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Evolutionary Computation (EC)

1 Genetic algorithms: Solution of a problem in the form of
strings of numbers using recombination and mutation

we’ll come back to GAs soon
2 Genetic programming: Evolution (of the structure) of

computer programs
GP (next week)

3 Evolution strategies: Vectors of real numbers as
representations of solutions

this is what we are going to look at now
4 Evolutionary programming: For parametrised programs, i.e.

mainly parameters evolve, see also differentiable programming
together with GP and later

Search space: discrete (1, 2) or (in prinicple) continuous (3, 4)
Search space dimension: finite (1, 3) or (in prinicple) unbounded (2, 4)
Alphabet: numeric (1, 3), (numeric and) symbolic (2, 4)
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Evolution Strategies
Evolution with continuous representations

Problem-dependent continuous representation for search and
optimisation (what is a good representation?)
In contrast to simulated annealing, a population of solutions is
used
Individuals are vectors of real numbers which describe current
solutions of the problem
Selection by fitness from various “parent” sets
Mutation in continuous steps (similar to simulated annealing)
with adaptation of the mutation rate to account for different
scales and correlations of the components

1964: Ingo Rechenberg; Hans-Paul Schwefel
web.archive.org/web/20180422161252/http://www.bionik.tu-berlin.de/
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An early example of artificial evolution

Experimental contour
optimization of a
supersonic flashing flow
nozzle (1967-1969)
Hans-Paul Schwefel

Initial shape

Evolved shape

Klockgether, J.; Schwefel, H.P. (1970) Two-phase nozzle and hollow core jet experiments. Engineering
Aspects of Magnetohydrodynamics. (not available online, image credit: H.-P. Schwefel)
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Multidimensional Mutations in ES

Generation of offspring: x = m +N (0,C ), i.e. “directional” noise!

m stands for the vector (m1, . . . ,mL)> describing a parent

Matrix C describes preferred directions, e.g. one of the following:

C = diag(σ, ..., σ) for homogeneous uncorrelated mutations,
C = diag(σ1, ..., σL) for gene-dependent mutation rates or
C = (Cij) full covariance matrix for correlated mutations

C needs to be updated as well (after selection!), see next slide

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing, 2008.
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Correlation matrix adaptation (CMA)
(Used also in hybrid algorithms beyond ES)

Off-spring vectors for one parent m: xi := m + zi , zi ∼ N (0,C )

Select λ best individuals from the xi [i.e. (1, λ) - ES, see below]

New state vector by averaging: m′ := 1
λΣi selected xi to

Smoothen fitness fluctuations; alternatively: m′ = best (i.e. λ = 1)

Correlations among offspring: Ξ := 1
λΣi selected (xi −m′) (xi −m′)>

Update correlation matrix: C := (1− ε)C + εΞ (for λ ≥ 1)

Heuristic 1/5 rule: If less than 1/5 of the children are better than
their parents then decrease size of mutations, i.e. C := ρC , ρ < 1
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Nested Evolution Strategy∗

Hills are not independently distributed (hills of hills)
Find a local maximum as a start state
Generate 3 offspring populations (founder populations) that
then evolve in isolation
Local hill-climbing (if convergent: increase diversity of
offspring populations)
Select only highest
population
Walking process from
peak to peak within an
“ordered hill scenery”
named Meta-Evolution
Takes the role of crossover
in GA

web.archive.org/web/20180422161252/http://www.bionik.tu-berlin.de/
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Evolution strategies∗
Naming convention for variants

(µ, λ): From µ parents λ children (mutants) are generated.
Selection only from the set of the λ children
(µ+ λ): Same as above, but selection from the set of µ
parents plus λ children
(µ′, λ′(µ, λ)γ): Hierarchical (nested) variant: From µ′ parent
sub-populations, λ′ child-populations are generated. Then the
children are isolated for γ generations where each time λ
children are created (total population is λλ′) and µ are
selected. Then the best µ′ subpopulations are selected and
become parents for the new cycle of again γ generations
Analogous: (µ′+λ′(µ, λ)γ), (µ′+λ′(µ+λ)γ), (µ′, λ′(µ+λ)γ)

This convention can be adapted also for the algorithms that we will dis-
cuss during the next weeks. Try to remember the options, not the details.

