
Course: Natural Computing
*4.The No-Free-Lunch Theorem

J. Michael Herrmann
School of Informatics, University of Edinburgh

michael.herrmann@ed.ac.uk, +44 131 6 517177

Theory of MHO algorithms: Next steps

1 No free lunch theorem
2 More algorithms (later)
3 Dynamics and convergence (next week)
4 GA & GP: Schema theory (next week)

Natural Computing 2024/25, week *4, Michael Herrmann, School of Informatics, University of Edinburgh

Optimisation as search

Search space X , assumed to be discrete
Space of values of the objective function, e.g. R+

Objective function f : X → R+, i.e.
for each xi ∈ X we obtain fi = f (xi)

Sample dm = {(x1, f1) , . . . , (xm, fm)} of size m,
where xi ∈ X and fi ∈ R+

We usually know the search space, but we don’t know the
objective (fitness) function, except for the few values in the
current sample: The fitness function represents the problem!
How do we find the optimal x?

Natural Computing 2024/25, week *4, Michael Herrmann, School of Informatics, University of Edinburgh

Optimisation as search

Sample dm = {(x1, f1) , . . . , (xm, fm)}, xi ∈ X and fi ∈ R+

Optimisation algorithm is a function A (dm) = xm+1, i.e.
given the sample, the algorithm decides where to look next.
Now we get fm+1 = f (xm+1) and dm is extended to dm+1 etc.
In many algorithms not all previous sample points are used to
determine a new point in the search space, e.g.

only the previous generation (N pairs: string + fitness) are
used in a GA with population size N.
in PSO N + N + 1 pairs (xi , fi) are used, i.e. the current
points, the personal bests, and the global best (which are not
necessarily all different) and the respective fitnesses.
the pheromone trail in ACO contains implicitly all previous
information in this algorithm.

Natural Computing 2024/25, week *4, Michael Herrmann, School of Informatics, University of Edinburgh

Performance of an optimisation algorithm

Performance can be measured for a given fitness function
without directly referring to the algorithm (for minimisation
problems) as

Ψm = min
i≤m

fi

Nevertheless the sequence of the fitnesses depends on the
algorithm, i.e. we should talk about Ψm (f ,A) where A ∈ A,
and Ais the set of all algorithms
Likewise, we denote by F the set of all fitness functions, which
is identical to the set of problems
Try to ignore this item: In principle we should also consider
different search spaces X ∈ X or sets of constraints C ∈ C,
where X is the set of all search spaces and C is the set of all
sets of constraints

Natural Computing 2024/25, week *4, Michael Herrmann, School of Informatics, University of Edinburgh

The no-free-lunch theorem (Wolpert & Macready, 1995)

What is a “free lunch”? An algorithm that is better than any other
algorithm for “all the problems”. If we try to pinpoint this we get a
fundamental result in optimisation, the No Free Lunch Theorem,
which shows that, all non-resampling optimisation algorithms
perform equally, averaged over all problems, or more formally

No-Free-Lunch Theorem [Wolpert & Macready, 1995] Let A the
set of optimisation algorithms and F the set of objective functions.

∀A,B ∈ A :
∑
f ∈F

Ψm (f ,A) =
∑
f ∈F

Ψm (f ,B)

see: Joyce & Herrmann (2018) A review of No Free Lunch theorems. Springer.

Natural Computing 2024/25, week *4, Michael Herrmann, School of Informatics, University of Edinburgh

Alternative formulations of the NFL theorem

1 For all possible metrics, no search algorithm is better than
another when its performance is averaged over all possible
discrete functions.

2 On average, no algorithm is better than random enumeration
in locating the global optimum

3 The histogram of values seen, and thus any measure of
performance based on it, is independent of the algorithm if all
functions are considered equally likely

4 With no prior knowledge about the function f : X → Y , in a
situation where any functional form is uniformly admissible,
the information provided by the value of the function in some
points in the domain will not say anything about the value of
the function in other regions of its domain.

Natural Computing 2024/25, week *4, Michael Herrmann, School of Informatics, University of Edinburgh

Meaning of NFL for algorithm comparison and evaluation

1. No free lunch results preclude meaningful comparison of
optimisation algorithms without reference to specific problems.

