
Course: Natural Computing

*3. Computational and Statistical Aspects
of Natural Computing

J. Michael Herrmann
School of Informatics, University of Edinburgh

michael.herrmann@ed.ac.uk, +44 131 6 517177



Problem solving

How to find a good solution to a given problem?

Direct calculation,
straight-forward recipe

Solution by analogy, generalisation

Iterative solution, continuous
improvement

Cartesian method: Divide and
conquer

Heuristics and meta-heuristic
algorithms

Trial and error, random guessing

specific, exact, reliable

⇑

⇓

general, sufficing, sloppy

Natural Computing 2024/25, week *3, Michael Herrmann, School of Informatics, University of Edinburgh



General problem solving

Utility is measurable, and risk affects utility (Milton Friedman,
1948)

Utility theorem: If a utility satisfies a set of axioms, then this
utility can be expressed by a function (John von Neumann and
Oskar Morgenstern, 1945)

Utility hypothesis: Every problem can be encoded by a utility
function whose maxima are the admissible solutions (see e.g.
Sutton and Barto, 1999, 2017)

We will not discuss here whether the latter is true,
but will assume instead that we have already an
objective function or are able to construct one.

see also: D. Silver e.a. (2021) Reward is enough. Artif. Intell. 103535

Natural Computing 2024/25, week *3, Michael Herrmann, School of Informatics, University of Edinburgh



Problem Solving as Minimisation of a Cost Function

Choosing the best option from some set of available alternatives

Minimise energy, time, cost, risk, . . .

Maximise gains, acceptance, turnover, . . .

Averaging may be necessary (over what timescale?)

Environmental dynamics may have effects as well

Discrete cost (incorporating constraints):

admissible state: maximal gain
anything else: no gain

Secondary costs for:

acquisition of domain knowledge, modelling, determining costs
testing alternatives
doing nothing

Natural Computing 2024/25, week *3, Michael Herrmann, School of Informatics, University of Edinburgh



Problem Solving as Optimisation of an Objective Function

Objective function∗:

Cost (min)

Energy (min)

Risk (min)

Quality (max)

Fitness (max)

May be analytical, observational, relative, qualitative, compositional

∗Note of caution:

We will sometimes aim at minimisation, sometimes at maximisation, sometimes
we will speak of optimisation or the search for the best solution. It will usually
be clear from context whether high or low values are to be preferred.

Natural Computing 2024/25, week *3, Michael Herrmann, School of Informatics, University of Edinburgh



Problem Solving as Minimisation of a Cost Function

Example: Evolution of a walking machine

Cost = +α × weight

−β × speed

− γ × (number of steps before falling over)

+ δ × (energy consumed)

− ε × (measure of similarity to human gait)

Costs → fitness function (low costs = high fitness)
can be calculated for each candidate solution

Use a set (population) of candidate solutions

Evolution scheme for the candidate solutions to produce more
of the good ones and discover better ones

For different choices of α, β, γ, δ, ε the optimal solutions will
be different

Natural Computing 2024/25, week *3, Michael Herrmann, School of Informatics, University of Edinburgh



Meta-heuristic algorithms

Similar to stochastic optimisation

Iteratively trying to improve a possibly large set of candidate
solutions

Few or no assumptions about the problem (need to know what
is a good solution)

Usually finds good rather than optimal solutions

Adaptable by a number of adjustable parameters

On-line identification of the structural elements that can be
composed into candidate solutions

General problem: more “greedy” or more “rambling”?
Exploitation or exploration?

http://en.wikipedia.org/wiki/Metaheuristic

Natural Computing 2024/25, week *3, Michael Herrmann, School of Informatics, University of Edinburgh



