Modelling of Systems for Sustainability

Nigel Goddard
David Sterratt

New course – we will be looking for your feedback and suggestions
Overview of today’s lecture

• Introductory admin and schedule
• Motivation – why this is interesting
• Systems thinking and systems science
• Why computational modelling?
Online Materials

- https://opencourse.inf.ed.ac.uk/moss
 - All the course learning materials
 - Schedule, lectures, labs, tutorials, readings, etc

- Learn
 - Announcements
 - Piazza for discussions (see Tools->Piazza)
 - Coursework submission
 - Lecture recordings
Course structure in time

• Weeks 1-6: Concepts and modelling practice
 - 2 lectures (Mon/Wed), 1 discussion session (Fri)
 - 1 lab (Thu), 1 tutorial (Thu) – starting week 2

• Weeks 7-11: Group Project
 - Largely self-organised, with support
 - Modelling lab session (Thu)
 - Groups feedback/discussion (Fri)
Lecture Topics

- W1: Sustainability & systems thinking; computer modelling
- W2: Analysing systems and formulating a model; Agent Based modelling
- W3: System Dynamics modelling; model properties
- W4: Uncertainty, parameters, distributions; ecosystem models
- W5: Social system models; earth system models
- W6: Communicating about models; project setup and example
Labs and Tutorials

• Weekly starting Week 2, on Thursday

• 1-hour tutorials to go over detailed examples in smallish groups

• 2-hour labs to learn about and practice running, constructing and evaluating models.
Group Projects

- Weeks 7-11
- 4 students per group
- Interdisciplinary
- Start organising week 6
- Model and explore one or more systems relevant to sustainability
Assessment

• Coursework 1 (week 5, 50%)
 - Produce a design document for a published paper
 - Write a publicly accessible summary of the paper

• Coursework 2 (week 11, 50%)
 - Group project report co-written, individual attribution
 - Group project presentation/video
Motivation: Sustainability

- What is sustainability?
- An historical perspective
- Current situation and trajectory
- Goal: methods to understand interlinked system behaviour
Sustainability I: corporate ESG

• Environmental: preserve the natural environment over time, meeting present needs without compromising the availability of resources in the future.

• Social: inclusive societies, reduce inequality, and ensure long-term well-being for all people while preserving social cohesion and justice

• Governance: preserve and promote long-term economic well-being, balance between economic growth, resource efficiency, social equity and financial stability

• Goal: the organisation continues to thrive and grow
Sustainability III: Our Approach

- Systems underpinning human civilisation will continue to operate within ranges that permit civilisation to develop for the foreseeable future

- Includes (but not limited to):
 - Climate (atmosphere and ocean) systems
 - Ecosystems across the planet
 - Sociotechnical systems – energy, transport, medical, educational, political, economic, ...
Non-sustainability in history

• Collapse brought on by system failures
 - Greenland Norse
 - Roman empire
Collapse I: Greenland Norse

- Underlying cause: climate change + globalisation
- Settled ~900-1400, up to 5,000 people
- Climate cooled – farming, travel ↓
- Elephant ivory edged out walrus tusk
- Didn’t adapt

Globe graphic from Wikipedia here

Photo by Kumar Sriskanden
Collapse II: Western Roman empire

- Empire success based on **growth**
- Mediterranean-focused
- Systems
 - Military
 - Administrative
 - Agricultural
- Overwhelmed by complexity
Non-sustainability in history

• Collapse brought on by system failures
 - Greenland Norse
 - Roman empire

• Complex, interacting systems
Signs of unsustainability now

• Climate data (James Hansen)
• Climate tipping points
• Eco/social system stress
• Energy stress
Note that the time scale for the past century has been expanded. A logarithmic scale is used for CO$_2$ because climate forcing and temperature change increase with the logarithm of CO$_2$.

