
Course: Natural Computing
5. Parameter Settings

J. Michael Herrmann
School of Informatics, University of Edinburgh

michael.herrmann@ed.ac.uk, +44 131 6 517177

Overview

PSO Parameters
DE Parameters
Other algorithms

Natural Computing 2024/25, week 5, Michael Herrmann, School of Informatics, University of Edinburgh

Convergence

Failure: Swarm diverges or is stopped by search space
boundaries
Ideally: Global best approaches global optimum while swarm
converges
Typically:

Global best approaches a local optimum because premature
collapse of the swarm
Global best is near global optimum and swarm remains
itinerant

Convergence is not necessary (global or local bests remember
previous good solutions)
Convergence may be useful to search the space around a good
solution more carefully (see below “constriction”)
Alternatively, add a hill-climbing stage to the PSO algorithm

Natural Computing 2024/25, week 5, Michael Herrmann, School of Informatics, University of Edinburgh

Analysis of PSO: Simplified algorithm

Ignore randomness (use a homogeneous mean value)
Ignore the global best (assume it equals personal best)
Personal best constant (changes are rare, asymptotically)
i.e. we had (vector equation for velocity of i-th particle)

vi (t + 1)← ωvi + α1r1 ◦ (pi − xi (t)) + α2r2 ◦ (g − xi (t))

which becomes now in component form i = 1 . . . n,
d = 1 . . . m

vid (t + 1) = ωvid (t) + α (pid − xid (t))

and for one particle in one dimension simply

v (t + 1) = ωv (t) + α (p − x (t))

x (t + 1) = x(t) + v(t + 1)

Natural Computing 2024/25, week 5, Michael Herrmann, School of Informatics, University of Edinburgh

PSO: Algebraic point of view

In order to study the dynamical properties of a particle swarm, con-
sider a simplified algorithm with 1 particle, no noise, no global best:

Introduce y (t) = p − x (t) in v (t + 1) = ωv (t) + α (p − x (t))

x (t + 1)= x(t)+v (t + 1)

⇒

{
v (t + 1) = ωv (t) + αy (t)

y (t + 1) = −ωv (t) + (1− α) y (t)

Introduce state vector z (t) = (v (t) , y (t))>such that

z (t + 1) = M z (t) with M =

(
ω α
−ω 1− α

)
Starting from the initial state z (0) we have z (t) = Mt z (0)

M. Clerc & J. Kennedy (2002) The particle swarm – Explosion, stability, and
convergence in a multidimensional complex space. IEEE TA EC 7:1, 58-73.

(see also tutorial 2)

Natural Computing 2024/25, week 5, Michael Herrmann, School of Informatics, University of Edinburgh

PSO: Algebraic point of view

Simplify further by setting ω = 1 and determine eigenvalues of

M =

(
1 α
−1 1− α

)
, i.e. find matrix A such that

AMA−1 = L =

(
λ1 0
0 λ2

)
⇒ λ1/2 = 1− α

2 ±
√
α2−4α

2

The simplified PSO dynamics P (t) = MtP (0) is equivalent to

P (t + 1) = A−1LAP (t)

AP (t + 1) = LAP (t)

Q (t + 1) = LQ (t)

with Q = AP and A =

(
α +
√
α2 − 4α 2α

α−
√
α2 − 4φ 2α

)

Thus Q (t) = LtQ (0) where Lt =

(
λ1 0
0 λ2

)t

=

(
λt1 0
0 λt2

)
Natural Computing 2024/25, week 5, Michael Herrmann, School of Informatics, University of Edinburgh

Algebraic point of view (ω = 1)

For the eigenvalues λ1/2 = 1− α
2 ±

√
α2−4α

2 we have three cases:

0 < α < 4 α = 4 or α = 0 φ > 4 or α < 0

pair of complex EV
λ1/2 =−1 or
λ1/2 =1

λ2 < −1 or
λ1 > 1

λ1/2 = cos (θ)± i sin (θ)
λt1/2 = cos (tθ)±i sin (tθ)

z (t + 1) = −z (t)
or z (t + 1) = z (t)