Natural Computing 2024/25, week 3, Michael Herrmann, School of Informatics, University of Edinburgh



Evolution Strategies: Conclusion

Evolution Strategies create noisy versions of initial solutions
and select the best ones
What strategy (last slide) performs best is problem-dependent
The way the solutions are represented as vectors is crucial, but
a genetic encoding is not attempted here
More about encoding in the context of genetic algorithms, ...
next weeks.
Many variations of ES exist: Elitism, islands, adaptation of
parameters, ... to be discussed later as well
Recent overview: Z.H. Zhan et al. (2022) A survey on evolutionary com-
putation for complex continuous optimization. Artif. Intell. Rev. 55, 59-110.
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Swarm intelligence / Collective intelligence

Using “The whole is more than the sum of its parts” as a
motivation is agreeable, but it’s even less clear than natural
evaluation for GA
Mechanisms: Cooperation and competition self-organisation,
and communication
May show abilities that are not present in the individuals
(‘intelligence’)
“Super-organism” emerging from the interaction of individuals
Examples: Social animals (incl. ants), smart mobs, immune
system, biological neural networks, internet, swarm robotics

Beni, G., Wang, J.: Swarm Intelligence in Cellular Robotic Systems, Proc. NATO
Adv. Workshop on Robots and Biological Systems, Tuscany, Italy, 26–30/6 (1989)
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Swarm intelligence: Application areas

Biological and social
modelling
Movie effects
Dynamic optimisation

routing optimisation
structure optimisation
data mining, data
clustering

Organic computing
Swarm robotics

Dumb parts, properly connected into a swarm, yield smart results.
Kevin Kelly
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Swarms in robotics and biology

AI/Robotics
Main interest in pattern
synthesis

Self-organization
Self-reproduction
Self-healing
Self-configuration

Construction

Biology/Sociology
Main interest in pattern
analysis

Recognizing best pattern
Optimizing path
Minimal conditions
“what” as well as “why”

Modelling

This course: optimisation, computation, dynamical systems
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Complex behaviour from simple rules (Reynolds’ rules)

Rule 1: Separation
Avoid Collision with neighbouring
agents

Rule 2: Alignment
Match the velocity of neighbouring
agents

Rule 3: Cohesion
Stay near neighbouring agents

Craig W. Reynolds: Flocks, Herds and Schools: A distributed behavioral model, 1987
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Towards a computational principle

Evaluate present position (i.e. its fitness)
Compare it to own previous better positions and better ones
the among neighbouring agents
Keep moving, and imitate self and others

Hypothesis: There are two major sources of cognition,
namely, own experience and communication from others.

Leon Festinger, 1954/1999, Social Communication and Cognition
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The canonical PSO algorithm

Each particle xi ∈ Rm, i = 1, . . . , n represents a potential solution

Determine velocities based on own experience & good example

vi ,t+1 = ω vi ,t + α1 r1 ◦ (pi − xi ,t) + α2 r2 ◦ (g − xi ,t)

◦: component-wise multiplication
Using random vectors r1, r2 with components in U = [0, 1]

Update positions (i.e. time unit equals “1”)

xi ,t+1 ← xi ,t + vi ,t+1

Update fitnesses fi = f (xi ) for the new particle positions:
Update local bests (for a minimisation problem)
pi ← xi if f (xi ) < f (pi )
Update global best (for a minimisation problem)
g← xi if f (xi ) < f (g)
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Particle Swarm Optimisation

N particles at positions x1, . . . , xN with velocities v1, . . . , vN

vi ,t+1 = ωvi ,t + α1r1 ◦ (pi − xi ,t) + α2r2 ◦ (g − xi ,t)
xi ,t+1 = xi ,t + vi ,t+1 i = 1, . . . ,N
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Particle Swarm Optimisation

