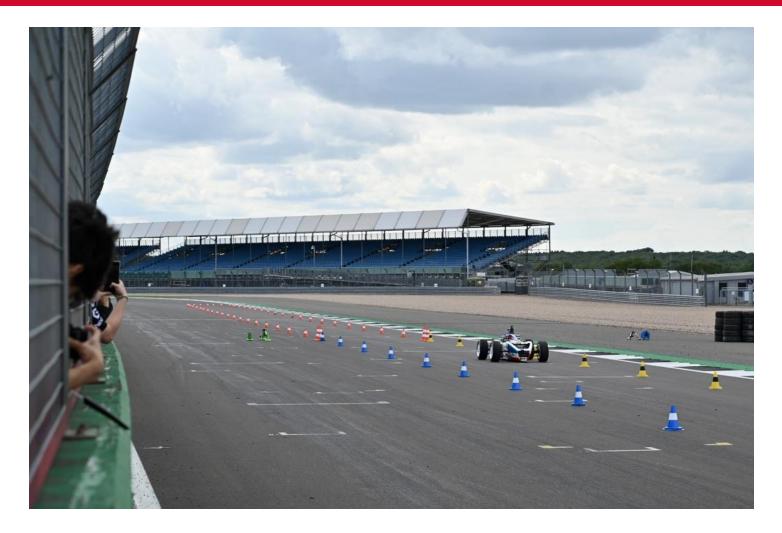
EDINBURGH UNIVERSITY FORMULA STUDENT Simultaneous Localisation and Mapping

6th November 2024

Outline

- 1. Formula Student Al
- 2. Reference Problem
- 3. Localisation
- 4. Mapping
- 5. SLAM
- 6. SLAM Algorithms
- 7. Applications



FOR

Edinburgh University Formula Student

- There are 4 dynamic events.
- We focus on Trackdrive:



- There are 4 dynamic events.
- We focus on **Trackdrive**:
- 1. 10 laps of an unknown track



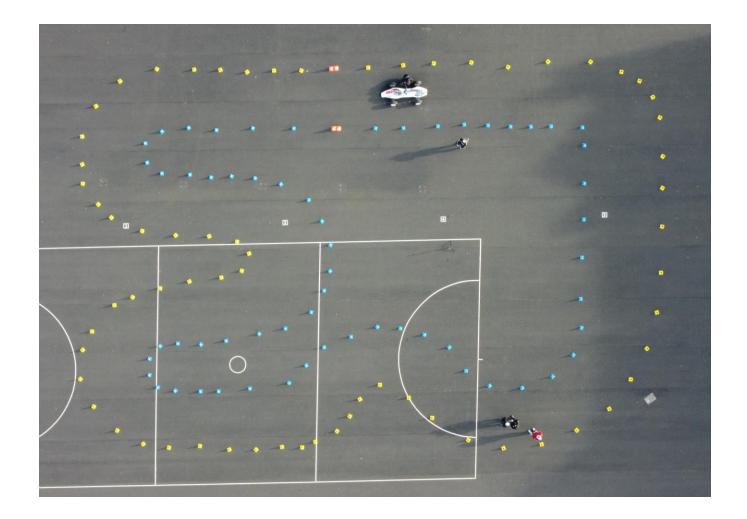
- There are 4 dynamic events.
- We focus on Trackdrive:
- 1. 10 laps of an unknown track
- 2. Blue cones on the left
- 3. Yellow cones on the right
- 4. Orange cones mark start/finish line

- There are 4 dynamic events.
- We focus on Trackdrive:
- 1. 10 laps of an unknown track
- 2. Blue cones on the left
- 3. Yellow cones on the right
- 4. Orange cones mark start/finish line
- 5. Fastest time wins

FS AI – The Assumptions

Given to us at each time step:

- 1. Cone positions near car
- 2. Estimate of the velocity of the car



FS-AI – Difficulties

What prevents us from going fast?

FS-AI – Difficulties

What prevents us from going fast?

What if we see a turn too late?

FS-AI – Difficulties

What prevents us from going fast?

What if we see a turn too late?

- Map of the track
- Position in the map

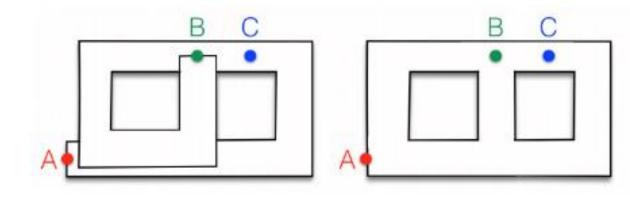
FORMULA

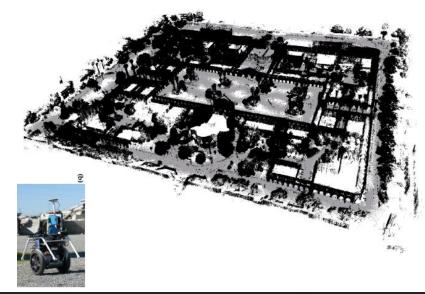
Mapping

Mapping – What is a map?

Produce a map of the track

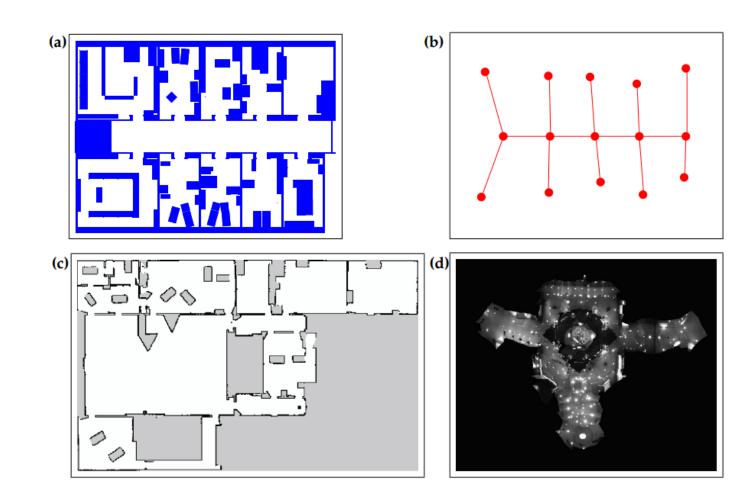
Representation of the environment





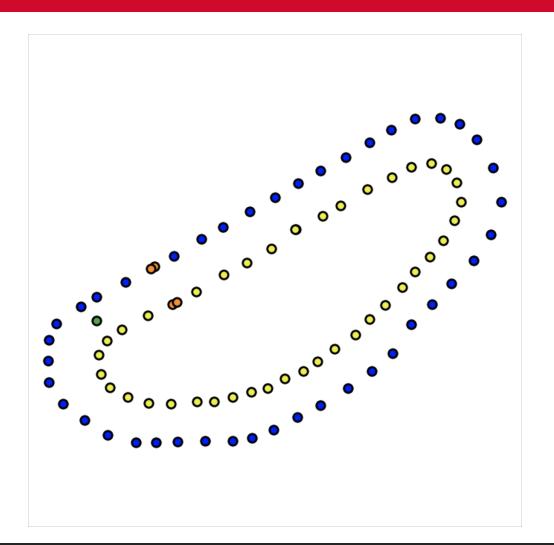
Mapping – Example types of map

- Topological map (a)
- Landmark-based map (b)
- Occupancy grid map (c)
- Image map (d)