Exponentially
divergent

Complex eigenvalues
result in oscillatory
behaviour with
period k if θ = 2kπ

t

Real eigenvalues as a
function of α −→ -3

-2

-1

 0

 1

 2

 3

-2 -1 0 1 2 3 4 5 6

Natural Computing 2024/25, week 5, Michael Herrmann, School of Informatics, University of Edinburgh

Algebraic point of view (ω ∈ [−1, 1])

For ω ∈ [−1, 1] the eigenvalues are

λ1/2 =
1 + ω − α

2
±

√
(ω − α)2 − 2 (ω + α) + 1

2

The eigenvalues are complex
in the hatched area.
There and in the speckled
area the dynamics is
convergent.
horizontal: α, vertical: ω

Oscillation may be preferable as they tend to improve exploration
near current best

Natural Computing 2024/25, week 5, Michael Herrmann, School of Informatics, University of Edinburgh

Implications from the algebra

In the standard PSO we have α = α1 + α2, i.e. a combination
of the attraction towards the personal and global best. These
are typically not the same, such that the forces are not
perfectly additive and a somewhat larger α might be possible.
α slightly above 4 (e.g. α ≈4.1): particle stays somewhere in
between or near personal and global best. If these two coincide
the algorithm tends to diverge, i.e. the particles move on
searching elsewhere.
Note that this result is based on strong simplifications, i.e. it is
not exactly true.

Natural Computing 2024/25, week 5, Michael Herrmann, School of Informatics, University of Edinburgh

Constriction factor in canonical PSO
If there is reason to believe that the particles are near the
global optimum (e.g. after a long runtime), more exploitation
might be desirable by reducing the fluctuations of the particles
(see Clerc, 1999/2000)
May help to find the global optimum up to numerical precision
Introduce a general “constriction” factor K

vi ← K (ωvi + α1r1 ◦ (pi − xi) + α2r2 ◦ (g − xi))

Start with α = α1 + α2 > 4 and K = 1. Later switch to

K =
2∣∣∣2− α−√α2 − 4φ

∣∣∣
e.g. for α = 4.1 ⇒ K = 0.729, i.e. effectively α ≈ 1.5
For α < 4 we set K = 1
Other definitions of K are possible, e.g. including ω or based
on a more complex model of the algorithm

Natural Computing 2024/25, week 5, Michael Herrmann, School of Informatics, University of Edinburgh

Implications from numerical experiments
PSO performance for the minimisation of a sphere function

∑
i x

2
i

for the relevant pairs (α, ω) with α = α1 + α2 and α1 = α2.

Numerical experiments show that the best results (dots in the
left image) are obtained in a region similar to the oscillatory
region indicated by the simplified model (see previous slides)
In contrast to the simplified model we find

near ω = 1, good performance is possible only for small α
good results are possible also for negative ω, see regions with
small average deviations from global optimum (right image)
good results are possible also for α > 4 for moderate ω

Natural Computing 2024/25, week 5, Michael Herrmann, School of Informatics, University of Edinburgh

Implications from recent analytical studies

The solid curve (prev. slide) is an analytical result (α1 = α2),
see Erskine et al., Swarm Intelligence 11, 295-315, 2017.
It is based on prior research and still based on a simplification
For α1 6= α2, the curve is similar but not identical.
All parameter pairs within the curve imply an asymptotically
stable particle dynamics
For infinitely many fitness evaluations and an infinitely large
search space, parameters on the curve are optimal. For realistic
experiments, parameters more inside the curve are preferrable.
For different fitness functions, different locations near (within)
the curve are performing best.
The difference to earlier approaches lies in analysis of
non-trivial noise effects, which appear to be crucial in PSO.

