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Overview

1 No free lunch theorem (previously)

2 Model based search (previously)

3 Random walks, informed search, Bayesian estimation (now)

4 Biologically and physically inspired algorithms (now)

5 Schema theory for GA & GP (soon)

6 Dynamics and convergence (soon)
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1. What happens in MHO?

Because of the diversity of the “inspirations” of MHO algorithm, a
common mechanism is hardly visible. The common theme seems to
be to achieve either a balance between to opposed effects or a
gradual shift between them:

Exploration vs. exploitation

Cooperation vs. competition

Diversification vs. intensification (Blum and Roli, 2003)

Global search vs. local descent/ascent

Randomness vs. greediness (goal-directedness)

These concepts set the scene, but what happens?
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Exploration and exploitation in our algorithms

exploration exploitation

SA temperature-based
fitness decrease

fitness increase
(hill-climbing)

GA, ES mutation
crossover
(islands)

selection
(elitism)

ACO probability rule
(sampling)
τmin, τmax

pheromone evaporation,
local heuristics
(local search)

PSO inertia (ω)
overshooting forces
(α1 + α2 >≈ 4)

forces to bests
(α1 + α2 <≈ 4),
“constriction”

How can exploration and exploitation be balanced or controlled?
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Exploration and exploitation

“A metaheuristic will be successful on a given optimization problem
if it can provide a balance between the exploitation of the
accumulated search experience and the exploration of the search
space to identify regions with high quality solutions in a problem
specific, near optimal way.”

T. Stuetzle: Local Search Algorithms for Combinatorial Problems—Analysis,

Algorithms and New Applications. DISKI. infix, St. Augustin, 1999.
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Random walks

Undirected, local search

x ← x +∆x

where ∆x is a random vector.

Population size 1

Can be “global” or “local” in dependence on average step width

Isotropy and independence of increments are often assumed in
modelling, but are not required in a general sense nor provided
by all algorithms
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Random walks: Example

Discrete state space Z
d , start at origin

At each time step t ∈ N at with probability 1
2 either +1 or −1

For d = 1 and large t, the
ensemble of the walks will
approach a Gaussian distribution
with mean µ = 0 and variance
σ2 ∼ t, i.e. the trajectory will
stay with high probability within
[

−κ
√
t, κ
√
t
]

for fixed κ,
e.g. p = 0.97 per step for κ = 3.

A random walk comes arbitrarily close to a global optimum x∗

(‖x∗‖ <∞) with prob. 1 for d ≤ 2, but not for d > 3, i.e. in
higher dimensions we need to use additional information
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Random walks

Occur as special cases (e.g. for constant fitness function in
many MHO algorithms)

Are used in many MHO algorithms to introduce diversity

Unbiased random walks can be used to find out about
characteristics of the problem, i.e. the fitness landscape and
thus help to avoid confounding properties of the problem and
properties of the algorithm (e.g. consider random walk
correlation function [Weinberger, 1990])

Can serve as 0th-level comparisons for MHO algorithms

Occur widely in other context, e.g. in reinforcement learning,
or in biology (E. coli or viruses).

see e.g. Barry D. Hughes: Random Walks and Random Environments (1995)
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Lévy flights

A random walk with a step length the follows a Lévy
distribution

PLévy(x) ∼ ax−γ , with x > 0 and γ ∈ (1, 3]

Mean and variance are infinite (“heavy tail”)

Usually a lower and upper cut-off is used, i.e. x ∈ [xmin, xmax]
with xmin > 0, xmax <∞.

Compromise between local exploration and “quite a few”
large-scale steps.

Used in many MHO algorithms for scale-free search
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Informed search

Biased random walks

A heuristic uses the information obtained by an optimisation
algorithm in order to decide which candidate solutions will be
tested in future.

Heuristics depend on the type of problem.

This includes also AI search methods such as best-first search

Adaptive walks, i.e. walks that change their statistics based on
a fitness function, are the link to MHO algorithms

Judea Pearl: Heuristics (1984); Michalewicz & Fogel: How to Solve It (2004)
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Bayesian framework

Start with a probability distribution that covers all the search
space and which will be used as a prior.

Fitness values Fi for points xi obtained by time step t serve as
evidence for an posterior distribution

Pt (x |xi ,Fi) =
P (x |xi ,Fi )Pt (x)

P (xi ,Fi )

which can be seen as expressing a belief about the global
optimum.

The posterior can be used as new prior Pt+1 (x) = Pt (x |xi ,Fi )
The sequence of Pt (x), t ≥ 0 may contract quickly, such is
may be useful to inject additional entropy.
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Overview

These additional algorithms are included here as a toolbox
where bits and pieces can be repurposed for use in algorithms
of your own design.