Mapping – Map for SLAM

- Landmark-based map
- Each cone is a landmark
- Static map

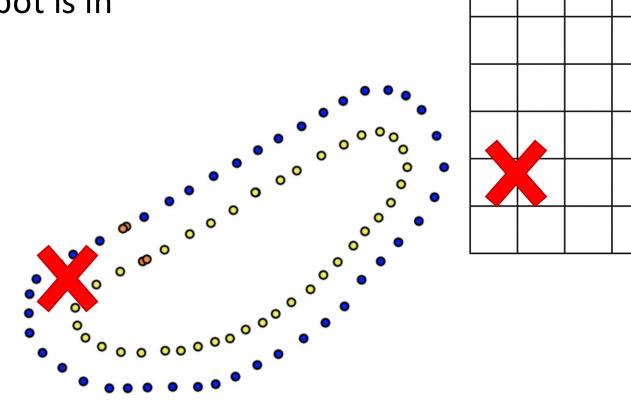


FORMULA

Localisation

Localisation

• Figure out where the robot is in the map, i.e. its position



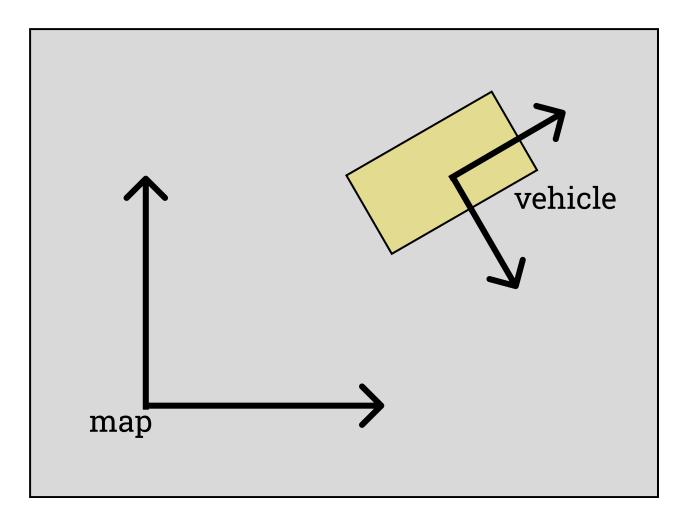
Localisation – Frames of Reference

There are two frames of importance:

- 1. Map frame
- 2. Vehicle frame

Map frame is the global coordinate system.

Vehicle frame is a coordinate system attached to the vehicle.

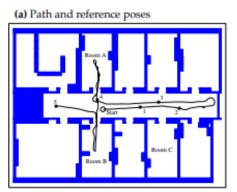


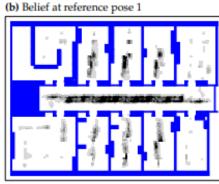
Localisation – Taxonomy

- Tracking initial position known
- Global localisation initial position unknown
- Kidnapped robot problem

What type is EUFS? Tracking

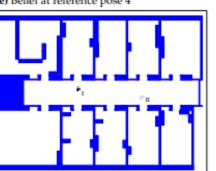
Static vs dynamic environments



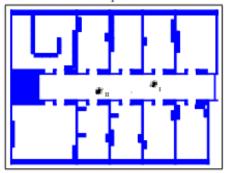


(c) Belief at reference pose 2

(e) Belief at reference pose 4



(d) Belief at reference pose 3



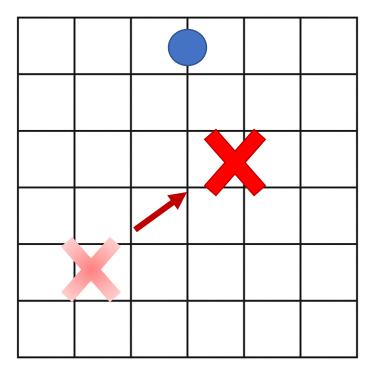
(f) Belief at reference pose 5

Localisation

"Where are the landmarks I saw in the previous timestep and how did I move to get here?"

"Where am I in relation to that landmark?"

Mobile robot localisation



Localisation – Algorithms

1:

2:

3:

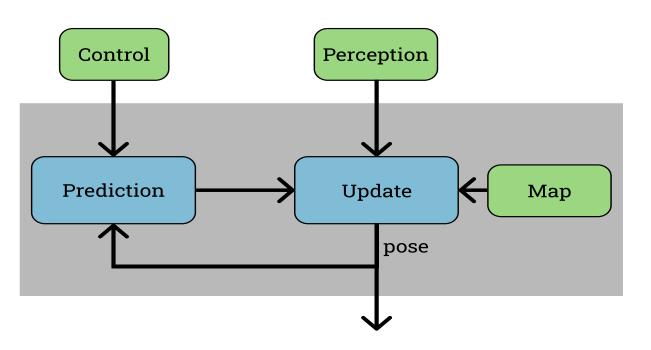
4:

5:

6:

- 1. Extended Kalman Filter
- 2. Particle Filters

Algorithm Bayes_filter($bel(x_{t-1}), u_t, z_t$): for all x_t do $\overline{bel}(x_t) = \int p(x_t \mid u_t, x_{t-1}) bel(x_{t-1}) dx$ $bel(x_t) = \eta p(z_t \mid x_t) \overline{bel}(x_t)$ endfor return $bel(x_t)$



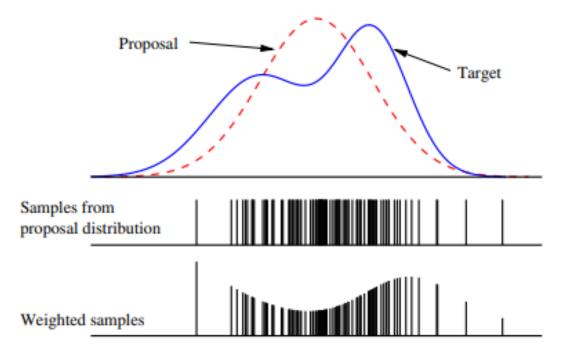
Require:

- Motion model
- Measurement model

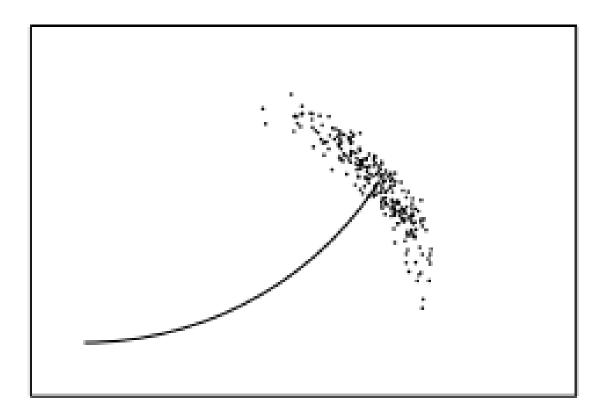
EKF represents pose using a Multivariate Gaussian distribution.

