System Dynamics Modelling in NetLogo

the university of edinburgh informatics

Modelling of Systems for Sustainability INFR10088

System Dynamics Concepts

- Stocks modified each timestep by flows
- Flows rate of change
- Auxiliary variables used for intermediate calculations
- Links from Stocks and Auxiliaries to Flows to affect the flow
- Influence diagram with
 - Balancing (negative feedback) loops
 - Reinforcing (positive feedback) loops

Stocks and Flows

Feedback

Reinforcing Feedback Loop

Balancing Feedback Loop

Balancing and Reinforcing

Ecosystem energy flow

Population Dynamics simple: statement

• The population is represented by a single state variable (stock), whose dynamics depend on two flows: a reproduction inflow and a mortality outflow. Both occur at a rate proportional to population size.

Population Dynamics simple: components

- stock: population
- flows: births, deaths
- parameters: birthrate, deathrate
- Equations (for flows):
 - births = population x birthrate
 - deaths = population x deathrate
- initial conditions:
 - Initial population size
 - birthrate
 - deathrate

Population Dynamics simple: model

Simple Model in NetLogo

Population Dynamics declining fertility: statement

- The simple model is modified by making the reproductive rate per individual depend on population size, decreasing as population increases
- birthrate = $0.3 \times (1000 \text{population})/1000$
 - Now a variable!

Population Dynamics declining fertility: model

Declining Fertility in NetLogo

Population Dynamics competition: statement

• Two-species competition. Each population's growth rate is reduced as its population gets bigger (the *declining-fertility* model). When a competitor is present, then the growth of each population is further reduced by the other. The outcome depends on the relative strength of within- and between-species factors.

Population Dynamics competition: components

- Stocks: population1, population2
- Flows
 - each population as for *declining-fertility*
- Parameters
 - Additional parameters to reflect the increase in deaths due to the other species

Population Dynamics competition: model

Population Dynamics competition: suppression

Mathematical Formulation competition: statement and model

 $dX_{1}/dt = r_{1}.X_{1}.(1-b_{1}.X_{1}-c_{1}.X_{2})$ $dX_{2}/dt = r_{2}.X_{2}.(1-b_{2}.X_{2}-c_{2}.X_{1})$

 X_1, X_2 are the populations sizes of the two species; r_1, r_2 are the intrinsic rate sof increase of the two species; b_1, b_2 are the self-inhibition coefficients for the two species; c_1, c_2 are the competitor's inhibition coefficient for each species.

Lotka-Volterra equations

Competition in NetLogo

Predator-Prey Model

- Based on Simple Model
- Stocks: sheep, wolves
- Flows
 - Sheep births proportional to sheep population (birth-rate), deaths from wolves (predation-rate)
 - Wolf births proportional to fraction of sheep eaten (predator-efficiency), deaths by death-rate
- Parameters
 - Sheep birth rate, wolf death rate, predator-efficiency, predation-rate

When to use System Dynamics

- Group (as opposed to individual) behaviour is known
- Exploration of the influence of parts of the system on each other is a focus
- Often used for modelling:
 - Organisations and social structures
 - Ecosystems
 - Increasingly for economics

ODDs for System Dynamics Models

- Many features the same as for Agent Based (or any modelling framework)
- Entities: Stocks and Flows
- Variables: Auxiliaries
- Scheduling is only about discussion of the timestep used
- Should include an influence diagram labelling loops

Hybrid Agent-Based & System Dynamics Models

- Netlogo Predator-Prey comparison
- Socio-environmental systems (SES)

LIMNOSES hybrid AB+SD model

Limits to Growth World3

