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Coursework

* Keep an eye on piazza

 Note that submission deadline is 12 march at 12:00.
e Submit early. Don’t keep till last minute!



Today: Differential privacy

* Sensitivity, utility

* Local DP

* Approximate DP

* Gaussian mechanism

* Differentially private machine learning

* Differentially private stochastic gradient descent



Recap: DP example: Make output
probabilities similar for n and n-1

* Problem: count the number of people in the
meeting

* Solution:
* Find real countn
* Publishn 4+ y where y is noise (a random number)

* Draw y from Laplace distribution
1 _ ly—ul

 Prlyl = e
* wuisthe mean, 2b? is variance

* We will write Lap(b) to mean Laplace
distribution with mean 0 and variance 2b?



What about privacy other than one person?

* What about a group of k?

e Suppose there is a group of k people who
may not have attended.
* Neighboring databases differ in count of k
* A more general notion of neighboring
databases

* And we want to hide this from the
observer/adversary

* Should have similar probabilities for n and n-k

e Exercise : Show that an €-DP algorithmis
ke-DP for any group of size k

n-1 n




* Any published w can occur in two ways:

‘n+y
*(n—k)+ @tk

Pr[noise=y]|

* The ratio Pr[noise=y+k]

=7?

n-k




* Any published w can occur in two ways:
‘n+y
*(n—k)+(y+k)

. Pr[noise=y] e~1vle ke
* The ratio =——0==<e
Pr[noise=y+k] e~ly+kle —

 Remember that ke is worse privacy than €

e Larger groups are harder to privatise!
 How can we get €-DP for k people?

n-k




e-DP for a group of k-people

* Add a noise of Lap (g)

* The larger variance makes the red and
blue distributions more similar

* Similar output probabilities

* Attains e-DP

* Observe that it works to hide any
group of k people not attending



How much noise do we need?

* The variance of the noise depends on how much
f can change due to a unit change between
neighboring databases

If f(D) and f(D') are every close, we need only
a little noise to make them indistinguishable

* If they are very different, we need a large noise

* Sensitivity of f is written as Af :
* Af = max|f(D) - f(D)]
* The maximum possible difference in f between
neighboring datasets.



Laplace mechanism

* Given a database D and a function f,

* Output A(D) = f(D) +y, wherey ~ Lap (Aef)

* This ensures € differential privacy.



Privacy and utility

* Adding noise gains privacy
* Adding more noise (from a distribution of higher variance) gains more
privacy
* But more noise decreases accuracy of the eventual use of the value,
so it is less useful
* We say it has less utility

* The challenge is to balance utility and privacy
* By adding the minimum necessary noise

* If sensitivity is larger, noise is larger. Utility is less.



Examples

* When f is the count of number of people
« Af =1

* Suppose the max height of a person is assumed to be 7ft.
* If f is the sum of heights of a group in feet, then sensitivity is 7.

e Suppose the max salary in a company is capped at £50K

* We are analysing total salaries in groups of size 4. That is, a group is either
present or absent. Then the sensitivity is £200K.



Another example

* Suppose [ = %in; where X; € [0,1]
* Sensitivity is% (if we replace one number by another)

* Note that we are using the replacement version for convenience.

* Thus, the noise required isy ~ Lap (—1)

en



Utility of Laplace mechanism

* We add noise y ~ Lap (H)

€

* But noise hurts the utility.
 How much does it affect the utility?

* We can show that the error from Laplace mechanism is limited

 Laplace method has an error bound (utility guarantee):

* Expected error E[|A(D) — f(D)|] = &

€
* So the error induced is determined by sensitivity, but is not much larger



Local differential privacy

Suppose X1, X5, ... represents how many times person i used their phone in a day

And we want to achieve privacy at the level of a single use. That is, any particular
use of the phone should not be detectable from the data

Suppose they are recorded by mobile phones of person 1,2,... and transmitted to
a server

The problem: Each person wants their data to be private
* E.g. when they do not trust the server collecting and computing

Solution:
* Add noise before transmitting the variables
le. Each phone i Transmits X; + y;, where y; ~ Lap (—i)

Either the server, or anyone snooping the line cannot be sure of the data transmitted
Data is protected by DP right from the source.

Disadvantage: A lot more noise than adding noise once



Approximate differential privacy

* Algorithm A is (€, 0)-differentially private if :
* For every neighbouring D, D’
* Pr[A(D) € S] < e€-Pr[A(D") € S]+6

1

* In theory, d must be very small to be useful, like o (71)

* In practice, it is sometimes a bit larger.