A Selection of Topics from Natural Computation

Themes

Evolutionary Computation

Artificial immune systems

Neural computation

Amorphous computing

Swarm intelligence

Harmony search

Cellular automata

Artificial life

Membrane computing

Molecular computing

Quantum computing

Methods

Genetic algorithms

Genetic programming

Gravitational search

Central force optimisation

Particle swarm optimisation

Evolutionary algorithms

Spiral dynamics algorithm

Chemical reaction optimisation

Artificial physics optimisation

Ant colony optimisation

Differential Evolution

Natural Computing 2024/25, week *3, Michael Herrmann, School of Informatics, University of Edinburgh



Comparison of GA, PSO and ACO
GA ACO EA PSO DE

search space discrete discrete continuous continuous continuous

repre-

sentation

strings pheromone

trail

positions positions and

velocities

positions and

differences

stochasticity stoch. op-

erators

sampling a

distribution

random

mutations

modulation of

two forces

modulation

of one force

timing of

interaction

across

generations

across

generations

n.a. when new best

was found

across

generations

interaction by crossover pheromone none forces to bests differences

evolutionary

drive

selection evaporation selection update of

bests

acceptance

distribution

of solu-

tions

repres. by

population

explicit: pro-

bability rule

explicit by

mutations

represented by

population

represented

by population

parameters pm , pc ρ, α, β, N C , λ, µ α1, α2, ω, N F , p, N

build.blocks schemas none none [sparse] [differences]

Similarities: population-based (SA, HC aren’t), stochastic, termination, can
degenerate, hybridisable, inexact, global optimisation, ...
Natural Computing 2024/25, week *3, Michael Herrmann, School of Informatics, University of Edinburgh



Introduction

Literature on metaheuristic algorithms is largely organised by
algorithm or groups of algorithms, rather than by similarities of
features and challenges across algorithms

Problem-dependent details of the implementation and tricks of
the trade are not easy to learn (and not easy to teach, sorry).

For simple Matlab programs see Xin-She Yang’s book, see also
chapter 5 in Mitchell and E. Talbi (2009) Metaheuristics:
From design to implementation.

In this unit, we will ask

Which metaheuristic algorithm (MHO) to use for a given
problem?
How to test a MHO algorithm using benchmark problems and
scaling analysis?
How to determine parameter values?

Natural Computing 2024/25, week *3, Michael Herrmann, School of Informatics, University of Edinburgh



For what problems should I use metaheuristics?

A typical case for metaheuristics is due to costly fitness evaluations,
i.e. when a good solution is to be found with few fitness evaluations
(FEs)

Gradients require several FEs at nearby points (with noise: at
many points)

A model can help reducing fitness evaluations (e.g. a linear
model can be fitted from a few points),

however the model may not fit well

MHO algorithms are also “models”, but their properties are
often obscure

Population-based algorithms often have redundancies

Natural Computing 2024/25, week *3, Michael Herrmann, School of Informatics, University of Edinburgh



For what problems should I use metaheuristics?

There are other indications for the use of MHO algorithms:

If no exact, efficient algorithm is available

In case of discontinuous, nonlinear, ill-conditioned, noisy,
multimodal, nonsmooth, nonseparable problems or problem
with complex constraints, i.e. where gradients do not work in
practice.

... or if gradients can be adapted to work, but this requires
problem-specific knowledge that is not available

Optimisation by simulation. Black-box functions (Note that
Monte-Carlo is in principle also a metaheuristics)

Support of exact methods or as meta-optimiser: Setting up
parameter for other algorithms, e.g. to find the structure of a
neural network

see E. Talbi (2009) Metaheuristics: From design to implementation.

Natural Computing 2024/25, week *3, Michael Herrmann, School of Informatics, University of Edinburgh



Examples of problem cases for MHO

AI, agent-based systems, planning (“Potato-in-the-exhaust”)

In linear programming for an n × n assignment problem, with
2n linear and n2 nonnegativity constraints, the search polytope
has n! vertices.

Gradient descent may fail for strongly heterogeneous
parameters (Natural gradient may help but has a cost).

see E. Talbi (2009) Metaheuristics: From design to implementation.

Natural Computing 2024/25, week *3, Michael Herrmann, School of Informatics, University of Edinburgh



Before deciding about an MHO, ask: What is the goal?

