Emergent phenomena and properties of dynamical models
So far...

The modelling cycle

Overview
Design concepts
Details

Real systems, e.g. Atlantic Meridional Overturning Circulation

Agent-based modelling...

...and system dynamics
Today...

- **Design concept**: Emergence
- **Model analysis**: Properties of dynamical systems
- **Some**:
 - Quantification of patterns
 - Exploration of parameter space
Overview - aims

• Overall aim (Course Learning Outcome 1):
 "explain how computational modelling frameworks can be used to understand the behaviours of complex interacting systems involved in sustainability such as social, economic and ecological systems"

• This lecture:
 • Emergent Phenomena
 • Properties of dynamical models
 • Example system
What do we mean by "emergent phenomena"?
What do we mean by emergence?

- OED: **emergence**. An unforeseen occurrence.
- OED: **emerge**. Come into being with the passage of events.
- Railsback & Grimm Chapter 8: **emerge**. "Arise in relatively complex and unpredictable ways"
- Cf **impose**: "forced to occur in direct and predictable ways"
- R&G **unpredictable**: "outcomes difficult or impossible to predict just by thinking"
- Explain things by simulation - "can you grow it?"
Qualitative criteria for emergence (Railsback and Grimm)

• It is not simply the sum of the properties of the model's individuals
• It is a different type of result than individual-level properties or decisions
• It cannot easily be predicted from the properties of the individuals
Butterfly corridors – a good example of emergence?

• It is not simply the sum of the properties of the model's individuals
 • Yes-lish – corridors are perhaps a bit more than a sum of butterfly locations

• It is a different type of result than individual-level properties or decisions
 • Yes

• It cannot easily be predicted from the properties of the individuals
 • We would probably expect more noise to give wider corridors – do they?
Quantifying corridor width

Corridor width =

(#patches visited)/(Mean path length of butterflies from start to end)
Butterfly corridor width as function of randomness

• Results of running an experiment using NetLOGO BehaviourSpace:
 • Parameter q varied in steps of 0.1
 • 10 replications for each value of q
 • Data exported and plotted using Python/Matplotlib/Seaborn
 • Mean and S.D. shown

• Corridor width increases with increasing randomness (decreasing q)
 • as expected, so perhaps not very emergent – but agent behaviour is very simple.
The ideal amount of emergence?

• Highly imposed results, not enough emergence
 • Too predictable

• Very complex model, complex emergent behaviours
 • Too difficult to understand and learn from

• Complex behaviours emerge from apparently simple rules
 • Just right!

• Crucial that the model is appropriate for question
A good example of emergence? - The NetLOGO flocking model

- It is not simply the sum of the properties of the model's individuals?
- It is a different type of result than individual-level properties or decisions?
- It cannot easily be predicted from the properties of the individuals?
Properties of dynamical systems
Deterministic dynamical system (system dynamics)

• System dynamics models are a special case of a mathematical dynamical system composed of differential equations

• Such systems have characteristic behaviours:
 • Steady state behaviour
 • Oscillating behaviour
 • For 3 stocks (state variables) or more, chaotic behaviour

• The same model can exhibit more than one behaviour depending on its parameter setting
Example 1: Fishing economy (Meadows Chapter 2, Fig 42)

- Renewable resource stock: fish
- Renewable capital stock: fishing boats
- Fish harvest proportional to capital and yield per unit capital
- Price gets higher when there is scarcity
- More profit => more capital => more harvest => bigger harvest => less resource
Aside: replication

Meadows, *Thinking in Systems*, p. 227

\[\text{profit} = (\text{price} \times \text{harvest}) - \text{capital} \]

price starts at 1.2 when yield per unit capital is high and rises to 10 as yield per unit capital falls. This is the same nonlinear relationship for price and yield as in the previous model.

Lesson: plot your functions before simulating
Some key functions
Parameter Search

- Increase the efficiency parameter from low to high using BehaviourSpace
- What happens?

- Note dynamic stability
Tipping point

• There is a control parameter that is gradually adjusted or changes
 • E.g. increasing efficiency

• At some value of the parameter the behaviour suddenly changes
 • E.g. an equilibrium point changes to a new value
 • Or the dynamical behaviour of the system changes

• In System Dynamics models "Tipping point" = "Bifurcation" in the field of dynamical systems
Phase planes

- Equilibrium points, or fixed points, corresponding to steady state solutions
- These equilibrium points can be stable or unstable
- Limit cycles, i.e. oscillations
Commercial break

Out now!

And in the library soon.
Stable fixed point

Sterratt, Graham, Gillies, Einevoll & Willshaw (2023), Principles of Computational Modelling in Neuroscience, CUP.
Starting from an unstable fixed point and going into a limit cycle

Sterratt, Graham, Gillies, Einevoll & Willshaw (2023), Principles of Computational Modelling in Neuroscience, CUP.
A saddle-node bifurcation

Sterratt, Graham, Gillies, Einevoll & Willshaw (2023), Principles of Computational Modelling in Neuroscience, CUP.
Hysteresis

• Just taking the control parameter back past the tipping point value doesn't put the system back into the old state
 • E.g. lowering current (in the previous case) might not immediately restore the old behaviour
• This behaviour is called **hysteresis loop**
Example 2: Atlantic Meridional Overturning Circulation

[Diagram of the Atlantic Meridional Overturning Circulation]

Surface Cooling
North Atlantic Current
North Atlantic Deep Water
Upwelling

Met Office Hadley Centre Climate Briefing Note
Example 2: Atlantic Meridional Overturning Circulation

- Stommel (1961) two-box model

Wikipedia article on Multiple equilibria in the Atlantic meridional overturning circulation
Bifurcation diagrams

Met office

Wikipedia article on Multiple equilibria in the Atlantic meridional overturning circulation
Summary

• **Design concept:** Emergence

• **Model analysis:** Properties of dynamical systems
 • Effect of changing parameter
 • Dynamical states
 • Bifurcations
 • Phase plots
 • Application to ecological-economic model and earth model

• **Some quantification of patterns and exploration of parameter space**

• **Next:**
 • Tutorial (Thursday): Paper mini-presentations
 • Lab (Thursday): Butterfly hilltopping model