Three steps involved in a particle filter:

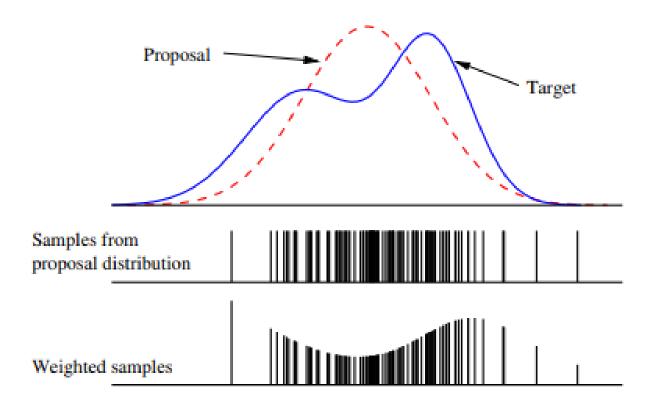
- 1. Update
- 2. Weight
- 3. Resample



Update

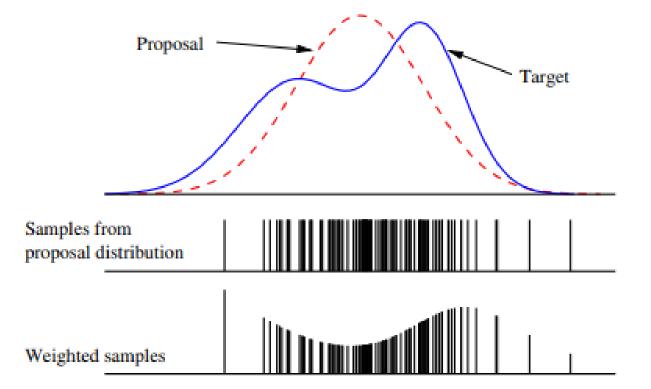


Weight



Resampling

The process repeats!



Important considerations for particle filters:

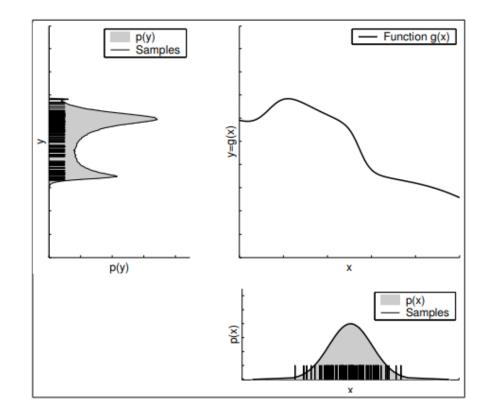
• Particle diversity

Pros:

- Can easily model multi-modal distributions
- Easily parallelisable

Cons:

• The number of particles required is exponential in the dimensions of the state



FORMULA

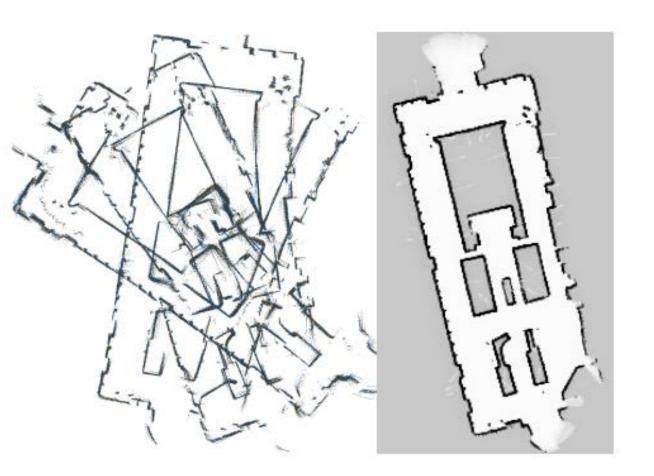
Challenges

Mapping – Challenges

Creating a map is easy if exact position of the robot is known.

Why can't we just use velocity to figure out the position of the robot?

Other potential solutions?



Mapping – Challenges

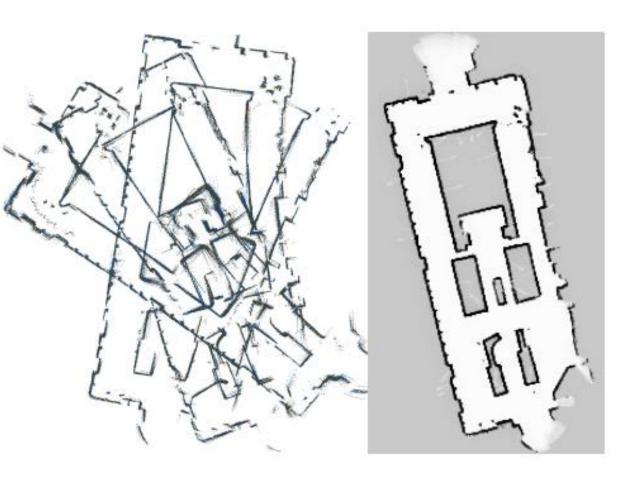
Creating a map is easy if exact position of the robot is known.

Why can't we just use velocity to figure out the position of the robot?

Other potential solutions?

- 1. GPS (unless denied GPS environment)
- 2. Localisation

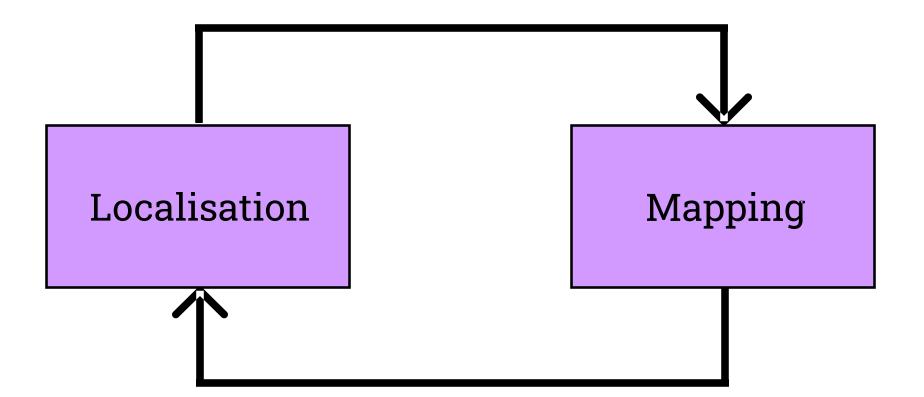
It would be nice if there were no reliability concerns!



