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Today...

* Design concept: Emergence

* Model analysis: Properties of
dynamical systems

e Some:

* Quantification of patterns
* Exploration of parameter space
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Overview -aims

e Overall aim (Course Learning Outcome 1):
"explain how computational modelling frameworks can be used to
understand the behaviours of complex interacting systems involved in
sustainability such as social, economic and ecological systems"

* This lecture:
* Emergent Phenomena
* Properties of dynamical models
* Example system



What do we mean by "emergent
ohenomena'?



What do we mean by emergence?

 OED: emergence. An unforeseen occurrence.
 OED: emerge. Come into being with the passage of events.

* Railsback & Grimm Chapter 8: emerge. "Arise in relatively complex
and unpredictable ways"

» Cf impose: "forced to occur in direct and predictable ways"

* R&G unpredictable: "outcomes difficult or impossible to predict just
by thinking"

* Explain things by simulation - "can you grow it?"



Qualitative criteria for emergence (Railsback
and Grimm)

* It is not simply the sum of the properties of the model's individuals

* It is a different type of result than individual-level properties or
decisions

* It cannot easily be predicted from the properties of the individuals



Butterfly corridors —a good example of
emergence?

* |tis not simply the sum of the properties — E====i
of the model's individuals

* Yes-ish — corridors are perhaps a bit more |
than a sum of butterfly locations

* |tis a different type of result than
individual-level properties or decisions

* Yes

* |t cannot easily be predicted from the
properties of the individuals

* We would probably expect more noise to
give wider corridors — do they?

[H corridor-width
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Quantifying corridor width

Corridor width =
(#patches visited)/(Mean path length of butterflies from start to end)



Butterfly corridor width as function of
randomness

Corridor width vs. randomness

e Results of running an experiment
using NetLOGO BehaviourSpace: 1500 4 |
. . -
Parame.ter.q varied in steps of 0.1 2 1250 -
* 10 replications for each value of g =
e Data exported and plotted using = 1000 A
Python/Matplotlib/Seaborn ke
* Mean and S.D. shown s /507
O
* Corridor width increases with T 500 -
increasing randomness (decreasing q) < \\\
* as expected, so perhaps not very 250 7 -
emergent — but agent behaviour is very
simple. 0 ' '

0.0 0.5 1.0



The ideal amount of
emergence?

* Highly imposed results, not enough
emergence

* Too predictable

* Very complex model, complex
emergent behaviours
* Too difficult to understand and learn
from

* Complex behaviours emerge from
apparently simple rules

* Just right!

* Crucial that the model is
appropriate for question




A good example of emergence? - The
NetLOGOrockmg model

* It is not simply the sum of the
properties of the model's
individuals?

* It is a different type of result
than individual-level properties
or decisions?

* It cannot easily be predicted
from the properties of the
individuals?




Properties of dynamical systems



Deterministic dynamical system
(system dynamics)

e System dynamics models are a special case of a mathematical
dynamical system composed of differential equations

e Such systems have characteristic behaviours:

e Steady state behaviour
e Oscillating behaviour
* For 3 stocks (state variables) or more, chaotic behaviour

* The same model can exhibit more than one behaviour depending on
its parameter setting



Example 1: Fishing economy
(Meadows Chapter 2, Fig 42)

* Renewable resource stock: fish

* Renewable capital stock: fishing boats

growth_goal

* Fish harvest proportional to capital and
yield per unit capital

[ q
L:-:’ capital

. . . . rofit AN
* Price gets higher when there is scarcity p Lgpieietime
* More profit => more capital => more price
harvest => bigger harvest => less el er un_capital eieney
resource
>
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Aside: replication

Meadows, Thinking in Systems, p. 227

profit = (price X harvest) — capital

price starts at 1.2 when yield per unit capital is high and rises to 10 as yield
per unit capital falls. This is the same nonlinear relationship for price and

yield as in the previous model.
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Lesson: plot your functions before
simulating
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Parameter
Search

* Increase the efficiency
parameter from low to high
using BehaviourSpace

* What happens?

* Note dynamic stability
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Tipping point

* There is a control parameter that is gradually adjusted or changes
e E.g. increasing efficiency

e At some value of the parameter the behaviour suddenly changes
* E.g. an equilibrium point changes to a new value
e Or the dynamical behaviour of the system changes

* In System Dynamics models "Tipping point" = "Bifurcation" in the field
of dynamical systems



Phase planes
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Second Edition

Principles of

Computational
And in the library soon. MOdelllng |n, P
Neurosmen

David Sterratt
Bruce Graham
Andrew Gillies
Gaute Einevoll
David Willshaw

Commercial break




Stable fixed point
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Starting from an unstable fixed point and
going into a limit cycle
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A saddle-node bifurcation
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Hysteresis

e Just taking the control parameter back past the tipping point value
doesn't put the system back into the old state
* E.g. lowering current (in the previous case) might not immediately restore the
old behaviour

* This behaviour is called hysteresis loop



Example 2: Atlantic Meridional
Overturning Circulation

Surface Cooling

{ ) } =1 = North Atlantic Current W\
B¥ar e North Atlantic Deep Water o

I Upwelling

Met Office Hadley Centre Climate Briefing Note

https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/weather/learn-about/climate/ocean-and-cryosphere-report/srocc_amoc.pdf



Example 2: Atlantic Meridional Overturning
Circulation

e Stommel (1961) two-box model

T2 T,2 2

Surface flow

A 4

Thermohaline Convection with Two Stable Regimes of Flow
By HENRY STOMMEL, Pierce Hall, Harvard University, Massachusetts
(Manuscript received January 21, 1961)

Abstract

Free convection between two interconnected reservoirs, due to density differences main-
tained by heat and salt transfer to the reservoirs, is shown to occur sometimes in two different
stable regimes, and may possibly be analogous to certain features of the oseanic circulation.

The density of sea-water is modified while substance which permits transfer of heat and

N \aféhe suffacc l'>y1 two distinct processes:heating  salt in a simple linear fashion: s
R T NG EE S

v

Bottom flow

&
<

Low latitudes High latitudes

Wikipedia article on Multiple equilibriain the Atlantic
meridional overturning circulation



https://en.wikipedia.org/wiki/Multiple_equilibria_in_the_Atlantic_meridional_overturning_circulation
https://en.wikipedia.org/wiki/Multiple_equilibria_in_the_Atlantic_meridional_overturning_circulation

Bifurcation diagrams
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https://en.wikipedia.org/wiki/Multiple_equilibria_in_the_Atlantic_meridional_overturning_circulation
https://en.wikipedia.org/wiki/Multiple_equilibria_in_the_Atlantic_meridional_overturning_circulation

Summary

* Design concept: Emergence

 Model analysis: Properties of dynamical systems
e Effect of changing parameter
Dynamical states
Bifurcations
Phase plots
Application to ecological-economic model and earth model

* Some quantification of patterns and exploration of parameter space

* Next:
e Tutorial (Thursday): Paper mini-presentations
e Lab (Thursday): Butterfly hilltopping model
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