Solve a problem (this is the typical case)

knowing enough about the problem to know when it is solved
or to have an intuition that improvements are possible
not knowing whether the problem is solvable or the existing
solution is improvable at all

Study a (biological) system by reproducing it function in a
computational system

Design a new algorithm

Finish coursework

Study an existing algorithm to uncover its function

Win an optimisation competition

Natural Computing 2024/25, week *3, Michael Herrmann, School of Informatics, University of Edinburgh



Which metaheuristic algorithm to use?

General answer: The choice of algorithm is justified by performance.

What is known about the
problem?

discrete or continuous

multi-modal

noisy

heterogeneous

many local optima

...

What effort to be spent?

creating a new algorithm

adapting an existing
algorithm

parameter adaptation

hybridise algorithm

many FEs

...

Natural Computing 2024/25, week *3, Michael Herrmann, School of Informatics, University of Edinburgh



Properties of representations

Not all of the following properties are required, but MHO
algorithms work better if they are present at least to some extent.

Completeness: The representation must not exclude any solutions
associated with the problem. Note that larger search spaces almost
always lead to higher complexity

Connexity: A search path must exist between any two solutions of
the search space. Note that it is still possible that the algorithm
assigns a very low probability to the path to the global optimum

Efficiency: The time and space complexities of the operators must
be low. Note that this can be guaranteed only if the problem is very
well understood

Topography: Similar solutions should be represented by similar
representations, i.e. the metrics in the solution space (target space)
should be compatible with the representational space

Compositionality: Parts of the solution should correspond to parts
of the representation

see E. Talbi (2009) Metaheuristics: From design to implementation.

Natural Computing 2024/25, week *3, Michael Herrmann, School of Informatics, University of Edinburgh



How to deal with constraints?

Reject produced by the algorithm if constraints are violated

Repair or edit solutions (by a local heuristics), choose
operators that transform admissible solutions into admissible
solutions

Penalise violations

number of violated constraints
repairing cost

Adaptive strategies: at first penalise, later reject

Check also about hard and soft constraints

Discreteness can be seen as a constraint in a continuous
algorithm

see E. Talbi (2009) Metaheuristics: From design to implementation.

Natural Computing 2024/25, week *3, Michael Herrmann, School of Informatics, University of Edinburgh



How to test a MHO algorithm using benchmark problems?

Benchmarks: Fitness at global optimum usually known

Which benchmark problems to use?

For comparison and thorough test, use the same and the same
number of problems that were used in the work you are
comparing to

During design of the algorithm, use problems that seems to be
beneficial to learn more about the approach. Continue to
serious testing later.

Natural Computing 2024/25, week *3, Michael Herrmann, School of Informatics, University of Edinburgh



CEC benchmark problems

Identical optimum (“0”) and domain of the functions:
[−100, 100]d

Dimensionality can be chosen d = 2, 5, 10, 50

Random shifts and rotation

Limited number of fitness evaluations (20,000 FEs)

Liang, J. J. et al. Problem definitions and evaluation criteria for the CEC 2013.
Nanyang TU, Singapore, Technical Report. (see also CEC 2014 and CEC 2015)

Natural Computing 2024/25, week *3, Michael Herrmann, School of Informatics, University of Edinburgh



Evaluation at CEC

Record fitness after
(0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0)*MaxFEs

Present the best, worst, mean, median and standard deviation
values of function error values for 51 runs

Round results in a reasonable way; error values smaller than
10−8 are taken as zero

Include information about

Parameters the were adjusted incl. dynamic ranges
how the parameters were adjusted
Estimated cost of parameter tuning in terms of number of FEs
Actual parameter values used

Liang, J. J. et al. Problem definitions and evaluation criteria
for the CEC 2013. Nanyang TU, Singapore, Technical Report.

Natural Computing 2024/25, week *3, Michael Herrmann, School of Informatics, University of Edinburgh



How does the performance depend on the parameters?

