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FS-Al - Problem

* There are 4 dynamic events.

 We focus on Trackdrive:
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* There are 4 dynamic events.

* We focus on Trackdrive:
1. 10 laps of an unknown track
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FS-Al - Problem

* There are 4 dynamic events.

* We focus on Trackdrive:

1. 10 laps of an unknown track

2. Blue cones on the left

3. Yellow cones on the right

4. Orange cones mark start/finish line
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FS-Al - Problem

* There are 4 dynamic events.

* We focus on Trackdrive:

1. 10 laps of an unknown track

2. Blue cones on the left

3. Yellow cones on the right

4. Orange cones mark start/finish line
5. Fastest time wins

/&9 THE UNIVERSITY

7 of EDINBURGH




FS Al — The Assumptions

Given to us at each time step:

1. Cone positions near car

2. Estimate of the velocity of the car

2,
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FS-Al - Difficulties

What prevents us from going fast?
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FS-Al - Difficulties

What prevents us from going fast?

What if we see a turn too late?
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FS-Al - Difficulties

What prevents us from going fast?

What if we see a turn too late?

What do we need?
* Map of the track
* Position in the map
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Mapping - What is a map?

&
Produce a map of the track My L/ — ﬁ

A F A ’

Representation of the environment
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Mapping - Example types of map

* Topological map (a)

(b)

* Landmark-based map (b)

* Occupancy grid map (c)

(d)

* Image map (d)
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Mapping - Map for SLAM

* Landmark-based map
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Localisation

* Figure out where the robot is in
the map, i.e. its position
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Localisation — Frames of Reference

There are two frames of importance:
1. Map frame
2. Vehicle frame

Map frame is the global coordinate
system.

vehicle

Vehicle frame is a coordinate system
attached to the vehicle.

map
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Localisation - Taxonomy

(a) Path and reference poses

(b) Belief at reference pose 1

* Tracking — initial position known
* Global localisation — initial position unknown
* Kidnapped robot problem

What type is EUFS? Tracking

Static vs dynamic environments

(c) Belief at reference pose 2

(d) Belief at reference pose 3

(e} Belief at reference pose 4

(f) Belief at reference pose 5
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Localisation

“Where are the landmarks | saw in the
previous timestep and how did | move to
get here?”

“Where am | in relation to that
landmark?”

Mobile robot localisation

¢ of EDINBURGH
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Localisation - Algorithms

1: Algorithm Bayes filter(bel(z; 1), uys, 2¢):
2: for all x; do
3: bel(zs) = [p(ae | ue, 2e—1) bel(zi—1) da
. 4: bel(z:) = n p(z: | z¢) bel(z¢)
1. Extended Kalman Filter ‘. endfor
2. Particle Filters 6: return bel(z:)
i
Require:
e Motion model
* Measurement model
[ Prediction H Update H Map ]
/I\ pose
A 4
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Localisation - Particle Filter

EKF represents pose using a Multivariate
Gaussian distribution.

Three steps involved in a particle filter: Samples from
1 Update proposal distnbution
2. Weight
> Resamele et
Weighted samples | |

& THE UNIVERSITY

a4 c..-_,l"]-.I}I.‘QHU]{IZ:EEI




Localisation - Particle Filter

Update
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Localisation - Particle Filter

Weight

Samples from
proposal distnbution

Weighted samples
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Localisation - Particle Filter

Resampling

The process repeats!

Samples from
proposal distnbution

Weighted samples
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Localisation - Particle Filter

Important considerations for particle filters:
* Particle diversity

| — Function gix) |

Pros:

e Can easily model multi-modal distributions
* Easily parallelisable

Y=g

Cons: | | | |
* The number of particles required is p(Y) x
exponential in the dimensions of the state o)

— Samples

pix)
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Mapping - Challenges

Creating a map is easy if exact position of the
robot is known.

Why can't we just use velocity to figure out
the position of the robot?

Other potential solutions?
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Mapping - Challenges

Creating a map is easy if exact position of the
robot is known.

Why can't we just use velocity to figure out
the position of the robot?

Other potential solutions?
1. GPS (unless denied GPS environment)
2. Localisation

It would be nice if there were no reliability
concerns!
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The Chicken and Egg Problem

Localisation Mapping
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SLAM - Simultaneous Localisation and Mapping

SLAM




Simultaneous Localisation and Mapping
(SLAM) looks to build a map of the P(xj., m|Z.t, Ug.g. Xo)
environment whilst determining the

location of the robot within the map.

Time-update

P(xy, m|Zy.—y, Uy, xp) = f P(x;|x,—1, ug)

X P(xp_1, m|Zg.p—1, Upp—1, x0)dxp_ (4)
Focus: probabilistic formulation of the
SLAM problem.