Slide from James Hansen presentation (2018)
More than half of the world’s largest cities are on the coastline.
Climate Tipping Points I

From Mckay et al., Science (2022)
Climate Tipping Points II

From Mckay et al., Science (2022)
Climate Tipping Points III

From Mckay et al, Science (2022)
Socio-economic trends

Earth system trends

Sustainability now: Energy

• We need to get off fossils fuels asap
 - Climate effects
 - Getting harder to access

• But: currently still critical for food system, transport system, heavy machinery, plastics, constructing a new energy infrastructure, and use still increasing.

• We don’t have good replacements
 - Energy dense
 - Storable
 - High temperature
 - Easily transportable
Five Horsemen of the Energy Transition
(from Michael Leibreich)

• Economic system - $130 trillion
• Electrical system - grid distribution upgrade
• Mining system – 5x; diesel needed?
• Political system – do voters care enough?
• Social system – powerful delayers?

We can do it, but it needs concerted, sustained effort.
Sustainable Systems

• Sustainability has been a problem in the past
• It looks like it’s a much bigger problem now
• Historical examples and current models show: slow changes in system parameters induces sudden changes in system behaviour
• Key word throughout: system
A system is more than the sum of its parts, in these ways:

1) Set of *processes* in structural and functional/purposeful hierarchies

2) Networks of *relations* amongst *components*

3) *Dynamic* over multiple temporal and organisational scales

4) Embedded in supersystems and composed of subsystems

5) Bounded according to the questions being asked

6) Can exhibit adaptability, resilience, goals, evolution
Example Systems

• AMOC
 - Atlantic Meridional Overturning Circulation

• Tree

• University
AMOC

From Grist
Set of processes in structural and functional/purposeful hierarchies

- **AMOC**
 - Heat transport
 - Ocean mixing

- **Tree**
 - Growth and propagation
 - Absorb carbon dioxide CO_2 and produce oxygen O_2

- **University**
 - Student education (teaching)
 - New knowledge (research)
Network of relations amongst components

• AMOC
 - Components: Bodies of water
 - Relations: Ocean mixing

• Tree
 - Components: roots, trunk, branches, leaves, flowers, cambium, bark, ...
 - Relations: water flow, nutrient flow, photosynthesis, structure, ...

• University
 - Components: students, academics, administrators, buildings, IT systems, policies
 - Relations: teaching, supporting, assessing, managing, using,...
Dynamic over multiple temporal and organisational scales

• AMOC
 - Temporal: Surface winds (d), upwelling (ky)
 - Organisational: up/downwelling (100m), inter-ocean transport (10000m)

• Tree
 - Temporal: daily, seasonal, annual, lifetime
 - Organisational: sub-cellular, cellular, leaf/flower/bud/twig, trunk/branches

• University
 - Temporal: day, week, semester, year, program
 - Organisational: tutorial group, class, research lab/institute, school, college, ...
Embedded in supersystems and composed of subsystems

• AMOC
 - Super: thermohaline, earth oceans/atmosphere, solar system
 - Sub: tropical and polar gyres, specific currents, ocean boundaries, ...

• Tree
 - Super: forest, region, continent, ...
 - Sub: cellular, root-exchange, photosynthesis, cambium, ...

• University
 - Super: community/city, education system, ...
 - Sub: teaching, research, administration, HR, finance, ...
Bounded according to the questions being asked

- **AMOC**
 - Hurricane formation: specific spatial focus, multi-year period
 - Climate change: worldwide focus, multi-decadal period

- **Tree**
 - Disease spread: single/small number of trees, seasonal
 - Climate change: forests/regions, decadal

- **University**
 - Research contribution: focus on research components/relations, decadal trends
 - Financial stability: whole-organisation, yearly
Can exhibit adaptability, resilience, goals, evolution

- **AMOC**
 - Bistable, heat/nutrient transport

- **Tree**
 - Grows towards light, fights pests/disease, reproduction, life stages

- **University**
 - Respond to challenges, mechanisms to cope with difficulties, mission statement, policy/structure revision
Why Computational Modelling I?

“The electrical energy system relies on generation by gas-fired power stations, wind-turbines and nuclear plant. Gas varies from 0-95%, wind from 0-95% and nuclear 5-10%, depending on weather and maintenance conditions.”
Why Computational Modelling II?