2. However, almost all restrictions on the set of problem
functions result in possible free lunches.

A general way of describing such restrictions is by means of a prior
over F , i.e. some problems are more likely to occur than others:

3. Similarly, but more generally, almost all probability distributions
over problem functions result in possible free lunches.

4. When free lunches are possible, the algorithms that achieve
them are aligned with the probability distribution over problem
functions.

Natural Computing 2024/25, week *4, Michael Herrmann, School of Informatics, University of Edinburgh

Block-uniform distributions

Only certain priors over problems lead to NFL (English, 2004)

If two fitness functions return the same fitness values although
possibly in a different order, we say they are connected by a
function permutation.
A prior over functions is block-uniform if any two functions
that are connected by a function permutation have the same
prior probability.

5 More specifically, block-uniform distributions capture exactly
the scenarios where no free lunch results hold for any metric.

6 However, when we are interested in no free lunch results with
respect to particular metrics, and for limited numbers of
samples, then free lunches are possible even under
block-uniform distributions.

Natural Computing 2024/25, week *4, Michael Herrmann, School of Informatics, University of Edinburgh

Possible Free lunches

7 When free lunches are possible, their prominence tends to
depend crucially on the optimisation metric used.

8 When considering more than just the exploration behaviour of
an algorithm, algorithms can be ranked. For example, some
optimisers are simpler, some are faster and some tend to
resample less than others.

Natural Computing 2024/25, week *4, Michael Herrmann, School of Informatics, University of Edinburgh

Practical implications

9 Benchmarking alone cannot be used to evaluate an algorithm,
but must be used in combination with clear underlying
assumptions. The benchmark functions must be representative
of the problems and there must be some smoothness, in the
sense that being good at a problem means that you are likely
to be good at similar problems.

10a We must try to characterise the dynamics of optimisation
algorithms, to understand their search behaviour, so that we
can better understand which algorithms should be used for
which problems.

10b We must try to characterise optimisation problems, to
understand their properties, so that we can better understand
which algorithms should be used for which problems.

Natural Computing 2024/25, week *4, Michael Herrmann, School of Informatics, University of Edinburgh

Conclusion on NFL theorems

“A basic insight of machine learning is that prior knowledge is
a necessary requirement for successful learning”

Shai Ben-David et al. Universal learning
vs. no free lunch results. In: Philosophy and

Machine Learning Workshop NIPS. 2011.

“you can’t do inference ... without making assumptions”

David J.C. MacKay. Information theory, inference and
learning algorithms. Cambridge University Press, 2003.

N.B.: It is quite interesting that for continous problems free lunches are
possible, but this is beyond the scope of this course.

Natural Computing 2024/25, week *4, Michael Herrmann, School of Informatics, University of Edinburgh

Theoretical Aspects
of Metaheuristic Optimisation
Course: Natural Computing (week 4*)
Part 1: Exploration and Exploitation

J. Michael Herrmann
School of Informatics, University of Edinburgh
michael.herrmann@ed.ac.uk, +44 131 6 517177

The General Scheme
1 Embrace randomness
2 Use populations of solutions
3 Maintain diversity
4 Select or favour the best individuals
5 Transfer information in the population from the best

individuals to others
6 Design fitness function such that it can use building blocks
7 Avoid local minima
8 Store good solutions in memory
9 Tweak the parameters
10 Develop your own variants
11 Use domain knowledge and intuition for the representation of

the problem, encoding, initialisation, termination, local
heuristics, choice of the algorithm

12 Check what the algorithm is doing
Natural Computing 2024/25, week *4, Michael Herrmann, School of Informatics, University of Edinburgh

“Banal Metaheuristic” *** in three easy steps ***

�� ��1. Call the user-provided state generator.

�� ��2. Print the resulting state.

�� ��3. Stop.

Given any two distinct metaheuristics M and N, and almost any
goal function f , it is usually possible to write a set of auxiliary
procedures that will make M find the optimum much more efficient
than N, by many orders of magnitude; or vice versa. In fact, since
the auxiliary procedures are usually unrestricted, one can submit the
basic step of metaheuristic M as the generator or mutator for N.

