
Course: Natural Computing
4. Genetic Programming

J. Michael Herrmann
School of Informatics, University of Edinburgh

michael.herrmann@ed.ac.uk, +44 131 6 517177



Genetic and evolutionary algorithms

Encoding Operators Tasks

GA Binary strings Mutation, crossover Optimisation
search

GP Trees As above and additional
operators

Computer programs
with genuine fitness

ES Problems with real-
valued parameters

Mutation, adaptive
mutation rates, CMA

Optimisation
search

EP Real-valued vectors As above and additional
operators, gradients

Parametrised
computer programs

Natural Computing 2024/25, week 4, Michael Herrmann, School of Informatics, University of Edinburgh



Genetic Programming

A biological genome is actually a program to produce an
individual, rather than a direct encoding of the individual.
Programs that realise the same function can differ in structure,
efficiency, style etc.
Syntactic rules for programs can help to restrict the complexity
of the vast search space.
Programs run on computers, i.e., fitness evaluation can be
relatively cheap.
Some types of programs can be more easily evolved than
others. Success may depend also on the progamming language.

Natural Computing 2024/25, week 4, Michael Herrmann, School of Informatics, University of Edinburgh



Genetic Programming

Genetic programming now routinely delivers high-return
human-competitive machine intelligence.
Genetic programming is an automated invention machine.
Genetic programming can automatically create a general
solution to a problem in the form of a parametrised topology.
Computer programs are the lingua franca for expressing the
solutions to a wide variety of problems

Statements by John R. Koza et al. (2003)

Natural Computing 2024/25, week 4, Michael Herrmann, School of Informatics, University of Edinburgh



Genetic Programming (GP)

Evolutionary algorithm-based
methodology inspired by biological
evolution
Finds computer programs that perform a
user-defined task
Similar to genetic algorithms (GA), but in
GPs each individual is a computer
program represented by a tree∗

Optimise a population of computer
programs according to a fitness landscape
determined by a program’s ability to
perform a given computational task.
Evolution of programs is generally
open-ended: The search space cannot be
exhausted because GPs do not usually use
fixed-length encoding.

∗works better in some
languages than in others

Natural Computing 2024/25, week 4, Michael Herrmann, School of Informatics, University of Edinburgh



Evolving Programs

Let P(0) be a population of randomly generated programs pi
For each pi , run it on some input and see what it does. Rate it
for fitness based on how well it does.
Breed the fitter members of P(0) to produce P(1)
If happy with the behaviour of the best program produced then
stop.
. . . but how?

See: Riccardo Poli, William B. Langdon, Nicholas F. McPhee (2008) A
Field Guide to Genetic Programming (http://www.gp-field-guide.org.uk)

Natural Computing 2024/25, week 4, Michael Herrmann, School of Informatics, University of Edinburgh



How?

What language should the candidate programs be expressed in?
C, Python, Java, Pascal, Perl, Lisp, Machine code?
How can you generate an initial population?
How can you run programs safely? Consider errors, infinite
loops, etc.?
How can you rate a program for fitness?
Given two selected programs, how can they be bred to create
offspring?
What about subroutines, procedures, data types,
encapsulation, etc.?
What about small, efficient programs?

Natural Computing 2024/25, week 4, Michael Herrmann, School of Informatics, University of Edinburgh



Koza: Evolving LISP programs

Lisp as a functional
language

f (x , y) is written as (f x y)
10− (3+ 4) is written as (− 10 (+ 3 4))

Lisp programs can be represented as trees

f (x) = x2 + 3
f (x) = (+ (∗ x x) 3)
Here, + and ∗ are function
symbols (non-terminals) of
arity, x and 3 are terminals.
Given a random bag of
terminals and non-terminals,
we can make programs.

(Peter Seibel: Practical Common Lisp, 2004)

Natural Computing 2024/25, week 4, Michael Herrmann, School of Informatics, University of Edinburgh



Random Programs and Closure

If we generate a random program:
How can we avoid an error?

Another random program
How can we evaluate this?