Natural Computing 2024/25, week 5, Michael Herrmann, School of Informatics, University of Edinburgh

Parameter Settings
Course: Natural Computing (week 5)

(II) Parameters in DE

J. Michael Herrmann
School of Informatics, University of Edinburgh
michael.herrmann@ed.ac.uk, +44 131 6 517177

Differential Evolution (DE) Price & Storn 1997

As in PSO, individuals are continuous vectors
Apart from initialisation, there is no direct noisification of the
vectors.
The diversity in the population is obtained from “mutations”
based on the differences in the population, such that the
algorithm is fully self-organising.
Differences between the vectors in the population

point from a poor vector to a good one: a chance for
improvement
or are traverse between vectors of similar fitness: a chance for
increasing or maintaining diversity (“neutral mutation”)

Essentially only one free parameter (F , in addition to pd , N)
DE is an interesting algorithm that is often used as a
component in hybrid metaheuristic algorithms.

Natural Computing 2024/25, week 5, Michael Herrmann, School of Informatics, University of Edinburgh

Differential Evolution: Algorithm
Population of N vectors of D-dimensions: xi , i = 1, ...,N

Step 1: vi (t + 1) = xq (t) + F · (xr (t)− xs (t));

q, r , s are random indexes, all different and different from i .
Note that vi has nothing to do with xi (t: generation counter)
(In a sense: three parents, but this is considered as mutation in DE)

F ∈ [0, 2] ⊂ R (possible amplification of the differential variation)

Step 2: Choose random numbers ρd ∈ [0, 1), d ∈ {1, . . . ,D}
(crossover)

uid (t + 1) =

{
vid (t + 1) if ρd < p

xid (t) if ρd ≥ p

or by choosing a block
d ∈ [n, (n + L)modD],
L ≤ D, 1 ≤ n ≤ D, where
L is randomly changed.

ui (t + 1) = (u1i (t + 1) , u2i (t + 1) , . . . , uDi (t + 1))

Step 3: xi (t + 1) = ui (t + 1) if ui (t + 1) is better than xi (t),
otherwise xi (t + 1) = xi (t) (selection)
Rainer Storn & Kenneth Price (1997) Differential Evolution – A Simple and Efficient Heuristic for
Global Optimization over Continuous Spaces. Journal of Global Optimization 11: 341–359.

Natural Computing 2024/25, week 5, Michael Herrmann, School of Informatics, University of Edinburgh

Differential evolution: Parameter values
In addition to the amplification factor F , there are actually two
more parameters

the number for vectors N
the crossover probability p

Assumption: No selection (asymptotically, better values are rarely found)

The variance of the vectors is expected to change in one
generation by

〈Var (xt+1)〉 =

(
2F 2p − 2p

N
+

p2

N
+ 1
)
Var (xt)

The variance remains constant on average if F is critical:

F =

√
1
N

(
1− p

2

)
In good agreement with experimental results, although (in
dependence on initialisation, runtime and problem specificity)
deviations from the critical value can be useful.

Daniela Zaharie (2002) Critical values for the control parameters of differential
evolution algorithms.
Natural Computing 2024/25, week 5, Michael Herrmann, School of Informatics, University of Edinburgh

Parameter Settings
Course: Natural Computing (week 5)

(III) ACO Convergence and Hypercube Framework

J. Michael Herrmann
School of Informatics, University of Edinburgh
michael.herrmann@ed.ac.uk, +44 131 6 517177

Does the algorithm converge?

Two meanings of convergence

(A) Dynamics comes to a halt
1 GA: All individual in a population are identical
2 PSO: All particles converge to a single point and velocities

approach zero
3 ACO: All ants take the same path

(B) Global optimum is found (need to know maximal fitness)
1 GA: one individual has maximal fitness
2 PSO: the absolute difference of the fitness of the best-so-far

solution and the maximal fitness is smaller than an appropriate
threshold

3 ACO: one ant has maximal fitness

Natural Computing 2024/25, week 5, Michael Herrmann, School of Informatics, University of Edinburgh

Convergence to global optimum: ACO

We ignore for the moment the dynamics question (A), and ask
about the global optimum (B) for ACO (Stützle & Dorigo, 2002)

(B.1) The pheromone trails along the path representing the optimal
solutions are larger than on any other solution

(B.2) Probability that an ant finds the globally optimal solution
approaches 1 after sufficiently long time