Source: en.wikipedia.org/wiki/Metaheuristic (until 15/5/2010)

Natural Computing 2024/25, week *4, Michael Herrmann, School of Informatics, University of Edinburgh

Why do we need theory in MHO?

What are the reasons why the algorithms perform better than
random search and are effective in practice?
How do we measure that this is indeed the case? And for what
problems?
Although hybridisations of MHO algorithms are often of
practical interest, the simple algorithms are more likely to be
accessible to theory.

Natural Computing 2024/25, week *4, Michael Herrmann, School of Informatics, University of Edinburgh

Why do we need theory in MHO?

1 Identification of essential factors, formulation of relevant
concepts (what)

2 Quantitative description of an observable phenomenon (how)
3 Explanation, understanding (why)

Other questions (whither, whence, who, to what end, ...)
are also important, but are usually less accessible to theory

Natural Computing 2024/25, week *4, Michael Herrmann, School of Informatics, University of Edinburgh

1. What happens in MHO?

Because of the diversity of the “inspirations” of MHO algorithm, a
common mechanism is hardly visible. The common theme seems to
be to achieve either a balance between to opposed effects or a
gradual shift between them:

Exploration vs. exploitation
Cooperation vs. competition
Diversification vs. intensification (Blum and Roli, 2003)
Global search vs. local descent/ascent
Randomness vs. greediness (goal-directedness)

These concepts set the scene, but what happens?

Natural Computing 2024/25, week *4, Michael Herrmann, School of Informatics, University of Edinburgh

Exploration and exploitation in our algorithms

exploration exploitation
SA temperature-based

fitness decrease
fitness increase
(hill-climbing)

GA, ES mutation
crossover
(islands)

selection
(elitism)

ACO probability rule
(sampling)
τmin, τmax

pheromone evaporation,
local heuristics
(local search)

PSO inertia (ω)
overshooting forces
(α1 + α2 >≈ 4)

forces to bests
(α1 + α2 <≈ 4),
“constriction”

How can exploration and exploitation be balanced or controlled?

Natural Computing 2024/25, week *4, Michael Herrmann, School of Informatics, University of Edinburgh

Exploration and exploitation

“A metaheuristic will be successful on a given optimization problem
if it can provide a balance between the exploitation of the
accumulated search experience and the exploration of the search
space to identify regions with high quality solutions in a problem
specific, near optimal way.”

T. Stuetzle: Local Search Algorithms for Combinatorial Problems—Analysis,
Algorithms and New Applications. DISKI. infix, St. Augustin, 1999.

Natural Computing 2024/25, week *4, Michael Herrmann, School of Informatics, University of Edinburgh

Theoretical Aspects
of Metaheuristic Optimisation
Course: Natural Computing (week 4*)

Part 2: Model-based search

J. Michael Herrmann
School of Informatics, University of Edinburgh
michael.herrmann@ed.ac.uk, +44 131 6 517177

Intensification and diversification

How does an algorithm guide the solutions in search space?
Beyond the balance between
randomness and
goal-directedness MHO
algorithms are characterised by
a specific bias due to, e.g.,

memory of solutions
interaction among the
solutions
dependencies in the noise

Fitness is usually a clear criterion (see, however, stochastic problems or
multi-objective optimisation), the other two, i.e. randomness and bias,
can be complex and will interact in a specific way in actual algorithms.

see C. Blum & A. Roli: Metaheuristics in Combinatorial Optimization: Overview and
Conceptual Comparison. ACM Computing Surveys 35:3, 2003, 268–308.

