Course: Natural Computing

6. Multi-Objective Optimisation

oNLVE,
§

€DJNB

J. Michael Herrmann
School of Informatics, University of Edinburgh
michael.herrmann@ed.ac.uk, +44 131 6 517177

Overview: Multiobjective optimisation

@ Optimisation often asks for more than for a global optimum

e Multiobjective optimisation (MOO) implies several objective
functions, the objectives of which can be conflicting.

@ Diversity means here not only a good coverage for search, but
also of the regions relevant for all the objectives.

@ Population-based algorithms seem particularly suitable for
MOO (Carlos A. Coello Coello, 2017)

e simultaneity of search by a population
o less susceptible to the shape or continuity of the Pareto front

o A fixed weighting of the objectives (scalarisation) requires
background knowledge and may be unsuitable if the objectives
interact in a non-trivial way

@ Originally from economics: Maximise the wealth of a nation

@ Interest in many application areas still growing

Natural Computing 2024 /25, week 6, Michael Herrmann, School of Informatics, University of Edinburgh

Multiobjective Optimization

Several objectives: (d dimensions, k objectives)
To each point in search space x = (xi,...,xq) corresponds a point
in objective space f = (f1(x),..., fk (x))
The concept of a global optimum is not obvious in MOO. We
should rather define a set X of optimal points in the search space.
Example: fi =25, fh = —x?
Scalarise e.g. by equal weight: f, , = %ﬂ + %fz
@ Search space x € [0, 1]:
Global maximum of f; /5 is at arg max, fi /5 (x) = 0.5
whereas: 2 = argmax, fi (x) and 0 = arg max f> (x)

@ Search space x € [0,100]: f, is ignored for large x

Example: A machine is characterized by power and torque. A
machine is better if — at equal torque — its power is higher.

Natural Computing 2024 /25, week 6, Michael Herrmann, School of Informatics, University of Edinburgh

Multiobjective Optimization

Approaches to MOO will include two mechanisms

@ Selection improvement w.r.t. to either objective

@ Diversification: find solutions that correspond to different
combinations of the fitnesses.

@ Description in search space (as usual) or in fitness space

2
c=1 fi:exp<—%) o=2
1D search space 2D fitness space 1D search space

Natural Computing 2024 /25, week 6, Michael Herrmann, School of Informatics, University of Edinburgh

GA for Multiobjective Optimization

Combination of fitness functions
- - f(x)=af (x)+(1—a)f(x)
f(x) =10+ [f ()"
How to set a?

If o is not implied by the pro-
X blem, then any value in between
the two maxima is equally good.

If a comparison between the two quantities is not possible, a set of
solutions should be considered as optimal (Pareto-optimal).

How to optimise one criterion without loosing on other criteria?

First relevant paper: J. David Schaffer. Multiple Objective Optimization with
Vector Evaluated Genetic Algorithms. PhD thesis, Vanderbilt University, 1984,
but earlier studies exist.

Natural Computing 2024 /25, week 6, Michael Herrmann, School of Informatics, University of Edinburgh

Multiobjective Optimization

x* is Pareto optimal for a class of

fitness functions {f;} if there exists

no x # x* with f; (x) > f; (x*) for all i
or, equivalently, x* is not dominated
by any other x : ~3x > x*

(more specifically ~3x =5y x*)

Natural Computing 2024 /25, week 6, Michael Herrmann, School of Informatics, University of Edinburgh

Multiobjective Optimization

*

x* is Pareto optimal for a class of
fitness functions {f;} if there exists
no x # x* with f; (x) > f; (x*) for all i

*

or, equivalently, x* is not dominated
by any other x : ~dx = x*

Example with three fitness (more specifically ~Jx () X*)

functions
.
i
i
i o~
065 ‘/‘/ \\\; -
P —
< =
— o
T 52
R \\\,\/]

-5 0 5 10 15

Part of the fitness space

(similar illustration) Similar example: Pareto area spanned

by maxima in a shape-dependent way

Natural Computing 2024 /25, week 6, Michael Herrmann, School of Informatics, University of Edinburgh

GA for Multiobjective Optimization

Benefits: Problems:
o Collective search required o Selection of fit
for sampling the Pareto set individuals?
@ Non-connected Pareto sets o Elitism?
are possible o Pareto-optimal diversity?
@ Incorporation of constraints o Efficiency in high-
in fitness function dimensional problems?

Natural Computing 2024 /25, week 6, Michael Herrmann, School of Informatics, University of Edinburgh

Multiobjective Hill climbing and Simulated Annealing

Set set of solutions S = ()
Start from a single starting state (as usual)
Take a step

Accept according to algorithm

If new solution x is not dominated by any solution in S, then
S+ Su{x}

Apply anti-crowding mechanism in S

@ For HC: Randomly restart when no improvement possible

Natural Computing 2024 /25, week 6, Michael Herrmann, School of Informatics, University of Edinburgh

How does it work?

Non-dominated-sorting genetic algorithm (NSGA)
Selection by non-dominated sorting (M fitness functions)
Preserving diversity along the non-dominated front

Use two populations P and P’ (each with N individuals)

“being dominated by", denotes a partial order induced by a set
of fitness functions

’ P’=find-nondomminated front(P)

P ={1} include first member into P’
foreachpe PAp ¢ P’ take on solution at a time
P = P U{p} temporarily include p into P’
foreachge PPAg+#p compare p to other members of P’
if g < pthen P = p'\ {q} if p dominates a member g of P’
then delete g
else if p < g then if p is dominated by another mem-
P = p'"\{p} ber then do not include p in P’

Complexity per step: O(MN?)