Measurement Update

P(x,, m|Z.., Uyp. x)

B P(ZA-|KL-~ m) P(x;,, m|zr1;k 1s Ungy X0) (5)
P(zy|Zy.p—1, Upp) ‘
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SLAM - Online vs Full

& states
Online SLAM & controls
& measurements
< map
Full SLAM
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SLAM - Loop Closure

(a) (b)

e waw

) id)
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SLAM - Loop Closure




SLAM - Loop Closure

] o b
¥ ‘ut"ﬁt'y'l.;rv e S 3 3 il 3
e B . & _—
. - i : 'r A
& N\ s WL vt 2
s, N\ -4 \ A -
r \ A+ : { 3 - ) i
4 \ 1" 2 \ % 5 o8
\ n { v
i \ | ¥ | %
" | / i £ 1
/ 1 i3
‘J\v 3/ ¥ £
/o , A RO
\ \ et "
% ' 5 )
o TR / 1 " ¢
K :"( 4 , ¥ ¥
e ¥ & Y “ -5 .
~— LN o o D
s
{ e "";,"<< A\ 3 :
- % N X — 4
o 3, " '
s L} -l*" s v
PR ¢ L
=y

Local maps obtained (c) After loop closing
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SLAM - Data Association

¢ ¥ ox o ¥ oy

Pose uncertainty
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SLAM - Data Association
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Particle f|lter tO predict rObOt pose robot path feature 1 feature2 ... feature N
Particle
k=1 | ol ={@yoT} dhsP sl sl
EKFs to update landmarks Particle
* One for each particle, for each landmark k=2 ot ={@y 0T a0 E lhm e ER
Particle
L— M T[lfltf] — {(z y 6)T [f‘f] H[IM]:E[lM] H[gﬂ,f]:zgkf] ”R‘;I]:EEI]
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FastSLAM 1.0 does the prediction step
purely using the control information.

FastSLAM 2.0 considers perception
information in the prediction step.

Proposal ————0
£

(a)

(b)

Samples from
proposal distribution

Weighted samples
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FastSLAM - Algorithm Steps

REPEAT M TIMES
- Retrieval
) PrediCtion robot path feature 1 feature2 ... feature N
- Measurement update Particle . . S —_— S
- Importance weight i ek S R S M
Particle
THEN DO k=2 :1*[12]E ={(z y 6.)::"}[12]£ ;1[12]:2[12] ;1[22]:25] ;LEF],EE\Q,]
- Resampling (M particles)
Particle
k=M | a2l ={@y T a0 e e R R
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FastSLAM - Particle Resampling
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FastSLAM - Loop Closure

Particles share common hisicay here

When loop closure occurs, changes in the
map can only occur up to the common
ancestor!

W% THE UNIVERSITY
¢ of EDINBURGH



FastSLAM for Grid Maps
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FastSLAM For EUFS

Why we like FastSLAM for EUFS:

1. Can create map in real time

bt T T
2. Lower computational complexity St - \\l |
3. Can easily be parallelised /'|,' ."
4. Lots of other teams use it! . { Vi
5. Easily switch SLAM -> Localisation P ,//

FastSLAM Estimate

https://www.youtube.com/watch?v=d6TwUduuY8o
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https://www.youtube.com/watch?v=d6TwUduuY8o

FastSLAM for EUFS - What is a LIDAR>

A
¢ LLHLELR
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FastSLAM For EUFS - Troubleshooting

FSUK 24 .
. 5
LiDAR cones -> " r
<- map
B
r
r
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https://uoe-my.sharepoint.com/:v:/g/personal/s2156298_ed_ac_uk/EXFSeTKtLXFHvpNMhhUWTyMBe5H42l_df8sHE-UoW_jAcA?nav=eyJyZWZlcnJhbEluZm8iOnsicmVmZXJyYWxBcHAiOiJPbmVEcml2ZUZvckJ1c2luZXNzIiwicmVmZXJyYWxBcHBQbGF0Zm9ybSI6IldlYiIsInJlZmVycmFsTW9kZSI6InZpZXciLCJyZWZlcnJhbFZpZXciOiJNeUZpbGVzTGlua0NvcHkifX0&e=EZ5sFB

FastSLAM 2.0 in Action at FS UK 23

SR 7 (5 FS8 65 EuTI R W 6 R
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FastSLAM 2.0 in Action at FS UK 23

Best lap of trackdrive
SLAM map

Do you think it
resembles what you L
saw in the video? '
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FastSLAM 2.0 - Applications

NASA Viper:
* Polar region of moon in 2023
* First NASA missions to use ROS

10m

10m

Mission Robotics Submersible Robot
* Coral reef mapping / species identification
 Mapping least known part of Earth
 Use wall features to perform SLAM
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FastSLAM - Question

Conditioning on the most recent pose instead of the entire path is sufficient.

