
Course: Natural Computing
6. Multi-Objective Optimisation

J. Michael Herrmann
School of Informatics, University of Edinburgh

michael.herrmann@ed.ac.uk, +44 131 6 517177

Overview: Multiobjective optimisation

Optimisation often asks for more than for a global optimum
Multiobjective optimisation (MOO) implies several objective
functions, the objectives of which can be conflicting.
Diversity means here not only a good coverage for search, but
also of the regions relevant for all the objectives.
Population-based algorithms seem particularly suitable for
MOO (Carlos A. Coello Coello, 2017)

simultaneity of search by a population
less susceptible to the shape or continuity of the Pareto front

A fixed weighting of the objectives (scalarisation) requires
background knowledge and may be unsuitable if the objectives
interact in a non-trivial way
Originally from economics: Maximise the wealth of a nation
Interest in many application areas still growing

Natural Computing 2024/25, week 6, Michael Herrmann, School of Informatics, University of Edinburgh

Multiobjective Optimization

Several objectives: (d dimensions, k objectives)

To each point in search space x = (x1, . . . , xd) corresponds a point
in objective space f = (f1 (x) , . . . , fk (x))

The concept of a global optimum is not obvious in MOO. We
should rather define a set X of optimal points in the search space.

Example: f1 = 2x , f2 = −x2

Scalarise e.g. by equal weight: f1/2 = 1
2 f1 +

1
2 f2

Search space x ∈ [0, 1]:
Global maximum of f1/2 is at argmaxx f1/2 (x) ≈ 0.5
whereas: 2 = argmaxx f1 (x) and 0 = argmaxx f2 (x)

Search space x ∈ [0, 100]: f2 is ignored for large x

Example: A machine is characterized by power and torque. A
machine is better if – at equal torque – its power is higher.

Natural Computing 2024/25, week 6, Michael Herrmann, School of Informatics, University of Edinburgh

Multiobjective Optimization
Approaches to MOO will include two mechanisms

Selection improvement w.r.t. to either objective
Diversification: find solutions that correspond to different
combinations of the fitnesses.
Description in search space (as usual) or in fitness space

σ = 1 f± = exp
(
− (x±1)2

σ2

)
σ = 2

1D search space 2D fitness space 1D search space

Natural Computing 2024/25, week 6, Michael Herrmann, School of Informatics, University of Edinburgh

GA for Multiobjective Optimization

Combination of fitness functions
f (x) = αf1 (x) + (1− α) f2 (x)
f (x) = |f1 (x)|α + |f2 (x)|α
How to set α?

If α is not implied by the pro-
blem, then any value in between
the two maxima is equally good.

If a comparison between the two quantities is not possible, a set of
solutions should be considered as optimal (Pareto-optimal).

How to optimise one criterion without loosing on other criteria?

First relevant paper: J. David Schaffer. Multiple Objective Optimization with
Vector Evaluated Genetic Algorithms. PhD thesis, Vanderbilt University, 1984,
but earlier studies exist.

Natural Computing 2024/25, week 6, Michael Herrmann, School of Informatics, University of Edinburgh

Multiobjective Optimization

x∗ is Pareto optimal for a class of
fitness functions {fi} if there exists
no x 6= x∗ with fi (x) ≥ fi (x

∗) for all i

or, equivalently, x∗ is not dominated
by any other x : ∼∃x � x∗

(more specifically ∼∃x �{fi} x∗)

Natural Computing 2024/25, week 6, Michael Herrmann, School of Informatics, University of Edinburgh

Multiobjective Optimization

Example with three fitness
functions

x∗ is Pareto optimal for a class of
fitness functions {fi} if there exists
no x 6= x∗ with fi (x) ≥ fi (x

∗) for all i

or, equivalently, x∗ is not dominated
by any other x : ∼∃x � x∗

(more specifically ∼∃x �{fi} x∗)

Part of the fitness space
(similar illustration) Similar example: Pareto area spanned

by maxima in a shape-dependent way

Natural Computing 2024/25, week 6, Michael Herrmann, School of Informatics, University of Edinburgh

GA for Multiobjective Optimization

Benefits: Problems:

Collective search required
for sampling the Pareto set
Non-connected Pareto sets
are possible
Incorporation of constraints
in fitness function

Selection of fit
individuals?
Elitism?
Pareto-optimal diversity?
Efficiency in high-
dimensional problems?

Natural Computing 2024/25, week 6, Michael Herrmann, School of Informatics, University of Edinburgh

Multiobjective Hill climbing and Simulated Annealing

Set set of solutions S = ∅
Start from a single starting state (as usual)
Take a step
Accept according to algorithm
If new solution x is not dominated by any solution in S , then
S ← S ∪ {x}
Apply anti-crowding mechanism in S

For HC: Randomly restart when no improvement possible

Natural Computing 2024/25, week 6, Michael Herrmann, School of Informatics, University of Edinburgh

How does it work?
Non-dominated-sorting genetic algorithm (NSGA)
Selection by non-dominated sorting (M fitness functions)
Preserving diversity along the non-dominated front
Use two populations P and P’ (each with N individuals)
“being dominated by”, denotes a partial order induced by a set
of fitness functions

P ′=find-nondomminated front(P)

P ′ = {1} include first member into P ′

for each p ∈ P ∧ p /∈ P ′ take on solution at a time
P ′ = P ′ ∪ {p} temporarily include p into P ′

for each q ∈ P ′ ∧ q 6= p compare p to other members of P ′

if q ≺ p then P ′ = p′\ {q} if p dominates a member q of P ′

then delete q

else if p ≺ q then
P ′ = p′\ {p}

if p is dominated by another mem-
ber then do not include p in P’