Natural Computing 2024 /25, week 6, Michael Herrmann, School of Informatics, University of Edinburgh

1. front > e

2.front —>° .

F=fast-nondominated-sort(P); returns a set of nondominated fronts

i=1 i is the front counter

until P #£ 0 temporarily include p into P’
Fi=find-nondominated-front (P) find the non-dominated front
P = P\F; remove nondominated

solutions from P

i=i+1 increment the front counter

Natural Computing 2024 /25, week 6, Michael Herrmann, School of Informatics, University of Edinburgh

Preserving density

New distance measure: first rank, £, 0

then lowest density: .. ° o
. Cuboid
i=n J if (rank <Jrank) o 1-11---;.--1 ’
bo--2- 1
. o . . i+1 Y
(Crank =Jrank) 2nd fgist > Jdist) -
fi
’ crowding-distance-assignment(Z)
I={Z} number of solutions in Z
for each i set Z[i] sy = 0 initialise distance
for each objective m temporarily include p into P’
T =sort(Z, m) sort using each objective value
T gist = ZUgist = @ so that boundary points are always
selected
fori=2to /-1 for all non-boundary points:

Natural Computing 2024 /25, week 6, Michael Herrmann, School of Informatics, University of Edinburgh

NSGA-II: Main Loop

Non—dominated Crowding P,
— SoIting ——— iglance -
F_1 SOrtng :l
b ¢ ol —
[\ I3 |7.\‘;;.
4 ' ,.f:
I:l | = Rejected

Natural Computing 2024 /25, week 6, Michael Herrmann, School of Informatics, University of Edinburgh

NSGA-II: Main Loop

R: = P; U Q; combine parents and children
F=fast-nondominated-sort(R;) F = (F1,F2,...), all
nondominated fronts of R;

Pt+1:®andi:1

until [Pep1| + | Fi]l < N till the parent population is filled
crowding-distance- calculated crowing distance in F;
assignment(F;)
Pir1 =P UF; include the ith front into parent
population
i=i+1 check next front for inclusion
sort(Fi, <n) take part of the following front
Piy1 = choose the first (N — |Pey1])
Piy1 UFi[1: (N — |Pesa])] elements of F;
QR:++1 =make-new-pop(Py+1) use selection, crossover and

mutation to create a new
population Q1 (standard GA)
t=t+1 increment the generation counter

Natural Computing 2024 /25, week 6, Michael Herrmann, School of Informatics, University of Edinburgh

Other approaches: Scalarisation

@ Scalar approaches: Transformation into a single-objective
problem

weighted sum

weighted product

distance from ideal solution, i.e. the point (max fy, ..., max fx)

achievements: weighted improvement w.r.t. a user-defined

point

o If Pareto front P is known (e.g. in competitions):

e Distance of solutions from
the Pareto front integrated
over true Pareto front l

e Volume dominated by it
solution w.r.t. to nadir
point, i.e. for x € P /

P 1

(minf (x), ..., min fg (x)) -

f,
b ideal
\ point

(Pareto

front ~~__

Natural Computing 2024 /25, week 6, Michael Herrmann, School of Informatics, University of Edinburgh

Other approaches

@ Criterion-based: Treating the various noncommensurable
objectives separately

@ Priority-based: Order results lexicographically based on goal
priority

@ Achievement-based: Define lower bounds for all criteria and
compare advantage of solutions

@ c-constraint method: Bounds on other objectives as constraints

@ Ranking-based: Average single-objective ranks

@ Stepping-stone-based: Consider a scalarised problem as a
Pareto problem in order to optimise first, what is most easily
optimisable

@ Dominance-based approaches: Guiding the search process by
Pareto optimality

@ Indicator-based approaches: Using performance quality
indicators to drive the search toward the Pareto front (e.g.
distance from nadir point)

@ Repulsion-based or cooperation-based (see PSO lecture).

Natural Computing 2024 /25, week 6, Michael Herrmann, School of Informatics, University of Edinburgh

Conclusion on MOO

@ MOQO is related to constraint optimisation
@ MOQO is related to neutral evolution

@ MOO provides an approach to extend and to generalise
academic problems into practical application

@ MOQO is applicable also if fitness evaluation is costly and
several partial models exist

@ MOO provide an approach to analyse practical problems where
various objectives have been identified by the customer

Further reading: M. T. M. Emmerich and A. H. Deutz: A tutorial
on multiobjective optimization: Fundamentals and evolutionary
methods. Natural Computing 17 (2018) 585.

Natural Computing 2024 /25, week 6, Michael Herrmann, School of Informatics, University of Edinburgh

Beyond MHO (7)

@ Heuristics

o Metaheuristics

o Memetic Algorithms (1st level MA)

@ Hybrid algorithms

e Hyperheuristic (2nd level MA)

o Co-evolution and self-generating (3rd level MA)

Classification according to Chen, Ong, & Lim (2010)

Natural Computing 2024 /25, week 6, Michael Herrmann, School of Informatics, University of Edinburgh

Memetic algorithms (Moscato, 1989)

@ Metaphor based on social evolution — cultural algorithm

@ Includes both genetic and individual learning (similar to the
Baldwin effect and Lamarckian evolution)

@ In the context of MOO this can include a preference for
certain solutions or a measure of diversity.

@ Can be as simple as GA with ES for local search

@ In principle, the memetic component of the MH needs to be
developed in a social context (different from Baldwin effect
and Lamarckian evolution, t.b.d. later)

@ Can be considered as a type of hyperheuristic algorithms, see
below.

see e.g. Neri & Cotta (2012) Memetic algorithms and memetic computing
optimization: A literature review.

Natural Computing 2024 /25, week 6, Michael Herrmann, School of Informatics, University of Edinburgh