In the following we will assume that only one global optimum
exists, and will consider the Min-Max Ant System algorithm with
best-ant pheromone update

Natural Computing 2024/25, week 5, Michael Herrmann, School of Informatics, University of Edinburgh

1. Establishing a pheromone trail

Assume the best path S∗ was found by an at time t∗. Let (i , j) be
a component in S∗, but (worst case) τij (t∗) = τmin and all
(k, l) /∈ S∗ have τkl = τmax. If only the best ant lays pheromones,
then the level on S∗ will increase within t time steps by

τij (t∗ + t) = ρtτmin +
t∑

s=1

ρs−1∆τmax

> t ρt−1∆τmax = t ρt−1 (1− ρ) τmax

because τmax (t)=ρtτinit +
∑t

s=1 ρ
t−s∆τmax, i.e. τmax = ∆τmax

1−ρ ,

whereas (assuming τmin < ρtτmax) τkl (t∗ + t) = ρtτmax such that

τij (t∗ + t) > τkl (t∗ + t) if t >
ρ

1− ρ
.

Natural Computing 2024/25, week 5, Michael Herrmann, School of Informatics, University of Edinburgh

2. Finding a global optimum: ACO
Let P∗ (t) denote the probability that the best path is found at least
once by time t. We need to show that (Stützle & Dorigo, 2002)

∀ε > 0 ∃t : P∗ (t) > 1− ε.

We assume for simplicity that we have a single ant only, the
exponent α = 1, the local desirability is constant, and each step of
the solution has at most K branches.

In the worst case the optimal path has a pheromone level τmin > 0,
the other K − 1 branches have τmax. The probability rule gives:

pmin =
τmin

τmin + (K − 1) τmax

Therefore, we have P∗ (1) ≥ pDmin > 0, where D is the number of
components in the solution. The proof is completed by noticing:

P∗ (t) ≥ 1−
(
1− pDmin

)t
Natural Computing 2024/25, week 5, Michael Herrmann, School of Informatics, University of Edinburgh

Convergence to global optimum: Remarks

pDmin is very small, so the convergence time bound is very large
A tighter bound is implied for more ants, by considering that
there are fewer branches for decisions down the path, and that
the pheromones are usually more fortunately distributed, but
the bound is still exponential.
Local desirability may reduce complexity, but may also impede
convergence to global optimum, if the problem is deceptive
The update by best ant only and the fact that τmin > 0 are
important (convergence questionable for other ant algorithms)
See also: W. Gutjahr (2000) A graph-based Ant System and its
convergence. Future Generation Computer Systems 16, 873–888.

A similar proof can be given for GA with mutation rate pm > 0

Natural Computing 2024/25, week 5, Michael Herrmann, School of Informatics, University of Edinburgh

Convergence to global optimum for PSO?

Statements similar to (B.2) were made by F. v. d. Bergh
(2001) and Liu, Abraham & Snasel (2009)
To show that the algorithm eventually finds the global
optimum, we need to assert that a particle can get close with
some (possibly very small) probability to every point in state
space e.g. by

using Gaussian noise, i.e. the forces become ζ1 (p− x) with
ζ1 ∼ N

(
α1
2 , σ

2
)
and ζ2 (g − x) with ζ2 ∼ N

(
α2
2 , σ

2
)

including a random walk to diversify the particle positions
choosing parameters such that particles perform independent
random movements through all dimensions of the whole search
space.

The noise-based approaches may counteract exploitation, so
an appropriate choice of the parameters seems preferable to
reach a good level of exploratoriness (see previous parts)

Natural Computing 2024/25, week 5, Michael Herrmann, School of Informatics, University of Edinburgh

Conclusion on Convergence

It is relatively easy to show that MHO algorithms can find the
global optimum of an arbitrary search problem, but these
proofs are not practically useful as they imply an exponentially
long run time
It is more important to find parameter settings that help to
speed up the search,

a few rules exist how to choose parameter values in general
(except for PSO and DE)
for a specific problem, practical experiences are needed in order
to find optimal parameters (later material on applications)
sometimes a higher-order MHO algorithms is employed for the
parameter search (later material on hyperheuristic algorithms)