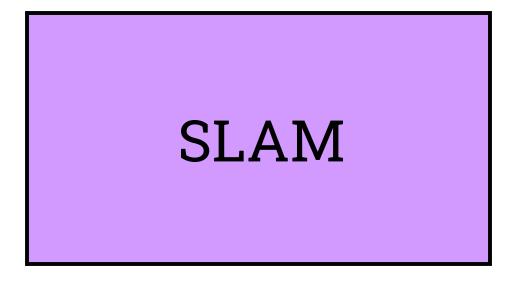
FORMULA

SLAM

The Chicken and Egg Problem



SLAM – Simultaneous Localisation and Mapping



SLAM

Simultaneous Localisation and Mapping (SLAM) looks to build a map of the environment whilst determining the location of the robot within the map.

$$P(\mathbf{x}_k, \mathbf{m} | \mathbf{Z}_{0:k}, \mathbf{U}_{0:k}, \mathbf{x}_0)$$

Time-update

$$P(\mathbf{x}_k, \mathbf{m} | \mathbf{Z}_{0:k-1}, \mathbf{U}_{0:k}, \mathbf{x}_0) = \int P(\mathbf{x}_k | \mathbf{x}_{k-1}, \mathbf{u}_k)$$
$$\times P(\mathbf{x}_{k-1}, \mathbf{m} | \mathbf{Z}_{0:k-1}, \mathbf{U}_{0:k-1}, \mathbf{x}_0) d\mathbf{x}_{k-1}$$
(4)

Measurement Update

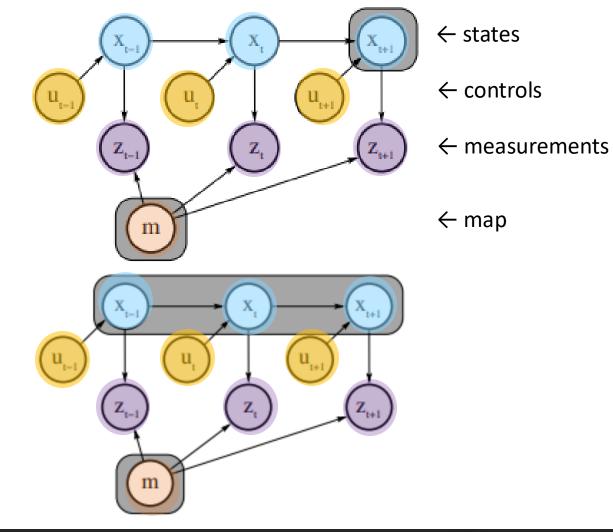
$$P(\mathbf{x}_{k}, \mathbf{m} | \mathbf{Z}_{0:k}, \mathbf{U}_{0:k}, \mathbf{x}_{0})$$

$$= \frac{P(\mathbf{z}_{k} | \mathbf{x}_{k}, \mathbf{m}) P(\mathbf{x}_{k}, \mathbf{m} | \mathbf{Z}_{0:k-1}, \mathbf{U}_{0:k}, \mathbf{x}_{0})}{P(\mathbf{z}_{k} | \mathbf{Z}_{0:k-1}, \mathbf{U}_{0:k})}$$
(5)