True or False?
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FastSLAM - Question

False.

Conditioning on the most recent pose instead of the entire path is insufficient, as dependencies
may arise through previous poses.
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SLAM using Extended Kalman Filters was
the first SLAM algorithm published.

¢ of EDINBURGH
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EKF SLAM - Limitations

Requires:
* Enormous update complexity
» Brittle to incorrect data association X .
due to linearisation
y
Keeps track of all uncertainty! S/ . .
m! - %o
X
1
my

7 f- THE UNIVERSITY

WA )/ c.:n_,l"]-.I}I.‘~EH|.J]~?.I-'.:'EI



EKF SLAM - Applications
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EKF SLAM - Question

EKF SLAM applies the extended Kalman filter to the full SLAM problem.

True or False?
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EKF SLAM - Question

False

EKF SLAM applies the extended Kalman filter to the online SLAM problem.
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A network of soft constraints:

T L
A b L, = g, ) R L, = & 1t,3)] (2, ~ Al )] Q' 2, — h(my. ;)]

Lx; — g (us, I:-_}.]T R fx,

-
L
L]
-
-
-
L]

[x, —g(u],xﬂ)}f R™ [, = gy, xp)]

{21 _h(?n1!x| }]r Q_I [Z| _h(ml'xiu

[z, = h(m,x)] Q7' [z, —h(m,, x,)] ""'F"‘-'

I.I.l - S(H.,, s -"‘:3 }]JT R_I !-x.g - g(“.; ' x"j_ }]

Sum of all constraints:

‘]Gm[ﬁlSIAM = x;l Qt’! Xy + Z I.xr - g(ua 2 X )E{ R_l E.xr - g(uf s Xy )l + Z [.Zx _h(mc-, > X, )li Q_l [Zf _h(.mf.',- » X, )l
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=
3

Sum constrains and minimize to get
both the map and the full trajectory.

Solves the full SLAM problem.
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GraphSLAM - Flow of data

Nodes positions

l

4 ) 4 )
Graph
optimization

—>»  Graph >
Raw data construction Graph

\_ ) (nodes & edges) \ F
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GraphSLAM - Data Association

There is no requirement to process the observed features sequentially.

Decisions can be undone.
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GraphSLAM - Visualisations
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GraphSLAM - Question

The distance between any two landmarks will always converge to the correct distance.

True or False?
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GraphSLAM - Question

True
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LiDAR-based SLAM - Examples

GMapping is a well-known
implementation of the Rao-Blackwellized
Particle Filter (RBPF).

slam_gmapping

slam_gmapping is a wrapper around the GMapping SLAM library. It reads laser scans and
odometry and computes a map. This map can be written to a file using e.g.

"rosrun map_server map_saver static_map:=dynamic_map"

ROS topics

Subscribes to (nameftype):

« "scan"/ sensor_msgs/LaserScan : data from a laser range scanner
« "ftf": odometry from the robot

gmapping

This package conlains a ROS
wrapper for OpenSlam's
Gmapping. The gmapping
package provides laser-based
SLAM (Simultaneous
Localization and Mapping), as a
ROS node called
slam_gmapping. Using

slam_gmapping, you can create
Publishes to (name/type): gmapping, y

a 2-D occupancy grid map (like
. "ff"/tf/tfMessage: position relative to the map a building floorplan) from laser
and pose data collected by a
services mobile robot.
« "~dynamic_map" : returns the map + Homepage:

http:/fwiki.ros.org/gmappin:

ROS parameters

Reads the following parameters from the parameter server

Parameters used by our GMapping wrapper:

« "~throttle_scans": [int] throw away every nth laser scan

« "~base_frame": [string] the tf frame_id to use for the robot base pose

« "~map_frame": [string] the tf frame_id where the robot pose on the map is published

« "~odom_frame": [string] the tf frame_id from which odometry is read

= "~map_update_interval": [double] time in seconds between two recalculations of the map

Parameters used by GMapping itself:
Laser Parameters:

s "~/maxRanaa" [dnuhlal maximum ranna of tha laser snans Ravs havand this ranne nat diseardad eomnlatalv (daefault:
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LIDAR-based SLAM - Uses

e Self-driving cars
e Cleaning robots

e Drones - various
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* Let’s consider implementation using ROS

* Topics
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 What topics would you need to subscribe to?
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* What topics would you need to publish to?
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SLAM - Other Cool Applications

* Farming

e Store rooms — organize and
collect stock

* Medicine — for small surgeries
 Augmented Reality

* Construction

* On the moon

* Exploring the oceans
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Summary - SLAM

]

Localisation Mapping

{
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Interested in finding out more?

SEBASTIAN THRUN
WOLFRAM BURGARD
DIETER FOX
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