Complexity per step: O(MN2)
Natural Computing 2024/25, week 6, Michael Herrmann, School of Informatics, University of Edinburgh

Ranking

F=fast-nondominated-sort(P); returns a set of nondominated fronts

i = 1 i is the front counter
until P 6= ∅ temporarily include p into P ′

Fi=find-nondominated-front (P) find the non-dominated front
P = P\Fi remove nondominated

solutions from P

i = i + 1 increment the front counter

Natural Computing 2024/25, week 6, Michael Herrmann, School of Informatics, University of Edinburgh

Preserving density

New distance measure: first rank,
then lowest density:

i �n j if
(
irank < jrank

)
or((

irank = jrank
)
and idist > jdist

)
crowding-distance-assignment(I)
l = {I} number of solutions in I
for each i set I [i]dist = 0 initialise distance
for each objective m temporarily include p into P ′

I = sort (I,m) sort using each objective value
I [1]dist = I [l]dist =∞ so that boundary points are always

selected
for i = 2 to l − 1 for all non-boundary points:
I [i]dist = I [i]dist +

(
I [i + 1]m − I [i − 1]m

)2

Natural Computing 2024/25, week 6, Michael Herrmann, School of Informatics, University of Edinburgh

NSGA-II: Main Loop

Natural Computing 2024/25, week 6, Michael Herrmann, School of Informatics, University of Edinburgh

NSGA-II: Main Loop
Rt = Pt ∪ Qt combine parents and children
F=fast-nondominated-sort(Rt) F = (F1,F2, . . .), all

nondominated fronts of Rt

Pt+1 = ∅ and i = 1
until |Pt+1|+ |Fi | ≤ N till the parent population is filled

crowding-distance-
assignment(Fi)

calculated crowing distance in Fi

Pt+1 = Pt+1 ∪ Fi include the ith front into parent
population

i = i + 1 check next front for inclusion
sort(Fi ,≺n) take part of the following front
Pt+1 =
Pt+1 ∪ Fi [1 : (N − |Pt+1|)]

choose the first (N − |Pt+1|)
elements of Fi

Qt+1 =make-new-pop(Pt+1) use selection, crossover and
mutation to create a new
population Qt+1 (standard GA)

t = t + 1 increment the generation counter

Natural Computing 2024/25, week 6, Michael Herrmann, School of Informatics, University of Edinburgh

Other approaches: Scalarisation

Scalar approaches: Transformation into a single-objective
problem

weighted sum
weighted product
distance from ideal solution, i.e. the point (max f1, ...,max fk)
achievements: weighted improvement w.r.t. a user-defined
point

If Pareto front P is known
Distance of solutions from
the Pareto front integrated
over true Pareto front
Volume dominated by
solution w.r.t. to nadir
point, i.e. for x ∈ P
(min f1 (x) , ...,min fk (x))

(e.g. in competitions):

Natural Computing 2024/25, week 6, Michael Herrmann, School of Informatics, University of Edinburgh

Other approaches
Criterion-based: Treating the various noncommensurable
objectives separately
Priority-based: Order results lexicographically based on goal
priority
Achievement-based: Define lower bounds for all criteria and
compare advantage of solutions
ε-constraint method: Bounds on other objectives as constraints
Ranking-based: Average single-objective ranks
Stepping-stone-based: Consider a scalarised problem as a
Pareto problem in order to optimise first, what is most easily
optimisable
Dominance-based approaches: Guiding the search process by
Pareto optimality
Indicator-based approaches: Using performance quality
indicators to drive the search toward the Pareto front (e.g.
distance from nadir point)
Repulsion-based or cooperation-based (see PSO lecture).

Natural Computing 2024/25, week 6, Michael Herrmann, School of Informatics, University of Edinburgh

Conclusion on MOO

MOO is related to constraint optimisation
MOO is related to neutral evolution
MOO provides an approach to extend and to generalise
academic problems into practical application
MOO is applicable also if fitness evaluation is costly and
several partial models exist
MOO provide an approach to analyse practical problems where
various objectives have been identified by the customer

Further reading: M. T. M. Emmerich and A. H. Deutz: A tutorial
on multiobjective optimization: Fundamentals and evolutionary
methods. Natural Computing 17 (2018) 585.

Natural Computing 2024/25, week 6, Michael Herrmann, School of Informatics, University of Edinburgh

Beyond MHO (?)

Heuristics
Metaheuristics
Memetic Algorithms (1st level MA)
Hybrid algorithms
Hyperheuristic (2nd level MA)
Co-evolution and self-generating (3rd level MA)

Classification according to Chen, Ong, & Lim (2010)

Natural Computing 2024/25, week 6, Michael Herrmann, School of Informatics, University of Edinburgh

Memetic algorithms (Moscato, 1989)

Metaphor based on social evolution → cultural algorithm
Includes both genetic and individual learning (similar to the
Baldwin effect and Lamarckian evolution)
In the context of MOO this can include a preference for
certain solutions or a measure of diversity.
Can be as simple as GA with ES for local search
In principle, the memetic component of the MH needs to be
developed in a social context (different from Baldwin effect
and Lamarckian evolution, t.b.d. later)
Can be considered as a type of hyperheuristic algorithms, see
below.

see e.g. Neri & Cotta (2012) Memetic algorithms and memetic computing
optimization: A literature review.

Natural Computing 2024/25, week 6, Michael Herrmann, School of Informatics, University of Edinburgh