SLAM – Online vs Full

Online SLAM

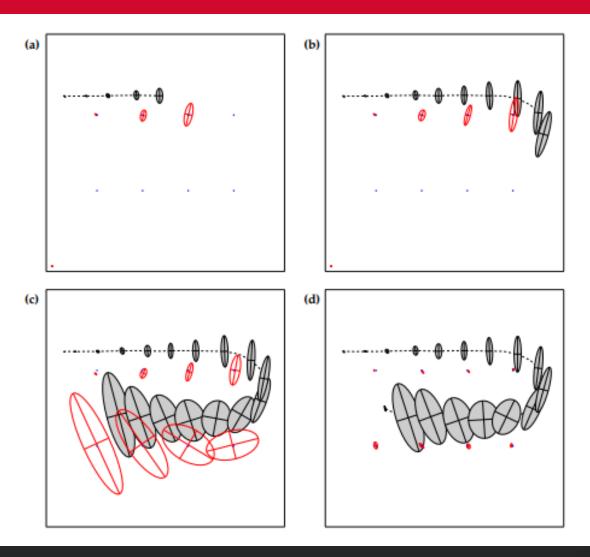
Full SLAM



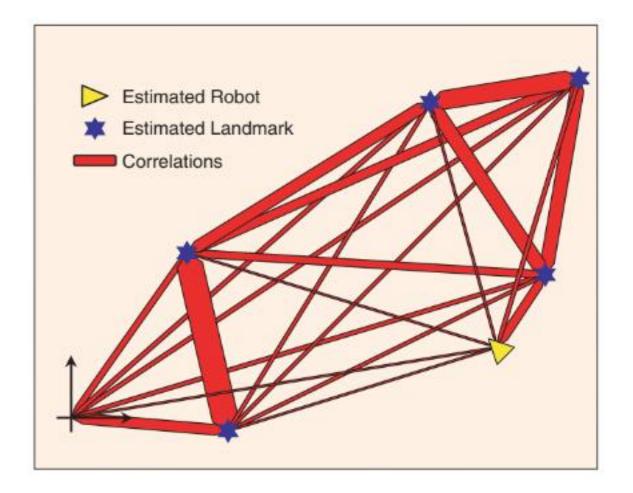
FOR

SLAM – Conceptual components

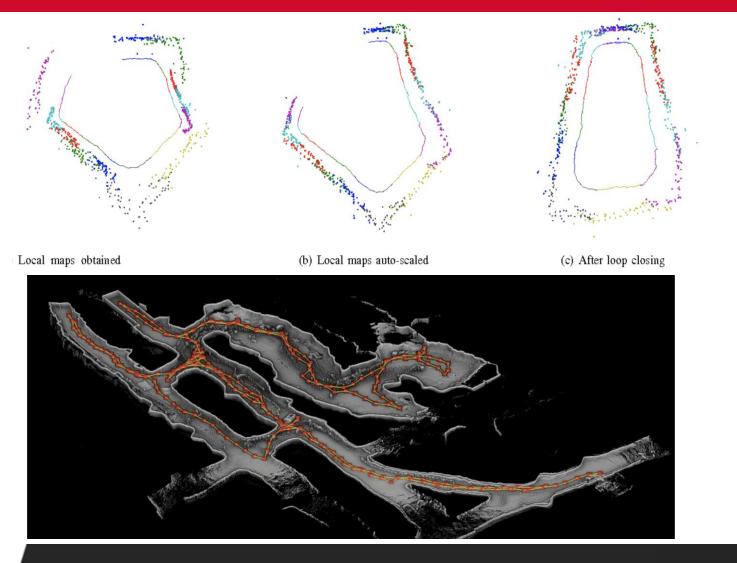
SLAM - Loop Closure



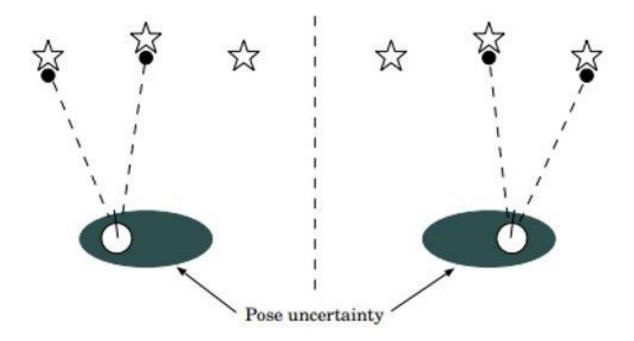
SLAM - Loop Closure



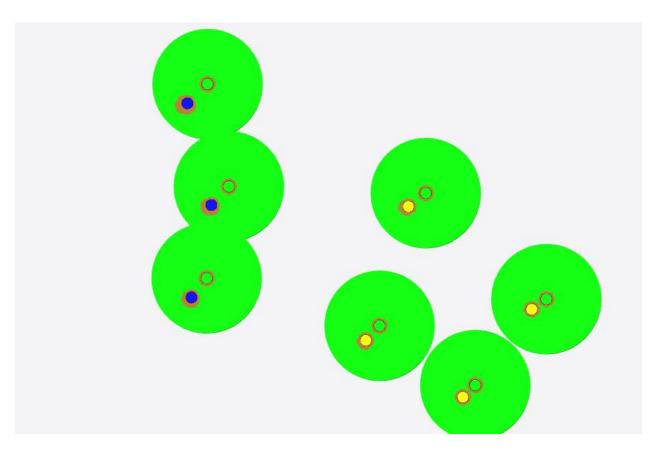
SLAM - Loop Closure



SLAM - Data Association



SLAM - Data Association



FORMULA

FastSLAM

FastSLAM 1.0

Particle filter to predict robot pose

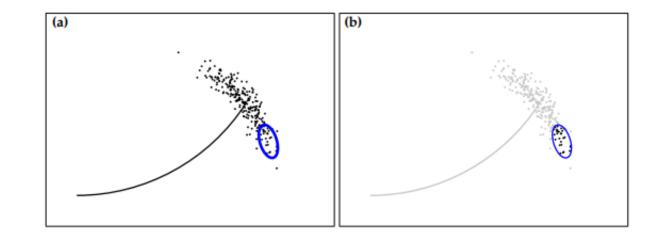
EKFs to update landmarks

• One for each particle, for each landmark

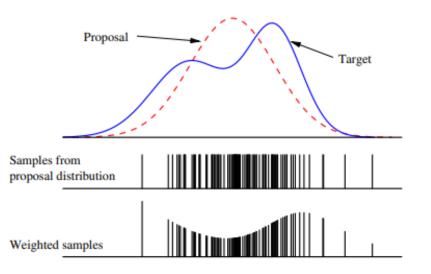
	robot path	feature 1	feature 2	feature N
Particle $k = 1$	$x_{1:t}^{[1]} = \{ (x \ y \ \theta)^T \}_{1:t}^{[1]}$	$\mu_1^{[1]}, \Sigma_1^{[1]}$	$\mu_2^{[1]}, \Sigma_2^{[1]} \dots$	$\mu_N^{[1]}, \Sigma_N^{[1]}$
Particle $k=2$	$x_{1:t}^{[2]} = \{ (x \ y \ \theta)^T \}_{1:t}^{[2]}$	$\mu_1^{[2]}, \Sigma_1^{[2]}$	$\mu_2^{[2]}, \Sigma_2^{[2]} \dots$	$\mu_N^{[2]}, \Sigma_N^{[2]}$
		:		
Particle $k = M$	$x_{1:t}^{[M]} = \{ (x \ y \ \theta)^T \}_{1:t}^{[M]}$	$\mu_1^{[M]}, \Sigma_1^{[M]}$	$\mu_2^{[M]}, \Sigma_2^{[M]} \ldots$	$\mu_N^{[M]}, \Sigma_N^{[M]}$

FastSLAM 2.0

FastSLAM 1.0 does the prediction step purely using the control information.



FastSLAM 2.0 considers perception information in the prediction step.



FastSLAM – Algorithm Steps

REPEAT M TIMES

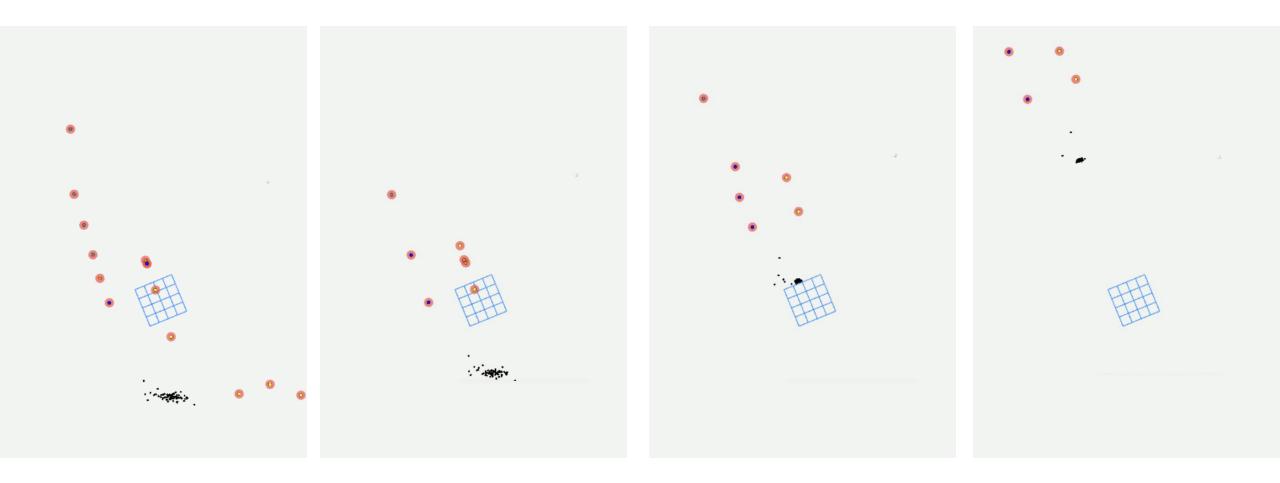
- Retrieval
- Prediction
- Measurement update
- Importance weight

THEN DO

- Resampling (M particles)

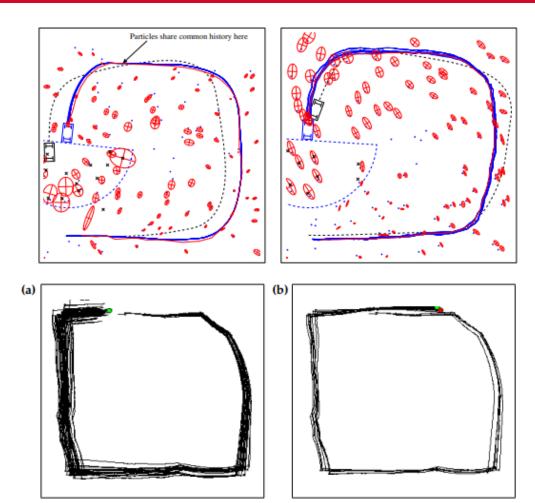
	robot path	feature 1	feature 2	feature N
Particle $k = 1$	$x_{1:t}^{[1]} = \{ (x \ y \ \theta)^T \}_{1:t}^{[1]}$	$\mu_1^{[1]}, \Sigma_1^{[1]}$	$\mu_2^{[1]}, \Sigma_2^{[1]} \dots$	$\mu_N^{[1]}, \Sigma_N^{[1]}$
Particle $k = 2$	$x_{1:t}^{[2]} = \{ (x \ y \ \theta)^T \}_{1:t}^{[2]}$	$\mu_1^{[2]}, \Sigma_1^{[2]}$	$\mu_2^{[2]}, \Sigma_2^{[2]} \dots$	$\mu_N^{[2]}, \Sigma_N^{[2]}$
		:		
Particle $k = M$	$x_{1:t}^{[M]} = \{ (x \ y \ \theta)^T \}_{1:t}^{[M]}$	$\mu_1^{[M]}, \Sigma_1^{[M]}$	$\mu_2^{[M]}, \Sigma_2^{[M]} \ldots$	$\mu_N^{[M]}, \Sigma_N^{[M]}$