All function calls need to return a result

Closure: E.g. redefine division by zero to return FLT_MAX or
zero; Overload operators to deal with variable numbers of
arguments

Sufficiency: Set of nonterminals need to be sufficiently large,
terminals need to be defined (if not given by data)

Natural Computing 2024/25, week 4, Michael Herrmann, School of Informatics, University of Edinburgh



Grammar-Based Constraints
Typing or grammar-based approaches help to achieve closure

R. Poli et al. A Field Guide to Genetic Programming (2008)

Natural Computing 2024/25, week 4, Michael Herrmann, School of Informatics, University of Edinburgh



How do we rate a program for fitness?
Answer: Run it on some “typical” input data for which we know
what the output should be (Fitness cases). The hope is the evolved
program will work for all other cases (use crossvalidation!!).

Example: Symbolic regression on
planetary orbits (Kepler’s law). Given
a set of values of independent and
dependent variables, come up with a
function that gives the values of the
dependent variables in terms of the
values of the independent variables.

Planet A P

Mercury 0.39 0.24

Venus 0.72 0.61

Earth 1.00 1.00

Mars 1.52 1.84

Jupiter 5.20 11.9

Saturn 9.53 29.4

Uranus 19.1 83.5

Neptune 30.1 165

Kepler’s third law: Square of the period P of the planet
proportional to cube of semimajor axis A, i.e. P = A3/2.

Natural Computing 2024/25, week 4, Michael Herrmann, School of Informatics, University of Edinburgh



Fitness Function
Given a number of example pairs (xj , yj) of data vectors xj and
desired outputs yj , we could use the deviations of the generated
program for an evaluation:

Eraw =
∑
j

‖GP (xj)− yj‖2

For a fitness function we could adjust

Fadj =
1

1+ Eraw

and normalise (or rank)

Fnorm (i) =
Fadj (i)∑
k Fadj (k)

... so most fit indiviudal has fitness ≤1, least fit one has a fitness
≥ 0 (i , k denote individuals, and j counts the fitness cases)
Natural Computing 2024/25, week 4, Michael Herrmann, School of Informatics, University of Edinburgh



Crossover

How can we cross programs? Subtree crossover
Koza’s orginal (1988-92) GP system used only crossover, to try to demonstrate
that GP is “more than a mutation”.

Natural Computing 2024/25, week 4, Michael Herrmann, School of Informatics, University of Edinburgh



Mutation

How can we mutate a
program?
Lots of other forms of
mutation are possible, e.g.
hoist, shrink

shrink: replace a subtree
by one of its terminals
hoist: use only a subtree
as a mutant

subtree or “grow”-mutation

or: vary numbers, exchange symbols, exchange subtrees, . . .

Natural Computing 2024/25, week 4, Michael Herrmann, School of Informatics, University of Edinburgh



GP Algorithm

1 Choose a set of functions and terminals for the program you
want to evolve:

non-terminals e.g.: if, /,* , +, −, sqrt, <, >. . .
terminals e.g.: x , y , −10, −9, . . . , 9, 10

2 Generate an initial random population of trees of maximum
depth d

3 Calculate the fitness of each program in the population using
the chosen fitness cases.

4 Apply selection, subtree crossover (and subtree mutation) to
form a new population.

Example parameter values:
Population size = 10000
Crossover rate = 0.9

Selection: Fitness proportional

Natural Computing 2024/25, week 4, Michael Herrmann, School of Informatics, University of Edinburgh



Genetic programming: Examples
Natural Computing (week 4)

J. Michael Herrmann
School of Informatics, University of Edinburgh
michael.herrmann@ed.ac.uk, +44 131 6 517177



Genetic Programming: General Points

Sufficiency of the representation: Appropriate choice of
non-terminals
Variables: Terminals (variables) implied by the problem
Closure: Typed algorithms, grammar based encoding
Program structure: Terminals also for auxiliary variables or
pointers to (automatically defined) functions
Expect multiple runs (each with a population of solutions)
Local search: Terminals (numbers) can often be found by
hill-climbing
Fitness: From fitness cases using crossvalidation (e.g. for
symbolic regression)
Tree-related operators: Shrink, hoist, grow (in addition to
standard mutation and crossover)