N particles at positions x1, . . . , xN with velocities v1, . . . , vN

vi ,t+1 = ωvi ,t + α1r1 ◦ (pi − xi ,t) + α2r2 ◦ (g − xi ,t)
xi ,t+1 = xi ,t + vi ,t+1
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PSO algorithm: Initialization

Objective function f : Rm → R

Number of particles n = 20 . . . 200

Particle positions xi ∈ Rm, i = 1 . . . n

Particle velocities vi ∈ Rm, i = 1 . . . n

Best so-far for each particle
(“simple nostalgia”)

x̂i

Global best
(“group norm”)1

ĝ

Parameters ω, α1, α2

1this can be the best solution present within the current swarm or the best
solution found by any particle so far. The former seems to make more sense,
but the latter usually works better.
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Particle Swarm Optimization (PSO)

Methods for finding optimal solutions of an objective function
Direct search, i.e. no explicit gradient
Simple and quasi-identical units
Can be used asynchronously, centralized control not needed
‘Medium’ number of units: ∼ 101 − 103 (practically 20 - 30)
Redundancy for reliability and convergence (should be small)
PSO is one of the computational algorithms in the field that is
“inspired” by swarm intelligence (another one is ACO)

J. Kennedy, and R. Eberhart, Particle swarm optimization, in Proc. IEEE. Int. Conf.
on Neural Networks, Piscataway, NJ, pp. 1942–1948, 1995.
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How does it work?

Exploitation occurs, if a new (better) position is found in the search
space, but also the particle dynamics shows both tendencies:

Exploratory behaviour: Search a broad region of space
Exploitative behaviour: Locally oriented search to approach
a (possibly local) optimum

Parameters to be chosen to properly balance between exploration
and exploitation, i.e. to avoid premature convergence to a local
optimum yet still ensure a good rate of convergence to the
optimum.
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Preliminary conclusions

The standard PSO is biologically inspired, but it perhaps more
similar to a physical system reminiscent of the 3-body problem
The local best introduces a (non-physical) force towards a past
state
Both bests have a similar effect as a gradient
For large values of α1 +α2 the behaviour is zig-zagging (which
is non-physical, but very good for exploration)
Values of ω ≈ 0 are usually not good, all other ω ∈ (−1, 1)
can be used, but ω > 0 can be more easily tuned
Particles do not interact with each other, except via the global
best (which changes often only initially)
The behaviour depends on the parameters α1, α2, and ω:
Larger values tend to imply less stability.
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PSO Applications

Evolving structure and weights of neural networks
Robot path planning, localisation
Electrical distribution systems under uncertainty in load
Automatic control systems, e.g. tuning PID control
Communication Systems: E.g. channel equalisation by PSO
designed ANN
Operations research: Real-time task assignment in
heterogeneous multiprocessor systems
Mechanical Engineering: Optimisation of composite structures
Sampling of probabilistic models

See: Zhang, Wang and Ji: A comprehensive review on PSO
algorithm and its applications, Math. Probl. Eng. 2015

(See also more recent more specialised reviews)
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The PSO algorithm: Initialisation

Initialize the particle positions and their velocities

x = lowerlimit + (upperlimit− lowerlimit)× rand(nparticles,mdimensions)

assert x .matrix == (nparticles,mdimensions)

v = zeros(x .matrix)

Initialize the global and local fitness to the worst possible

f g = −∞ (or ∞ for minimisation problem)

f pi = f g ∀i

Initialize parameters

ω = 0.7 (range 0.1 . . . 0.9)