FastSLAM - Particle Resampling

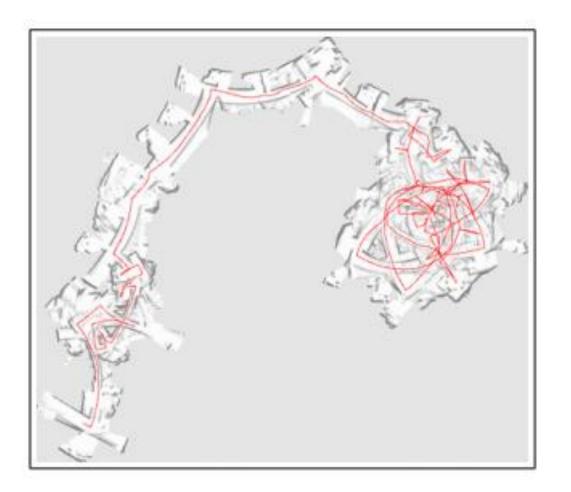


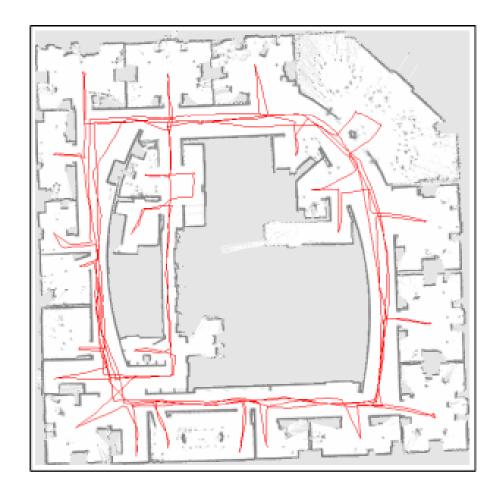
FastSLAM - Loop Closure

When loop closure occurs, changes in the map can only occur up to the common ancestor!



FastSLAM for Grid Maps

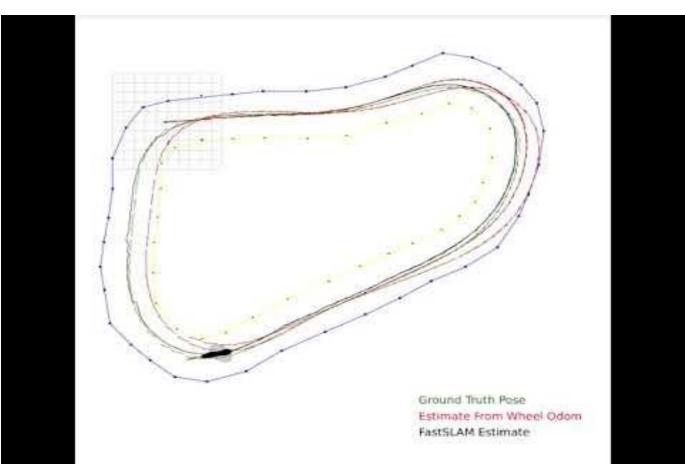




FastSLAM For EUFS

Why we like FastSLAM for EUFS:

- 1. Can create map in real time
- 2. Lower computational complexity
- 3. Can easily be parallelised
- 4. Lots of other teams use it!
- 5. Easily switch SLAM -> Localisation



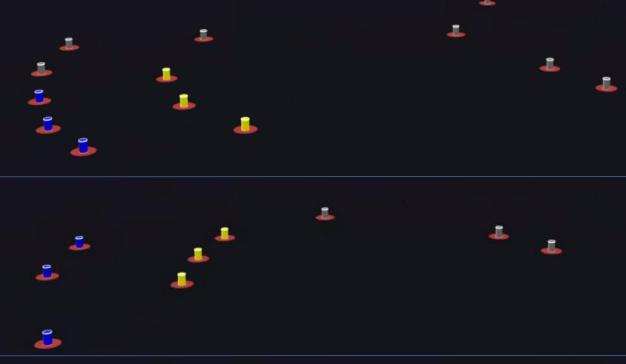
https://www.youtube.com/watch?v=d6TwUduuY8o

FastSLAM for EUFS - What is a LiDAR?

FastSLAM For EUFS – Troubleshooting

FSUK 24 LiDAR cones ->

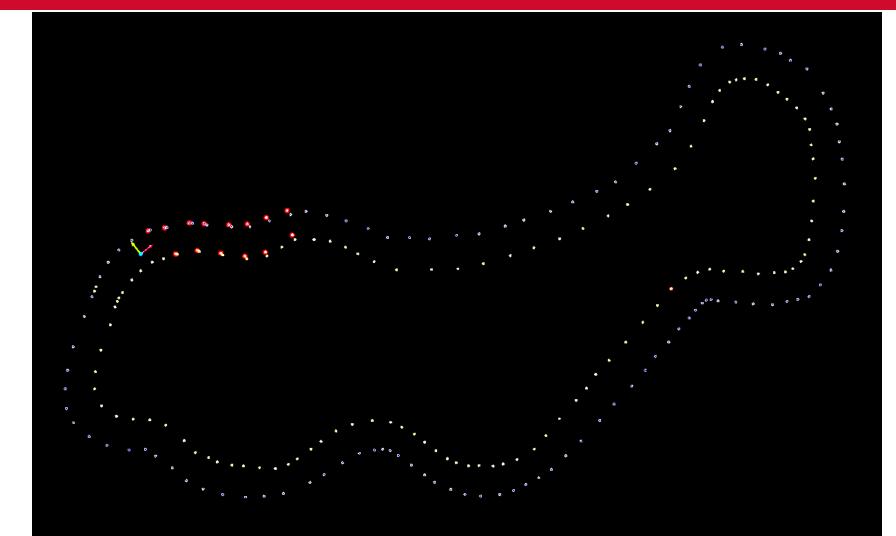
lidarconespack170.webm



FastSLAM 2.0 in Action at FS UK 23

FastSLAM 2.0 in Action at FS UK 23

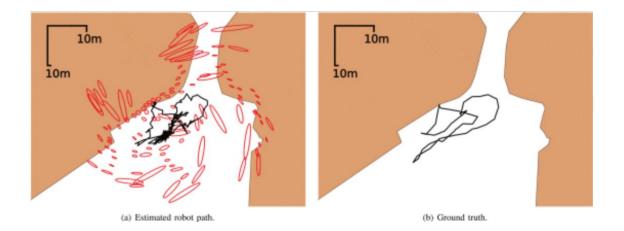
- Best lap of trackdrive
- SLAM map
- Do you think it resembles what you saw in the video?



FastSLAM 2.0 - Applications

NASA Viper:

- Polar region of moon in 2023
- First NASA missions to use ROS



Mission Robotics Submersible Robot

- Coral reef mapping / species identification
- Mapping least known part of Earth
- Use wall features to perform SLAM

FastSLAM - Question

Conditioning on the most recent pose instead of the entire path is sufficient.

True or False?

FastSLAM - Question

False.