Natural Computing 2024/25, week 4, Michael Herrmann, School of Informatics, University of Edinburgh



Genetic programming: Control parameters

Representation and fitness function
Population size (thousands or millions of individuals)
Probabilities of applying genetic operators

reproduction (unmodified cloning) 0.08
crossover: 0.9
mutation (various forms): 0.01
architecture altering operations 0.01

Limits on the size, depth, run time of the programs

Finding good parameters can be difficult in GP: Try to define
parameters relative to population size, program size and depth.

Natural Computing 2024/25, week 4, Michael Herrmann, School of Informatics, University of Edinburgh



Example 1: GP for Symbolic Regression

Data:
x y
-1 1.00
-0.8 0.84
-0.6 0.76
-0.4 0.76
-0.2 0.84
0.0 1.00
0.2 1.24
0.4 1.56
0.6 1.96
0.8 2.44
1 3.00

Design:
goal Find a program that produces

y when given x , while fitting a
data set

1 terminals x , ci (random constants)
2 functions +, −, ∗, /
3 fitness sum of absolute errors over

test data set
4 parameters Populations size, pc , pm, ...
5 termination error smaller than θ

From: J. R. Koza: GA and GP (tutorial)

Natural Computing 2024/25, week 4, Michael Herrmann, School of Informatics, University of Edinburgh



Example 1: GP for Symbolic Regression

Population of 4 randomly generated individuals for generation 0

Natural Computing 2024/25, week 4, Michael Herrmann, School of Informatics, University of Edinburgh



Example 1: GP for Symbolic Regression

Goal function: f (x) = x2 + x + 1

Performance of the individual programs

x + 1

0.67

x2 + 1

1.00

2

1.70

x

2.67

The algorithm uses only the fitness calculated from the given data.

Natural Computing 2024/25, week 4, Michael Herrmann, School of Informatics, University of Edinburgh



Example: GP for Symbolic Regression

Copy of (a)
Mutant of (c)
picking “2” as
mutation point

First offspring of
crossover of (a)
and (b) picking
“+” of parent (a)
and left-most “x”
of parent (b) as
crossover points

Second offspring
of crossover of
(a) and (b)
picking “+” of
parent (a) and
left-most “x” of
parent (b) as
crossover points

Natural Computing 2024/25, week 4, Michael Herrmann, School of Informatics, University of Edinburgh



Example 2: Learning to Plan using GP

Aim:

To find a program to transform any initial state into “UNIVERSAL”

Natural Computing 2024/25, week 4, Michael Herrmann, School of Informatics, University of Edinburgh



Example 2: Learning to Plan

Terminals:

CS – returns the current stack’s top block
TB – returns the highest correct block in the stack (or NIL)
NN – next needed block, i.e. the one above TB in the goal

Functions:

MS(x) – move block x from table to the current stack. Return
T if does something, else NIL.
MT(x) – move x to the table
DU(exp1, exp2) – do exp1 until exp2 becomes TRUE
NOT(exp1) – logical not (or exp1 is not executable)
EQ(exp1, exp2) – test for equality

Natural Computing 2024/25, week 4, Michael Herrmann, School of Informatics, University of Edinburgh



Learning to Plan: Results

Population size N =500 (best individual is shown below)

Generation 0: (EQ (MT CS) NN), 0/166 fitness cases correct

Generation 5: (DU (MS NN)(NOT NN)), 10/166 fitness cases correct

Generation 10: (EQ (DU (MT CS)(NOT CS))(DU (MS NN)(NOT NN)))
166/166 fitness cases correct

Koza shows how to amend the fitness function for efficient, small
programs: Combined fitness measure rewards

Correctness (number of solved fitness cases)
AND efficiency (moving as few blocks as possible)
AND small number of tree nodes (parsimony: number of
symbols in the string)