Natural Computing 2024/25, week *4, Michael Herrmann, School of Informatics, University of Edinburgh

A general framework

Because of the diversity of the “inspirations” of MHO algorithms,
a general view is difficult to obtain.
Proposals for a general framework include

Model-based search
Biased random walk
Bayesian inference
Dynamical systems

Natural Computing 2024/25, week *4, Michael Herrmann, School of Informatics, University of Edinburgh

Model-Based Search
Framework for expressing relation between algorithms

Scheme of the MBS approach

MBS approach with memory

E.g. in ACO:
Model: pheromone
matrix
Sample: ants
following pheromone
traces
Learning: pheromone
update
Auxiliary memory:
best-so-far solution

Zlochrin, Birattari, Meuleau, Dorigo: Model-based Search for Combinatorial
Optimization: A Critical Survey. Annals of Operations Research 2004.

Natural Computing 2024/25, week *4, Michael Herrmann, School of Informatics, University of Edinburgh

Model Based Search

Model-based: Candidate solutions are constructed using some
parameterised probabilistic model, that is, a parameterised
probability distribution over the solution space.
The model may be merely a theoretical vehicle, namely if the
algorithm is instance-based, i.e. improvement based on
previous instances.
The candidate solutions are used to modify the model in a way
that is deemed to bias future sampling toward fit solutions.

Models enable theoretical predictions.

Natural Computing 2024/25, week *4, Michael Herrmann, School of Informatics, University of Edinburgh

ACO as MBS

A finite set C = c1, c2, . . . , cn of components (n is the
number of components; in the TSP ci is the edge of a graph)
A finite set X of states of the problem, where a state is a
sequence x = ci , cj , . . . , ck , . . . over the elements of C . The
length of sequence x , i.e., the number of components in the
sequence, is expressed by |x |. The set of (candidate) solutions
S is a subset of X (i.e. S ⊆ X).
A set of feasible states Xf , with Xf ⊆ X , defined via a set of
constraints Ω

A non-empty set S∗ of optimal solutions, S∗ ⊆ Xf , S∗ ⊆ S

Formulation of the pheromone update
Result is a fully-connected weighted graph. As many weights
will be near zero or near τmin a bias towards good solutions is
provided.

Natural Computing 2024/25, week *4, Michael Herrmann, School of Informatics, University of Edinburgh

GA as MBS

GA seems to be instance-based, but samples are not drawn
independently. Dependencies can be captured by a model:
Generate new solutions using the current probabilistic model
Replace (some of) the old solutions by the new ones.
Modify the model using the new population.

Natural Computing 2024/25, week *4, Michael Herrmann, School of Informatics, University of Edinburgh

GA as MBS

compact Genetic Algorithm (cGA) (Harik et al., 1999)

Probabilistic simulation of a GA with tournament selection
Probabilistic model of the population: individuals are
generated by biased draws based on a probability vector. E.g.
if the vector entry pi is 0.9 it is likely to have a 1 at position i
in this individual’s string.
Assume an individual a wins a selection tournament over b

if ai 6= bi then pi ← pi +
1
n

(ai − bi)

i.e. the model is similar to ACO
This probabilistic model is different from the original
instance-based GA, because if does not capture dependencies
between bits in the genome, i.e. the co-occurrences of certain
bit combinations (schemas) in the population are ignored

Natural Computing 2024/25, week *4, Michael Herrmann, School of Informatics, University of Edinburgh

PSO as MBS

As in GA the “model” is actually a population (which can be
represented by a probabilistic model if higher correlations are
considered)
Generate new samples from the individual particles of the
previous iteration by random modifications
Use memory of global (so-far) or personal best (or respective
neighbourhood bests) for learning

Natural Computing 2024/25, week *4, Michael Herrmann, School of Informatics, University of Edinburgh

Conclusions on Model Based Search

Models may have to be complex in order to replicate the
behaviour of the algorithm
Usually, models capture only certain aspects of the reality.
What aspects should we consider in order to make statements
about

convergence,
complexity,
parameter values?

Natural Computing 2024/25, week *4, Michael Herrmann, School of Informatics, University of Edinburgh

On exploration in nature

It is thanks to these eccentrics, whose beha-
viour is not conform to the one of the other
bees, that all fruits sources around the colony
are so quickly found.

Karl von Frisch, 1927

Maurice Clerc: PSO Mini Tutorial on Particle Swarm Optimisation (2004)

Natural Computing 2024/25, week *4, Michael Herrmann, School of Informatics, University of Edinburgh