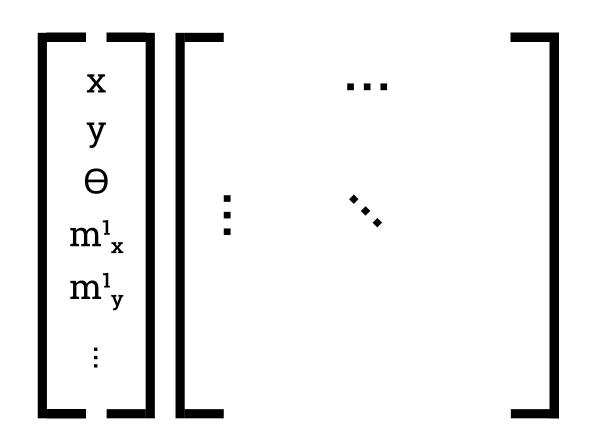
Conditioning on the most recent pose instead of the entire path is insufficient, as dependencies may arise through previous poses.

FORMULA

EKF SLAM

EKF SLAM

SLAM using Extended Kalman Filters was the first SLAM algorithm published.

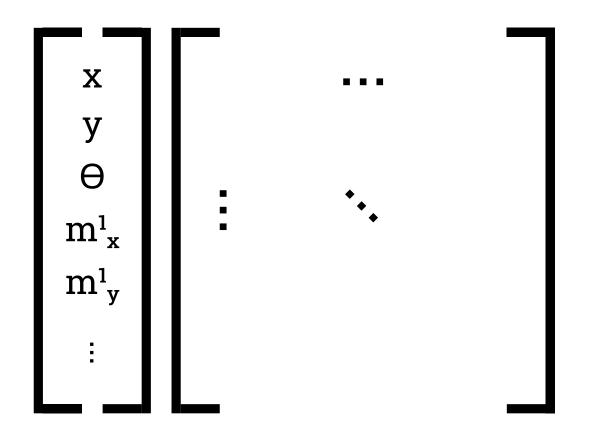


EKF SLAM - Limitations

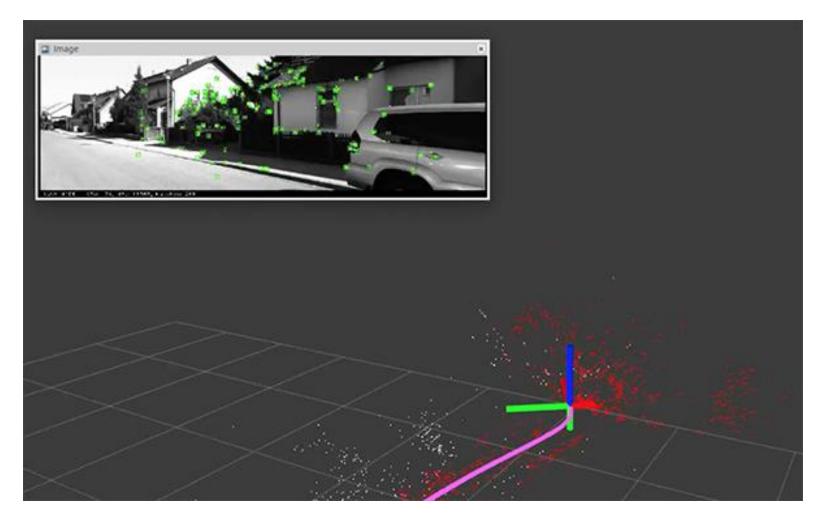
Requires:

- Enormous update complexity
- Brittle to incorrect data association due to linearisation

Keeps track of all uncertainty!



EKF SLAM - Applications



EKF SLAM - Question

EKF SLAM applies the extended Kalman filter to the full SLAM problem.

True or False?

EKF SLAM - Question

False

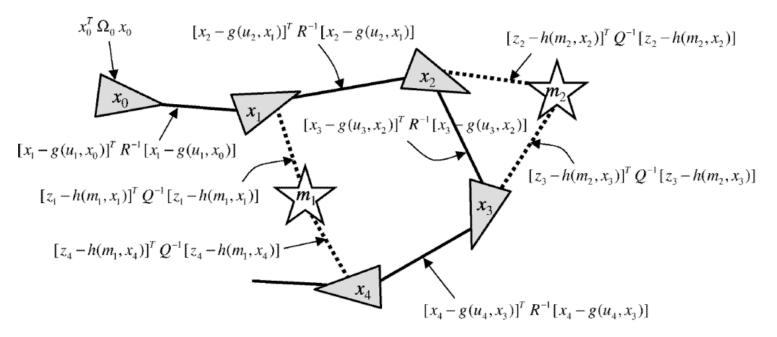
EKF SLAM applies the extended Kalman filter to the online SLAM problem.

FORMULA

GraphSLAM

GraphSLAM

A network of soft constraints:



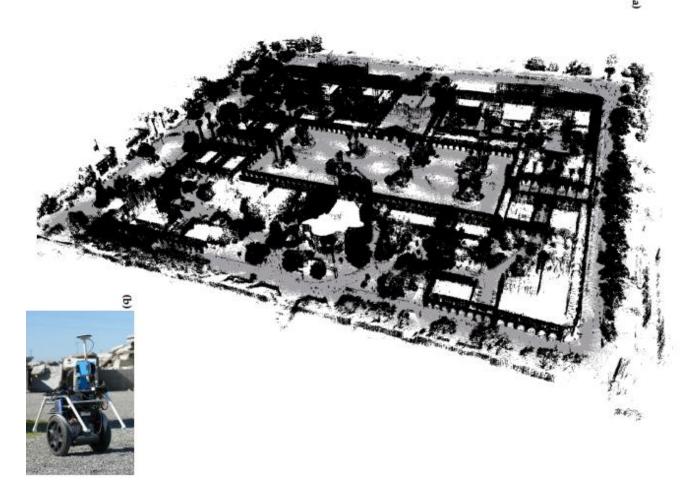
Sum of all constraints:

$$\boldsymbol{J}_{\text{GraphSLAM}} = \boldsymbol{x}_{0}^{T} \boldsymbol{\Omega}_{0} \boldsymbol{x}_{0} + \sum_{t} [\boldsymbol{x}_{t} - \boldsymbol{g}(\boldsymbol{u}_{t}, \boldsymbol{x}_{t-1})]^{T} \boldsymbol{R}^{-1} [\boldsymbol{x}_{t} - \boldsymbol{g}(\boldsymbol{u}_{t}, \boldsymbol{x}_{t-1})] + \sum_{t} [\boldsymbol{z}_{t} - \boldsymbol{h}(\boldsymbol{m}_{c_{t}}, \boldsymbol{x}_{t})]^{T} \boldsymbol{Q}^{-1} [\boldsymbol{z}_{t} - \boldsymbol{h}(\boldsymbol{z}_{t}, \boldsymbol{z}_{t})]^{T} \boldsymbol{Q}^{-1} [\boldsymbol{z}_{t} - \boldsymbol{z}_{t}, \boldsymbol{z}_{t}]^{T} \boldsymbol{Q}^{-1} [\boldsymbol{z}_{t} - \boldsymbol{z}_{t}, \boldsymbol{z}_{t}]^{T} \boldsymbol{Q}^{-1} [\boldsymbol{z}_{t} - \boldsymbol{z}_{t}, \boldsymbol{z}_{t}]^{T} \boldsymbol{z}]$$

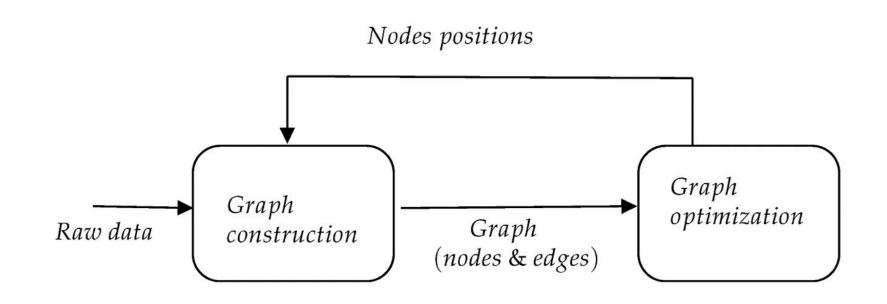
GraphSLAM

Sum constrains and minimize to get both the map and the full trajectory.