* When 6 = 0, we have pure DP (the version we saw already)



Gaussian mechanism

1 ( (y—u)z)
* Gaussian distribution: NV (i, 0%) = — =€ 202
* Compute f(D) and Af

* Draw noise from Gaussian distribution y ~ N'(0, %)
( /Zln(%)-Af)

€

* Where g =
* Qutput f(D) +y

* Theorem: Gaussian mechanism satisfies (€, 6)-DP



Composition

* Suppose we run algorithms A4, A4,, ....
* Where A4; is (¢;,6;)-DP

* E.g. we perform different computations on the same data and publish the
results

* Then the end result (4,(D),A,(D), ...A,(D)) is
* (¢,0)- DP for

* € :ZEil
£ 5 =35,

* Thus, €, 6 increase and we lose privacy as more computations are released



Repeated computation

* The same idea holds if we carry out the same operation multiple
times

* E.g.if A4, A,, ... are all the same computation and each adds a noise,
then, while each may be (¢, 6) DP, the overall privacy loss can be
large for many repetitions



With k repetitions of the same query

* How can we get €-DP?



Resilience to post processing

* Differential privacy holds for further use of the output

 E.g. if a model or output m is obtained with an e-DP algorithm, then
we can use m as many times as we wish without any additional loss
of privacy
 We are not using the raw database D any more, and using m again does not
lose more privacy
* |If a computation uses D again, then it loses more privacy.



Notes on differential privacy

* DP is a property of the randomized algorithm

* The algorithm depends on the assumptions and computation objective
* Not on the dataset
* Noise depends on sensitivity (from what is known/assumed about the data)

* Note that sensitivity is not computed from the data, as this itself will leak privacy
* Itis assumed that whatever is needed to compute sensitivity is known to everyone

* Noise is computed for the objective, for all possible inputs
* Noise is not computed for specific input points

* DP is determined based on the assumptions about the data, but not on the
actual data.

o If yo]yr“DP mechanism depends on anything computed from the data, be very
careful!



Algorithms with multi-dimensional outputs

* Till now, we have considered algorithms with real valued outputs
* Now, consider algorithms with k-dimensional outputs
* E.g. ML models with k parameters

 Similar to applying k different algorithms



* Suppose f: 2™ — R¥

* Produces a k-dim output

* On changing the input D, all k different parameters may change
* How do we measure sensitivity?



LpNorms

. Lp norms are defined as:

1
° x|, = (xf +x§j + °~+x,€) /P

 Most relevant for us:
e |lx —yly = |x1 —y1| + lx2 =yl + -+ |xp — yil
*|x —yl, = \/(x1 —y1)? 4+ (X —y2)% + -+ (. — yi)?




L, and L,Sensitivity

* f:Z™ - R"

* Produces a k-dim output

* Sensitivity measured as the norms:

* Ay f = max|f(D) = f(D)l

D,D’

* A,f = max|f(D) — f(D)I;

D,D’'



k-dim Laplace mechanism

* Compute A f
e Fori =1, k, draw Yi ~ Lap (ﬂ)

€

* Output f(D) + Y, whereY = (¥, 2, ... Yk)



k-dim Gaussian mechanism

* Compute A, f
*Fori =1,..k drawy; ~ N(0,0%)

((f2m(22) 0 )

€

e Whereog =

* Output f(D) +Y,whereY = ()’1, Y2 yk)



Which is better Laplace or gaussian?

e Consider L1 and L2 norms for k dimensions
e Assumex-y=1[1,1,1,1,1,...]

*lx—yli =k

*lx =yl = vk

* Thus, in high dimensions, L2 sensitivity is smaller.
e Gaussian mechanism can use L2 sensitivity

* Since Sensitivity determines standard deviation of distribution,
gaussian mechanism has smaller standard deviation (or variance).

* But remember that gaussian mechanism also has the additive &



Perturbation mechanisms

* Input perturbation:
* Modify the data (add noise to each point) before any computation is applied

e Similar to local DP

* OQutput perturbation
 Compute output, then add the noise
e E.g. add noise to the aggregate, or to the ML model parameters

* Gradient or internal perturbation
* Add noise to the operation of the algorithm
e E.g. to the gradients of SGD



DP for machine learning

* General idea:

e A training algorithm produces a model with n parameters in a vector
w.