Natural Computing 2024/25, week 4, Michael Herrmann, School of Informatics, University of Edinburgh



Implementation

Many options, choose, e.g.,

a language where trees are native data structure (Lisp)
a language where trees are available as a library (Python, ...)
a language where strings can be compiled (Python, ...)
a language where functions can be variables (Javascript, ...)
a language that conveniently supports grammars (Prolog)
a stack and case statements (C++, ...)
an addressable function: e.g. f (x , 1) = sin x , f (x , 2) = ex etc.
(GA?)
a template, e.g. a0 + a1x + a2x

2 + . . . with some ai = 0
(PSO?)

Natural Computing 2024/25, week 4, Michael Herrmann, School of Informatics, University of Edinburgh



Initialisation
The initial population might be lost quickly, but general
features may determine the solutions
Assert that the functions and terminals are sufficient
Structural properties of the expected solution (uniformity,
symmetry, depth, . . . )
In practice: Start at root and choose k = 0, ...,K with
probability p (k), choose a non-terminal with k > 0 arguments
or a terminal for k = 0. If k > 0 repeat until no non-terminals
are left or if maximal depth is reached (then k = 0)
Initial trees can be chosen to be irregular (grow method,
similar to depth-first) or balanced (full method, similar to
breadth-first) or mixed.
Lagrange initialisation: Crossover can be shown to produce
programs with a typical distribution (Lagrange distribution of
the second kind) which can be used also for initialisation
Seeding: Start with many copies of good candidates

R. Poli et al. A Field Guide to Genetic Programming (2008)

Natural Computing 2024/25, week 4, Michael Herrmann, School of Informatics, University of Edinburgh



Initialisation by seeding

Assume one or more good programs exists for a certain
problem
Evolve solutions that are not necessarily better but different
(Fitness is based on at-least-equal functionality and difference)
Usually a good application case for GP (what about IP?)

Question: Why not running a GP seeded with all known MHO
algorithms as an initial population?

Natural Computing 2024/25, week 4, Michael Herrmann, School of Informatics, University of Edinburgh



Evolving Structures (Koza et al., 1997)

Example: Design of electronic circuits by composing

Non-terminals: e.g. frequency multiplier, integrator, rectifier,
resistors, wiring ...
Terminals: input and output, pulse waves, noise generator
Structure usually not tree-like: Meaningful substructures
(“boxes” or subtrees) for crossover and structural mutations
Fitness by desired input-output relation (e.g. by wide-band
frequency response)

Natural Computing 2024/25, week 4, Michael Herrmann, School of Informatics, University of Edinburgh



Genetic programming: Troubleshooting

Study your populations: Analyse means and variances of
fitness, depth, size, code used, run time, ... and correlations
among these
Runs can be very long: Checkpoint results (e.g. mean fitness)
Control bloat in order to obtain small efficient programs: Size
limitations prevent unreasonable growth of programs e.g. by
soft thresholds
Control parameters during run-time
Small changes can have big effects
Big changes can have no effect
Encourage diversity and save good candidates,
Embrace approximation: No program is error-free

Natural Computing 2024/25, week 4, Michael Herrmann, School of Informatics, University of Edinburgh



How to deal with numerical constants?

Finding a set of number can be time consuming, and for a slightly
different program other constants may be needed

Hill-climbing as local search
Hybridise with PSO or other search algorithm
“Local gradient search of numeric leaf values’’

(Topchy et al., 2001)
Izzo et al. (2017) Differentiable genetic programming.