What is a parameter? Sometimes the dynamical variables of
the algorithm are called parameters, namely the parameters
that estimate the solution, then the “parameters” of the
algorithm are called hyperparameters

Good algorithms have lower parameter sensitivity, but scaling
of the problem usually increases parameter sensitivity

Parameter values can often be interred by theory (but note
that theories make assumptions that may not be valid in
practical cases)

Perform parameter scans

there are usually few main parameters
help to understand the algorithm
may be replaced by higher-order search algorithm
(hyperheuristics)

Natural Computing 2024/25, week *3, Michael Herrmann, School of Informatics, University of Edinburgh



Presentation of MHO results

Use commonly used benchmarks

Show execution times (on a specific machine) and number of
executions

Show convergence behaviour

Include comparisons with other methods

Show, both for objective function and runtime, best and worst
results, the average and the standard deviation, and the
median

Include a statistical test that the main hypotheses are valid (or
that the hypothesis can be rejected that your algorithm is
indistinguishable from a competitor)

Make your source code available

Osaba et al. (2016) Good Practice Proposal for the Implementation, Presentation,
and Comparison of Metaheuristics for Solving Routing Problems

Natural Computing 2024/25, week *3, Michael Herrmann, School of Informatics, University of Edinburgh



Termination

External criteria:

Prescribed termination criterion, e.g. if

error acceptable in application
significantly better than competing method

Limited runtime on a given machine, e.g. results needed
overnight

Limited number of fitness evaluations, e.g. if cost involved

Limited number of generations or iteration step

Intrinsic criteria: continuation, restart or parameter adaptation can
be advisable:

Saturation (fitness stopped to improve (maybe plateau?))

Stagnation (collapse, degeneration, loss of diversity)

Divergence (numerical, all particles outside search space, or,
for individuals of variable complexity, by “bloat”)

Natural Computing 2024/25, week *3, Michael Herrmann, School of Informatics, University of Edinburgh



How to estimate required runtime?

Many algorithms find the globally optimal solution with
probability 1 in exponential time. E.g. SA with t > 0, ACO
with τmin > 0 or GA with pm > 0.

There is no general non-exponential upper bound known for
the run-time for NP-complete problems

For lower bounds on the runtime, check whether there are
enough iterations that every bit can be expected to be
mutated at least a few times or that the particles are able to
move to every place in the search space

Practically, check whether

innovations (fitness improvements) still occur
restarts lead to similar results for the same runtime
balance between exploration and exploitation is kept (or
suitably shifted from exploration to exploitation)

Natural Computing 2024/25, week *3, Michael Herrmann, School of Informatics, University of Edinburgh



How to evaluate the results statistically?

Possible outcomes (assuming global optimum is known)

finds global optimum

how often within multiple runs
after what run time / FE / iterations

finds fitness value off global optimum

average, std. dev.
metrics
dealing with errors (median)

no result (fails, diverges, inadmissible result, ...)

Natural Computing 2024/25, week *3, Michael Herrmann, School of Informatics, University of Edinburgh



Mean or best result on a number of runs?

mean ± standard deviation is the representation of choice

mean − standard deviation can be negative even for a positive
random variable: use one-sided std. dev.

best result over a number of runs is

overly optimistic
probably not robust
may be an outlier

variance or even mean may not exist (e.g. for certain
probability distributions) or does not make sense, e.g., if for
some random initialisations the algorithm diverges while it
performs well for others). Often the median can be used
instead.

Best result can be useful in applications, if sufficiently robust

Birattari & Dorigo (2007) How to assess and report the performance of a
stochastic algorithm on a benchmark problem: mean or best result on a
number of runs? Optimization Letters 1:309–311.

Natural Computing 2024/25, week *3, Michael Herrmann, School of Informatics, University of Edinburgh



Hypothesis testing

E.g. your hypothesis is
Algorithm A1 is better than algorithm A2 on problem set {Pi}
under the condition that both algorithms are optimally
adapted to the problem set.