* We need to get another vector Y with n parameters of noise
* Andaddtow

* To do that, we need to know the sensitivity of w
 Then we can draw noise according to sensitivity and add



Differentially Private Empirical Risk
Minimisation
* Regularized ERM:
* W= argmin,,(Ls(w) + R(w)) : Optimal regularized model
* R(w) is aregularizer

2
* Common choice: R(w) = A|IWI| is 2A-strongly convex
* Makes (Ls(w) + R(w)) strongly convex

* Theorem: L, sensitivity for ERM:
* If loss function L is A-strongly convex

 If L is convex, differentiable, G-Lipschitz
4G

* Then the L, sensitivity is at most my



DP-ERM using output perturbation

 Optimal solution: w = argmin,,(Ls(w) + R(w))
e Fori=1,..k draw y; ~ N (0,0%)

<4G 2 ln(%s)>

nie

*w+Y,whereY = (y,¥, ... V&)

e Whereog =

* Apply gaussian mechanism with the right sensitivity
* Guarantees (€,0)-DP



Non-Convex optimization

* The problem: We don’t know where the minimum could be, and how
much things could be different with small changes in data

 We need a different method suitable for SGD

* |dea:
* In every step (with a single batch) limit the gradient
* This limits the influence (sensitivity) of any one point
* Then add noise to the gradient



DP-SGD

* At every step:

e Sample a point or batch z

Compute Gradient g = Vf,, (z) (privacy risk: gradient is a function of z)
1

clip g¢ to length at most C : gy < g - ||gt||

Cc
Add noise g; = g; + r wherer ~ N (0,0°C?) (|n suitable dimensions..)

Update model w;,; = w; — ng;

max(1,—

e At end, return final model



Differential privacy of DP-SGD

* The impact of data point(s) used in any one step is limited to a vector of
length C

’ 1.25
2 lnT

* Foro =-———, everystep is (¢,0)-DP

* Qverall, for T steps with batches that are g fraction of data, we get
(qTe, qT6)-DP

* More tighter bounds available, e.g. (qeVT, §)
* Proofs omitted



Amplification by sampling

*If Aisan (¢,0)-DP algorithm for D

* If S(D) returns a sample of D where each element is present with
probability p

* Then A(S(D)) is (¢',p6)-DP, where
¢’ =In(1+p(e€—-1))
* Note thatIn(1 + p(e€ — 1)) < 2pe

e Sampling improves the privacy of a private algorithm (e.g. in
randomly selected batches)



DP machine learning

* Current research area, with connections to all aspects of ML
* Complexity, optimization, stability, dimension reduction....

* For any datascience/ML aléorithm it is possible to ask: What is the DP

version of this algorithm? Can we get a good enough privacy — utility
tradeoff?

* Current situation with DP-SGD and differentially private training
* Works well on smaller models

* On large neural networks, the extra noise with many parameters makes them
inaccurate

* Ongoing research in making differential privacy more useful

* Typical approach: argue that overall small levels of noise added carefully actually suffices to
get required levels of privacy



Non-numerical queries

* Our basic output perturbation mechanism: A(D) = f(D) +Y

* Works only with numeric values

* How can we privatise non-numeric queries?
 What is the most popular movie?
 Which date is likely to work best to schedule a meeting?
 What are other examples of non-numeric or selection queries?
 How do we privatize them?



Non-numerical queries

* Suppose f: Z™ — O (for dataset D € Z™)

* 0 is a set of discrete possibilities
* E.g. set of movies, set of computers, set of web sites etc

* While O is discrete, we can imagine a numerical score or utility to
elements of O

e E.g. the popularity of a movie, the number of people that can attend the
meeting on a date etc

¢ 5:Z™"x0 - R
* s(D, 0) represents the score of 0 as an approximation of f(D)



Sensitivity of s

e For neighbouring D, D’

e As = maxmax|s(D,0) —s(D', o0
nay D,D,I( ) —s(D',0)|

* Worst case difference in output between neighboring datasets



Exponential mechanism

 Task is to find f(D)
* Compute s and As
* Output o with probability

s(D,o)e
e As

s(D,o")e
Lolep € B

* Prlo] =

* Sample o with probability proportional as above
* Denominator is just normalisation

* Probability drops off exponentially with decreasing score
* Compare with Laplace mechanism



Theorem

* Exponential mechanism satisfies e-DP