α1 + α2 = 4 (range 1 . . . ≈5, usually both equal)

n = 25 (range 20 . . . 200, more for more complex problems)

max velocity (not larger than, typically 10-20% of the range of x)
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The PSO algorithm

initialise: g ∈ Rd , f g ∈ R, n ∈ N, α1, α2, ω ∈ R
∀i = 1, . . . , n : vi , xi , pi ∈ Rd , f pi ∈ R

loop: maximisation
fitness: Calculate ∀i : fi = fitness(xi ) (it’s actually a “cost”)

personal best: ∀i : if f pi < fi then pi = xi , f
p
i = fi

global best: ∀i : if f g < fi then g = xi , f g = fi

or (best ever): ∀i : if f g < f pi then g = xi , f g = f pi
update velocities: ∀i : vi = ωvi + α1[R] (pi − xi ) + α2[R] (g − xi )
update positions: ∀i : xi = xi + vi

check: terminate / continue

Note: Use each time a different realisation for random [R] ∈ [0, 1].
Update of x and v can be synchronous or asynchronous.
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Convergence

Failure: Swarm diverges or remains itinerant away from
optima
Optimally: Global best approaches global optimum
(swarm may still oscillate, even divergence would be tolerable)
Typically: Global best approaches a local optimum
(premature collapse of the swarm)

Convergence is not necessary (global or local bests remember
previous good solutions)
Convergence can be useful to search the space around a good
solution more carefully (a.k.a. “constriction”)
Alternatively, add a hill-climbing stage to the PSO algorithm
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How does it work: Solving the all-ones problem by PSO

Fitness: Distance to (1, 1, . . . , 1) ∈ RD , continuous search
space; shown is projection to two coordinates
Initialisation: Randomly near origin, N = 10 particles,
α1 = α2 = 2, ω = 0.6 (mildly convergent dynamics)

D = 2 D = 10 D = 100

Search seems to proceed with one (or a few) dimensions at a time,
which seems similar to mutations in GA.
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The axis bias in PSO

Observation: Particles can often be seen to stick to the coordinate
axes (if global optimum is at origin)

The noise terms r1 and r2 are ineffective if xi ,t coincides with p or g
in some of the dimensions, i.e. these subspaces cannot be further
explored.

This bias may be useful to obtain sparse solutions or building
blocks, but was not recognised when the PSO algorithm was new.

The axis bias exists only, if the algorithm is convergent, and
disappears for critical parameters.

For information on the axis bias see Spears, Green and Spears, IJSIR, 2010.
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How does it work? Exploration

Particles are attracted by the personal and global “bests”, but
for good exploration not just a bit.
Consider e.g. the term α2r2 ◦ (g − xi ,t)

includes a random number r2 ∼ U [0, 1] with mean 〈r2〉 = 1
2

for α2 = 4 (say α1 = ω = 0) the velocity averages to twice the
distance to g, so that the position tends to be reflected to the
other side of g, and the randomness guarantees exploration
any value α2 ∈ [0, 4) leads to convergence (with probability 1)

α1 and α2 have similar effect: Consider α = α1 + α2 (α2 > 0)
α = 4 is a critical parameter for a simplified algorithm (Clerc
& Kennedy, 2002).
For a more realistic theory the critical parameters are different,
α ≥ 4: stochastic convergence still possible (α1, α2, ω 6= 0),
but this depends also on runtime. (Erskine, Joyce, H., 2017)
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Additional features to control the swarm∗

Update of the global best:
synchronous: after all particles have moved
asynchronous: each time a particle finds a good solution
temporarily: only within generation (default is “best ever”)

Velocity control to counteract convergence/divergence
clamping: make sure all particles’ velocity components remain
in a certain range
control: add a term κ (v − vtarget) and reduce vtarget over time
“constriction” to force convergence before termination

Limited search space: Reflect particles when they hit the
boundary of the search space (see initialisation)
Detection of premature convergence: Add noise, increase
parameters, or restart

Note that in this way additional parameters are introduced!
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PSO variant with separation∗

Include a repulsive term

vi = ωvi + α1r1 ◦ (pi − xi ) + α2r2 ◦ (g − xi ) + α3Z

xi = xi + vi

with
Z = −

∑
k 6=i

r3 ◦ (xk − xi )
ε+ ‖xk − xi‖2

Typically, Z is small if particles are widely dispersed, but is large if
another particle gets close. For small ε, the dynamics can become
unstable. Usually, α3 > 0. What would happen for α3 < 0?