Natural Computing 2024/25, week 5, Michael Herrmann, School of Informatics, University of Edinburgh

The Hyper-cube framework for ACO∗

Given a solution (path) s = (s1, . . . , sn)

The solution is a subsets of the edges E of a graph G = (N,E)

Partitioning of E : if a link belongs to s: 1, otherwise 0
solution span a hypercube of dimensions |E |
For the TSP, s can be
represented by a binary
vector with dimension
M = n(n − 1)/2 = |E |
[generally this would be
total number of available
solution components]
Pheromones are updated in the span of admissible solutions,
as vectors in the volume of an M-dimensional hypercube
HCF is not an algorithm, but a theoretical framework for ACO

Natural Computing 2024/25, week 5, Michael Herrmann, School of Informatics, University of Edinburgh

Search space: “Hyper-cube framework”∗

Pheromone update (cj = s ij if it is a component of solution i)

τj ← ρτj +
∑k

i=1 ∆τ ij where ∆τ ij =

{
1

f (s i)
if cj ∈ s i

0 otherwise

limt→∞ τi (t) ≤ 1
1−ρ ·

k

f
(
sopt

) , maximal if all k ants follow forever

the optimal solution: τi = ρτi + k

f
(
sopt

)
τ = (τ1, . . . , τM) is an M-dimensional vector: τ ∈

[
τmin, τmax

]M
M: number of solution components (e.g. all edges of a graph)

τ =
∑
αi s i , αi ∈

[
τmin, τmax

]
, s i ∈ {0, 1}M , only used

components of s i being 1, elsewhere 0s.

We can normalise τ such that αj ∈ [0, 1]

Blum, Roli, Dorigo (2001) HC-ACO. 4th Metaheuristics Int. Conf., 399-403.

Natural Computing 2024/25, week 5, Michael Herrmann, School of Informatics, University of Edinburgh

Hyper-cube framework∗

Pheromone normalisation

τj ← ρτj +
∑k

i=1 ∆τ ij where

∆τ ij =


1

f (si)∑k
l=1

1
f (sl)

if cj ∈ s i

0 otherwise

Hyper-cube update rule

τ ← τ + (1− ρ) (d− τ)

d = (d1, . . . , dM) where

dj =
∑k

i=1 ∆τ ij , j = 1, . . . ,M

The pheromone vector moves by (1− ρ) towards the weighted
mean of the solutions produced by the current iteration.

Natural Computing 2024/25, week 5, Michael Herrmann, School of Informatics, University of Edinburgh

Benefits of the Hyper-cube framework∗

Probabilistic interpretation
Proof that expected quality of solutions strictly increases
(without the assumption of an infinitesimal step size as in
standard gradient methods!)
A diversification scheme

global desirability: vdesj ← max
{

1
f (s) : s ∈ Sants, sj = 1

}
global frequency: v frj ←

∑
s∈Sants

sj

Sants : all solutions generated since the start
At stagnation the algorithm may be restarted with a
pheromone matrix constructed from vdes or the regularised
inverse of v fr in order to keep good solutions, but also to
favour regions where few ants have been before.

The HC update rule can be used to adapt ρ such that the
expected variance of τ remains constant (depends on fitness!)

Dorigo & Blum (2005) Ant colony optimization theory: A survey.
Theoretical Computer Science 344, 243-278.

Natural Computing 2024/25, week 5, Michael Herrmann, School of Informatics, University of Edinburgh

Conclusion on Parameter setting

It is relatively easy to show that MHO algorithms can find the
global optimum of an arbitrary search problem, but these
proofs are not practically useful as the imply an exponentially
long run time
It is more important to find parameter settings that help to
speed up the search,

For some algorithms, rules exist how to choose parameter
values in general
for a specific problem, practical experiences are needed in order
to find optimal parameters
sometimes a higher-order MHO algorithms is employed for the
parameter search

Natural Computing 2024/25, week 5, Michael Herrmann, School of Informatics, University of Edinburgh