Solves the *full SLAM* problem.



GraphSLAM – Flow of data

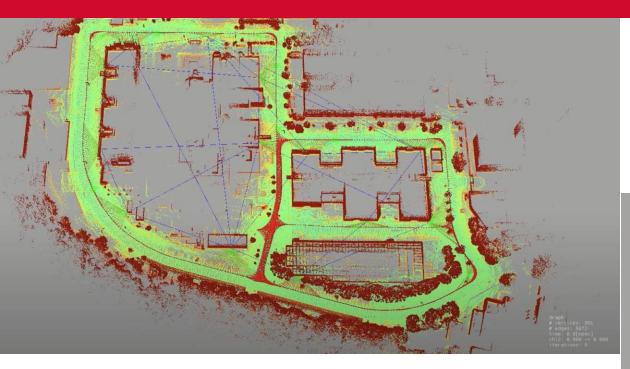


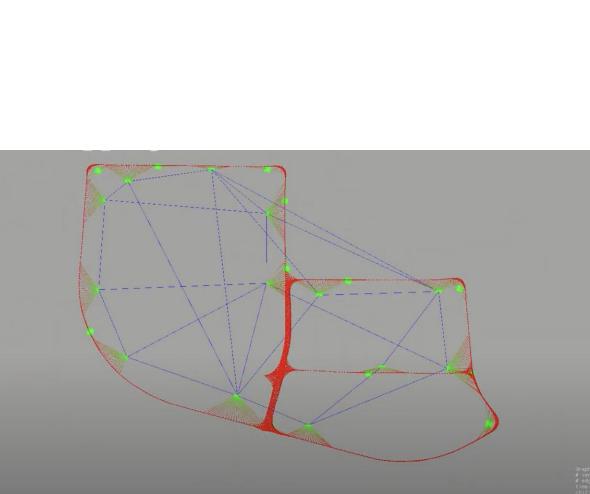
GraphSLAM - Data Association

There is no requirement to process the observed features sequentially.

Decisions can be undone.

GraphSLAM - Visualisations





GraphSLAM - Question

The distance between any two landmarks will always converge to the correct distance.

True or False?

GraphSLAM - Question

True

FORMULA

LiDAR-based SLAM

LiDAR-based SLAM - Examples

GMapping is a well-known implementation of the Rao-Blackwellized Particle Filter (RBPF).

slam_gmapping

slam_gmapping is a wrapper around the GMapping SLAM library. It reads laser scans and odometry and computes a map. This map can be written to a file using e.g.

"rosrun map_server map_saver static_map:=dynamic_map"

ROS topics

Subscribes to (name/type)

- "scan"/ sensor_msgs/LaserScan : data from a laser range scanner
- "/tf": odometry from the robot

Publishes to (name/type):

• "/tf"/tf/tfMessage: position relative to the map

services

• "~dynamic_map" : returns the map

ROS parameters

Reads the following parameters from the parameter server

Parameters used by our GMapping wrapper:

- "~throttle_scans": [int] throw away every nth laser scan
- "~base_frame": [string] the tf frame_id to use for the robot base pose
- "~map_frame": [string] the tf frame_id where the robot pose on the map is published
- "~odom_frame": [string] the tf frame_id from which odometry is read
- "-map_update_interval": [double] time in seconds between two recalculations of the map

Parameters used by GMapping itself:

Laser Parameters:

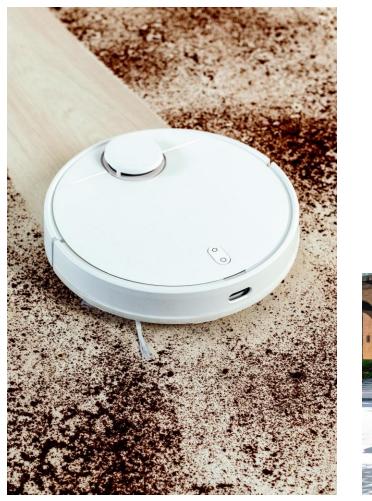
· "-/maxRange" [double] maximum range of the laser scans. Bays beyond this range get discarded completely. (default:

gmapping This package contains a ROS wrapper for OpenSlam's Gmapping. The gmapping package provides laser-based SLAM (Simultaneous Localization and Mapping), as a ROS node called slam_gmapping. Using slam_gmapping, you can create a 2-D occupancy grid map (like a building floorplan) from laser and pose data collected by a mobile robot.

> Homepage: http://wiki.ros.org/gmappin

LiDAR-based SLAM - Uses

- Self-driving cars
- Cleaning robots
- Drones various



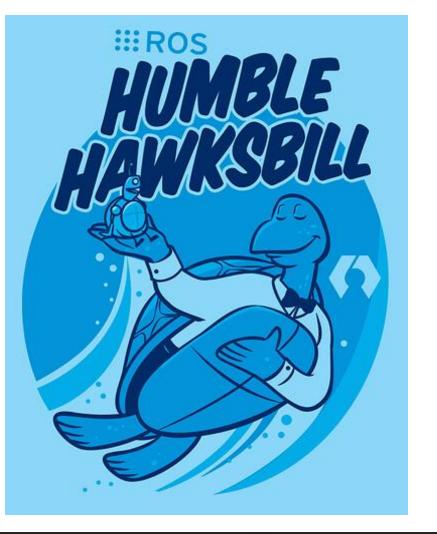
FORMULA

Link to ROS

Link to ROS

• Let's consider implementation using ROS

• Topics



Subscribers

• What topics would you need to subscribe to?

• What topics would you need to publish to?

FORM

Extra Applications

SLAM - Other Cool Applications

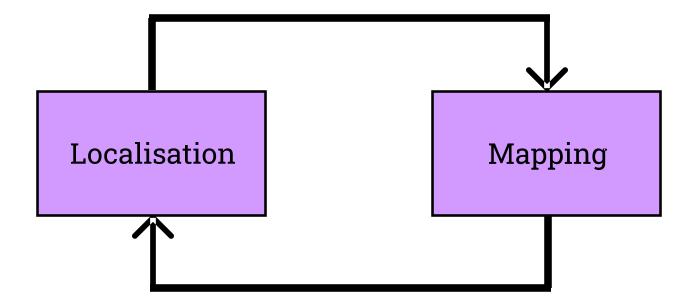
- Farming
- Store rooms organize and collect stock
- Medicine for small surgeries
- Augmented Reality
- Construction
- On the moon
- Exploring the oceans



FORMULA

Summary

Summary - SLAM



Interested in finding out more?