More terms can be added such as an alignment term, attraction to
other particles, velocity control, two different global best terms etc.
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Predator-Prey PSO∗

Two types of particles: “Predators” and “prey”
Predators are attracted to prey (or to the global-best particle)
Prey is repulsed by predators

Can take different roles in the exploration-exploitation dilemma

For details see Silva, Neves & Costa AICS, 2002
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Heterogeneous swarms∗ (“artificial chemistry”)

The complex dynamics of heterogeneous swarms is interesting
beyond the application in optimisation (i.e. no “bests” here but
attraction/repulsion w.r.t. other particles)
A swarm that consists of several species of interacting particles
can serve as a model for natural phenomena
Each species is characterised by different set of parameters and
interacts with particles from other species in a different way.

See Hiroki Sayama’s papers on artificial (swarm) chemistry.
Images form Erskine & Herrmann (2015) Artificial Life 21(4) 481-500.
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Innovative topologies∗

Specified by:
Mean degree
Degree distribution
Clustering
Heterogeneity
Small-world-ness
etc.
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Topology: Restricted competition/coordination∗

Topology: Restricted competition/coordination
Topology determines with whom to compare and thus how
solutions spread through the population
gbest is determined only among neighbours; pbest as usual
Global version is faster but might converge to local optimum
for some problems.
Local version is a somewhat slower, not easily trapped into
local optimum.
Combination: Use global version to get rough estimate. Then
use local version to refine the search.
For some topologies analogous to islands in GA
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Fully Informed Particle Swarm (FIPS)∗

Rui Mendes et al. (2004): “Simpler, maybe better”
Distribute total φ across neighbours using weights W(k)
which are chosen according to quality

All neighbours contribute to
the velocity adjustment
Best neighbour is not selected,
all contribute with prob. pm
Individual m itself is not
included in its own
neighbourhood Nm

rk = U

[
0,

rmax
|N |

]
∀k ∈ N

U equi-distr. random vector
w ∈ R|N| weight vector:
swarm follows weighted
average rather than best

Pm =

∑
k∈N wk rk ◦ x̂k∑

k∈N wk rk
w can be constant or fitness-dependent
Fails quite often, but results are, if successful, good (strongly
dependent on good topology)

Mendes, R., Kennedy, J. Neves, J., 2004. The fully informed particle swarm: Simpler, maybe better.
IEEE TA Evol. Comput. 8(3), 204-210.
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Parameters, Conditions, & Tweaks∗

Initialization methods
Population topology (e.g. “tribes”)
Variable population size:
Births, deaths, migration
Adaptive parameters
Population diameter
Limiting domain (XMAX, VMAX)
(e.g. reflection from walls)
Multiobjective optimization
“Subvector” techniques
Norms other than Euclidean
Comparison over problem spaces

Eberhart, Y Shi, J
Kennedy (2001)
Swarm Intelligence.
Morgan Kaufmann.

Hybrids, see e.g. differential evolution (DE)
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Conclusion: Why is PSO interesting?

Attraction to better states is similar to a gradient.
Axis bias could support a mechanism similar to building blocks
in GA, especially for non-trivial topologies.
Velocities incorporate the current knowledge about the
problem (similar to CMA?)
Dynamics is non-trivial: A particle can be unstable, if it is the
best, i.e. if p = g, but stable, if p 6= g. This means that the
currently best particle moves on, while g memorises its state,
and the other particles continue with their local search.
PSO seems to be a prototype for the majority of existing MHO
algorithms (just replace a term or add another term)
650,000 papers∗ referring to PSO can’t all be wrong.

∗Google Scholar

Natural Computing 2024/25, week 3, Michael Herrmann, School of Informatics, University of Edinburgh