Perform many runs with both algorithms, calculate standard
deviation and check by how many standard deviations the
mean performances differ

Consider also to use statistical tests (p values, F test)

Natural Computing 2024/25, week *3, Michael Herrmann, School of Informatics, University of Edinburgh



Scaling analysis

Distinguish between different forms of scaling

Scaling of performance with problems size or dimensionality
(complexity)

Scaling w.r.t. to termination criterion (precision)

Scaling of population (populations often quite small)

Warning: MHO algorithms sometimes scale irregularly, i.e. they
may scale well for medium problem sizes, but are exponential at
larger sizes (for exponential or NP-complete problems)

Natural Computing 2024/25, week *3, Michael Herrmann, School of Informatics, University of Edinburgh



Parallel implementation

Cooperative multiple search threads lead to more robust and
more effective implementations
Population-based MHO algorithms are usually easily parallelis
able. Almost linear speed-up possible if fitness evaluations are
time-consuming, if algorithms are often restarted, parameters
are scanned, or obviously for statistical evaluation. In some
cases, the algorithms have to be modified to speed-up almost
linearly, e.g.:

Interestingly, first attempt on parallelisation were made on SA,
where either partitions (e.g. in a TSP) were considered or a
multiple-walk strategy was introduced: after an number of
parallel steps a winner is taken from which all processes then
continue
Also ACO is not trivially parallelisable because only one
pheromone trail exists, but also here delay global updates of
the pheromone can be delayed for a few steps.

Recently, GPU-based algorithms have been tested.

Cung et al (2001) Strategies for the parallel implementation of
metaheuristics.

Natural Computing 2024/25, week *3, Michael Herrmann, School of Informatics, University of Edinburgh



Parallel Models for Metaheuristics

Modes of parallelisation

Solution-based: parallelisation w.r.t. dimensions of the search
space

Iteration-Level: delayed synchronisation, island algorithm

Algorithm-based: Hyper-heuristic that chooses among several
metaheuristics of among several versions of one metaheuristic

Natural Computing 2024/25, week *3, Michael Herrmann, School of Informatics, University of Edinburgh



Hyperheuristics/Memetic algorithms

Cooperation and coevolution of different metaheuristics, e.g.

exploration (e.g. PSO)
exploitation (e.g. SA)
guiding, monitoring (e.g. Taboo search)
controlling (parameter adaptation by higher-order MHO)
adaptation (coordination of the components)

Requires some effort and includes many design decisions which
will be more efficient if based on domain-knowledge.

Natural Computing 2024/25, week *3, Michael Herrmann, School of Informatics, University of Edinburgh



Conclusion

Also in MHO, best results can be expected if domain
knowledge or problem-specific knowledge is available

In other cases, it is still possible to obtain good results with
some effort on

efficient representation
algorithm selection
parameter selection
statistical evaluation

There are attempts in current MH research to construct
algorithms that adapt or select algorithms for given problems

Later in this course, we will return to many of the aspects
mentioned in this unit

Natural Computing 2024/25, week *3, Michael Herrmann, School of Informatics, University of Edinburgh



Final question ;-)

Why do MHO algorithms have funny animal names?

Mathematicians try not to leave traces, i.e. their results tend
to be exactly correct, but it is rarely clear how one would come
up with the idea. Now, if a method is not exactly exact, then
the inspiration appears like a good excuse

As the animal behaviour seems obvious, the end-users may fall
prey to the illusion that they understand essentially (although
actually merely metaphorically) the workings of the algorithm

Historical reason: It started all with evolutionary and genetic
algorithms, which set an early connection to the animal
kingdom

Animal names are mnemotechnically preferable to complex
acronyms: e.g. “

(

λk , µk
)n

− ACO/DE − BFGS” vs.
kitten algorithm (inspired by kitten playing with balls of wool)

Natural Computing 2024/25, week *3, Michael Herrmann, School of Informatics, University of Edinburgh


