Agent-Based Modelling in NetLogo

the university of edinburgh informatics

Modelling of Systems for Sustainability INFR10088

Previously

- Modelling cycle, brief intro ABM/SD
- Formulating a model in the ODD protocol
- Today: Agent-Based Modelling in NetLogo

ABM key aspects

- Agent types and numbers
- Communication
- Shared environment
- Spatial/Network component?
- Scheduling/ordering

Simple Economy example

- Scenario: initially everyone has the same wealth. At each time step, each person gives \$1 to someone else chosen at random, if they have money to give.
- Question: what happens to the wealth distribution over time?
- Initialisation: set up 500 agents each with \$100
- Agent behaviour: as in scenario above
- Observation
 - The distribution of wealth across the population
 - The total wealth of the top 10% and of the bottom 50%

Simple Economy: code

turtles-own [wealth] ;; turtles have one variable - wealth

```
to setup
 clear-all
              ;; set everything to defaults
 create-turtles 500 [;; create 500 turtles
    set wealth 100
                     ;; each with $100
 reset-ticks
                      ;; initialise time steps
end
to go
 ask turtles with [ wealth > 0 ] [ transact ] ;; if have $, give one away
 tick
                                               ;; one time step done
end
to transact
 ;; give a dollar to another turtle
 set wealth wealth - 1
 ask one-of other turtles [ set wealth wealth + 1 ]
end
;; report the total wealth of the top 10% of turtles
to-report top-10-pct-wealth
 report sum [ wealth ] of max-n-of (count turtles * 0.10) turtles [ wealth ]
end
;; report the total wealth of the bottom half of turtles
to-report bottom-50-pct-wealth
 report sum [ wealth ] of min-n-of (count turtles * 0.50) turtles [ wealth ]
end
```

Simple Economy: run

Agent types

- Turtle what you think of as an agent
 - Has x, y coordinates
- Link link between two Turtles
 - Can be directed or undirected
- Patch spatial area
 - Has x, y coordinates
- The observer
 - That's you, using the GUI
 - BehaviourSpace to automate

Turtles

- A class of turtle is called a breed
- Declared at the beginning of the code
- Different breeds have different variables
 - Breed not fixed!
- Set of turtles is an agentset
- Can 'hatch' new turtles
 - Same breed
 - Same variable values

```
breed [ people a-person ]
breed [ resource-units a-resource-unit ]
breed [ resource-banks a-resource-bank ]
```

people-own [

home-patch starting-resource-access

```
patches-own [
```

resource-patch? resource-production-capacity

```
resource-units-own [
    energy-gain-per-unit
    energy-cost-per-unit
```

resource-banks-own [

```
energy-funds-received-this-tick
energy-funds-distributed-this-tick
]
```

Properties

Gabriel Wurzer: "An Introduction to NetLogo", in Agents in Archeology Workshop 2011, Netlogo Lecture, Slide 19, Vienna.

Links

- Used to pass/process information between turtles
- Undirectional only one between any two turtles
- Directional can be one in each direction between any two turtles
- No self-links
- Good for modelling non-spatial networks
- Set of links is an agentset
- Can have breeds (types) of links
 - Modifies rules above
 - e.g.: undirected-link-breed [streets street]

Patches

- Notionally a 2D grid
 - Good for modelling many physical-world systems
- Cannot move x and y coordinates are fixed
- Can 'sprout' new turtles
 - Any breed
- Agentset 'patches'
- Variables
 - pcolor, plabel, plabel-color, pxcor, pycor
- No breeds
 - Differentiate patches using patch variables

Observer

- Basically the GUI
- GUI connected to code
 - Input/Control: Button, Slider, Switch, Chooser
 - Output/View: Plot, Monitor, Model Settings
- Only agent able to arbitrarily 'create' turtles
 - But patches can 'sprout' and 'hatch'

Observer – example

- Link to details on COMSES Model Library
- Link to ODD on Github
- Exploration of how collective action may or may not help with resource distribution in a climate change context
- Run in NetLogo

Example – urban land use in East Anglia

• Endogenising the planning process

Source: Lilibeth Acosta-Michlik and Corentin Fontaine; funded by the Tyndall Centre

Residential agents

- Socio-economic data analysis
- Agent profiles (household types) & location trends

		CLUSTERS											
		1	2	3	4	5	6	7	8	9	10	11	12
isolated student	HA1										++	+	+++
single person	HA2							+	+++	++	++	+	
couple	HA3		++	+	+			+++	++		+++	++	
couple with dep. children	HA4			+		++		+++		+	+		
single-parent family	HA5					+++	++			++			+
couple with non-dep. children	HA6	+++	++	+	+								
all retired	HA7	+	+		+++		++						+

Household agent location preferences

Residential model runs

Model run animation

ABM as Computational Laboratory

- Testing hypotheses
- Testing methodologies
- Is your ABM deterministic or has it got a stochastic component?
- How many simulations is enough?
- How do we interpret model results?
- Statistical analysis of results

Analysis of ABM Output

- Plot agent attributes
- Plot number of agents of certain type
- Spatial pattern metrics

- temporal considerations (at a time or over time)