[CGP, see below]

Natural Computing 2024/25, week 4, Michael Herrmann, School of Informatics, University of Edinburgh



GP: Application Areas
Problem areas involving many variables that are interrelated in
a non-linear or unknown way (predicting electricity demand)
A good approximate solution is satisfactory

design, control (e.g. in simulations), classification and pattern
recognition, data mining, system identification and forecasting

Discovery of the size and shape of the solution is a major part
of the problem
Areas where humans find it difficult to write programs

parallel computers, cellular automata, multi-agent strategies,
distributed AI, FPGAs

"Black art" problems
synthesis of topology and sizing of analogue circuits, synthesis of
topology and tuning of controllers, quantum computing circuits

Areas where you simply have no idea how to program a
solution, but where the objective (fitness measure) is clear
(e.g. generation of financial trading rules)

Areas where large computerised databases are accumulating
and computerised techniques are needed to analyse the data

Natural Computing 2024/25, week 4, Michael Herrmann, School of Informatics, University of Edinburgh



Genetic programming: practical examples

Grading lettuce (Evis Technologies GmbH, Vienna): Based on
data set from human ratings, identify features some
combination of which gives the best overall agreement of the
rating. Resulting program is much faster, more consistent and
more accurate than human performance
Generation of financial trading rules
Designing neural network architectures
Evolution of electronic circuits
Security checks in transport
Smart homes

Natural Computing 2024/25, week 4, Michael Herrmann, School of Informatics, University of Edinburgh



Example: Financial time series prediction (DJIA)

GP best individual (DJIA) representing: f ∗ = X1−1
(X3−1)+(X4−1)

Performance of simple rules and of DNN are indistinguishable for
few data, short training times on complex problems

(courtesy of Junyi Wang)
Natural Computing 2024/25, week 4, Michael Herrmann, School of Informatics, University of Edinburgh



Cartesian Genetic Programming∗

Natural Computing (week 4)

J. Michael Herrmann
School of Informatics, University of Edinburgh
michael.herrmann@ed.ac.uk, +44 131 6 517177



Cartesian Genetic Programming (Julian Miller 1999)

Starting from the evolution of digital circuits
representations as two-dimensional grids of program primitives
flexible: variable-length network structures, skip connections.

r rows
c columns
n inputs
m outputs

evolvable
function,
evolvable
topology,
no lateral
connections

Natural Computing 2024/25, week 4, Michael Herrmann, School of Informatics, University of Edinburgh



CGP

Often just r = 1 for an arbitrary directed graph with a
maximum depth

Encoding: functions and the respective inputs, same for
output units
Functions e.g. “*”, “+”, “-”, “/” or as implied by problem, but
also ADFs (modular) in variants of the approach
Similar to a neural network, but without learning rule

Wilson et al. (2018) Evolving simple programs for playing Atari games

Natural Computing 2024/25, week 4, Michael Herrmann, School of Informatics, University of Edinburgh



CGP

Redundancy: many nodes do not affect output (95%
redundancy is good for evolution, i.e. neutral evolution is
encouraged)
Therefore: Phenotypes are much simpler than genotypes
Often no cross-over, one mutation per individual
(1+4) evolution strategy: parent copied + 4 children
Choose best out of 5
In case of same fitness, the parent is not selected
Starting from the evolution of digital circuits
Variants: Modular, Typed, Self-modifying, Recurrent,
Encoding of NN ...

Natural Computing 2024/25, week 4, Michael Herrmann, School of Informatics, University of Edinburgh



Playing Atari games

Functions include arithmetic, trigonometric, statistical, logical
and list processing functions
Cartesian GP
Largely linear graphs with skip connections
Functions are overloaded to accept vector or scalar inputs
Outputs: actions (left, right, up down, shoot, ...)
Evolved programs are very simple (e.g. 10 nodes), so results
are human-readable
Results are impressive, even better than DeepRL (Mnih et al.
2013), but the observable play behaviours are ... pragmatic.

Wilson et al. (2018) Evolving simple programs for playing Atari games

Natural Computing 2024/25, week 4, Michael Herrmann, School of Informatics, University of Edinburgh



Conclusions on GP

In order to be successful, GP algorithms need well-structured
problems and sufficient computing power
GPs have proven very successful in many applications, see the
lists of success stories in Poli’s talk, in Koza’s tutorial, and
work on CGP.
GP provides an interesting view on the art of programming
We will return to GP later when we talk about current
developments

Natural Computing 2024/25, week 4, Michael Herrmann, School of Informatics, University of Edinburgh


