝜖 ≤ 𝛿

• And therefore every finite ℋ is agnostic PAC-learnable

• Proof, using Chernoff-hoeffding bound



Chernoff-Hoeffding bound

• Very important result in theoretical CS and ML 

• Suppose 𝜃𝑖  are random variables with average 
1

𝑚
σ𝑖=1

𝑚 𝜃𝑖

• Suppose 𝜇 is the expected value of a random 𝜃

• Law of large numbers: with increasing 𝑚, 
1

𝑚
σ𝑖=1

𝑚 𝜃𝑖 approaches 𝜇

• Ie, 
1

𝑚
σ𝑖=1

𝑚 𝜃𝑖 − 𝜇  becomes smaller

• But how fast? What 𝑚 do we need to get 𝜖-close to 𝜇? 

• Chernoff-Hoeffding bound:

• ℙ
1

𝑚
σ𝑖=1

𝑚 𝜃𝑖 − 𝜇 > 𝜖 ≤ 2𝑒−2𝑚𝜖2
 



• Theorem:

•  Every finite ℋ has uniform convergence
• i.e. Given a random S,  ℙ ∃ℎ ∈ ℋ: 𝐿𝑆 ℎ − 𝐿𝒟 ℎ > 𝜖 ≤ 𝛿

• (And therefore every finite ℋ is agnostic PAC-learnable)

• To prove this, we need the Chernoff-hoeffding bound



• Proof that ℙ ∃ℎ ∈ ℋ: 𝐿𝑆 ℎ − 𝐿𝒟 ℎ > 𝜖 ≤ 𝛿  [from book]

• Take any ℎ ∈ ℋ

• Now take a random sample 𝑆 

• Let us write 𝜇 = 𝔼 𝐿𝑆 ℎ = 𝐿𝒟(ℎ)
• I.e. note that the expected value of empirical loss is the true loss

• For every 𝑧𝑖 ∈ 𝑆, we write its loss on ℎ as 𝜃𝑖. I.e. 𝜃𝑖 = ℓ(ℎ, 𝑧𝑖)

• Then the empirical loss is 𝐿𝑆 ℎ =
1

𝑚
σ𝑖=1

𝑚 𝜃𝑖  

• So, what is the probability that  
1

𝑚
σ𝑖=1

𝑚 𝜃𝑖 − 𝜇 > 𝜖? 



• What is the probability that  
1

𝑚
σ𝑖=1

𝑚 𝜃𝑖 − 𝜇 > 𝜖?

• Using Chernoff bound, probability that any one ℎ has large error is: 

• ℙ
1

𝑚
σ𝑖=1

𝑚 𝜃𝑖 − 𝜇 > 𝜖 ≤ 2𝑒−2𝑚𝜖2
 

• Summing over all ℎ ∈ ℋ, probability that one or more has large error is: 
• ≤ 2 ℋ 𝑒−2𝑚𝜖2

 (by union bound)

• Substitute 𝑚 ≥
1

2𝜖2 log
2 ℋ

𝛿
 to get a probability bound 𝛿

 



• So, we can proved finite hypothesis classes are all PAC learnable (see next 
lecture)

• Next week, we will cover
• No free lunch theorem: There is no universal learner
• Bias-complexity tradeoff 
• Infinite hypothesis classes and fundamental theorem of statistical learning 
• Starting with ML algorithms/models

• Read chapters 3 & 4

• Lecture notes for last week up now. 
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