The biology, physics, chemistry that provides the background
(bat, bees, monkeys, ...) is certainly interesting in itself, but
will not be included here (see Sörensen, 2013).
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Continuous and combinatorial optimisation

Combinatorial optimisation

exhaustive
polynomial time algorithms, e.g. Dijkstra’s algorithm
approximations, e.g. metaheuristics:

Taboo search
Simulated annealing
Genetic algorithms
Ant colony optimisation (River formation dynamics)

Continuous optimisation

local: gradients, downhill-simplex (Nelder-Mead method)
global: metaheuristics

PSO, ES, DE, ...
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Preview

Most biologically inspired algorithms are

similar to PSO

swarms of solutions: vectors in R
d

attraction to better solutions
often no control of dynamics (compared to PSO: α = 1 and
ω = 0)

similar to ES by adding structure to the population (also seen
in PSO with topology)

similar to ACO

probability rule for more exploration near best solutions
preference of fitter solutions lead to premature convergence,
which is counteracted by randomness
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The Bat Algorithm (Yang, 2010)

With probability τi

ρ ∼ U [ρmin, ρmax]

vi (t + 1) = vi (t) + ρ (g − xi (t))

xi (t + 1) = xi (t) + vi (t + 1)

With probability 1− τi

ρL ∼ U [−1, 1]D

xi = xk + ρL





1

N

N
∑

j=1

Lj




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The Bat Algorithm

With probability τi

ρ ∼ U [ρmin, ρmax]

vi (t + 1) = vi (t) + ρ (g − xi (t))

xi (t + 1) = xi (t) + vi (t + 1)

If τi → 1, the dynamics is similar to PSO with parameter α1 = 0
(no personal best)

ρmin has little effect on the performance, so we can set ρmin = 0

ρmax can now be chosen as α2 for PSO (or a bit more conservative
because the bat algorithm has extra noise)
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The Bat Algorithm: “Cooling” scheme for the noise

The noise strength 1
N

∑N
i=1 Li is initialised by Li = 0.5 for all i

and reduced in each step by multiplication with α

If ρ < Li (ρ ∼ U [0, 1]) Li = αLi
The noise strength 1

N

∑N
j=1 Lj decays as κ1

t
for t →∞, with a

factor κ ∼ 1+α+4
√
α

6(1−α) (empirical), i.e. the noise decays slowly

for all α ∈ (0, 1)
Note that the noise is not related to the dimension of the
search space such that the initial values for Li need to be set
appropriately.

The noise events occur with probability τi for the individual i
The update rule for τ is (possibly) τi =1− e−γt , such that all
τ approach quickly 1. It is possible that a slower approach was
intended.
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The Bat Algorithm

Comparison

Largely similar to PSO

Randomness is added with a slowly decaying frequency

Problems

For good parameters PSO does not need extra randomness

For sub-optimal parameters, extra randomness can help, but is
hard to control w.r.t. strength and timescale
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Artificial Bee Colonies (Karaboga, 2005)

Similar to DE/PSO with choice of vectors similar to ACO

Step 1: Given a set of current “bests” si , mutate each si by
mixing with another random solution sj

si (t + 1) = si (t) + ρB (si (t)− sj (t)) (1)

ρB ∼ U [−1, 1], usually for only one coordinate at a time.

Step 2: Choose from a set of current “bests” si with probability

pi =
qi
∑

j qj

where qi is the fitness (“interestingness”) of the solution si ,
and perform (1) again to explore more near the best solutions

New si is accepted only if better, if a “best” rarely leads to
improvements it is replaced by a random solution
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Artificial Bee Colonies (ABC)

Comparison

Similar to DE: Differences between random solutions are added

Similar to PSO: The difference is multiplied by a random
factor (α = 1)

Similar to ACO: Solutions with higher fitness are preferred

Randomness by adding random points in the search space

Problems

No parameters (as in PSO/DE) to control the dynamics of the
solutions

Randomly added solutions have low fitness and are thus
unlikely to receive proper exploration

Probability tends quickly to a single (local) optimum

If no further improvement possible, the bees move on to other
random locations after emax trials, i.e. emax limits exploitation
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Cuckoo Search (Yang, 2009)

Two modes of particle movement, local (similar to DE)

si (t + 1) = si (t) + αρ ◦ (sj (t)− sk (t))

with step width α and random factor ρ ∈ {0, 1}, i.e. only
some dimensions are changed, and global

si (t + 1) = si (t) + α ξ

where ξ = (ξ1, . . . , ξd ) and |ξi | ∼ PLevy

A fraction of bad solutions is abandoned, and random
solutions are added.
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Spider Monkey algorithm (Bansal et al., 2014)

Hierarchical version of ABC, e.g. 40 individuals forming up to
5 subgroups (similar to ES)

Similar to PSO, individuals are updated by random amounts

attraction to group best and attraction to or repulsion from
random individual from other group
attraction to global best and attraction to or repulsion from
random individual from other group
attraction to global best and repulsion from group best

Global and local bests are updated, global best does
hill-climbing

Groups are combined or split with a certain probability
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Glow-worm Algorithm (Krishnanand & Ghose, 2006)

Compare own fitness to individuals within a neighbourhood

Calculate probability of glow-worms moving towards each of
these neighbours (similar to ACO)

Choose neighbour and move towards it (similar to PSO)

Update neighbourhood range to maintain a group-based
competition even at crowding near local optimum

While individuals are still exploring, they may have empty
environments (neighbourhood range has a maximum)

The Firefly Algorithm also updates the maximum
neighbourhood range
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Harmony Search (Geem et al., 2001)

Similar to ES (or population-based SA) at zero temperature
plus random search

Choose a random “best” si and check whether a change of a
component

sij = sij + U [−ρ, ρ]
leads to an improvement

Accept change when better than the worst over all “bests”

With a small probability τ add a new random “best” chosen
from a certain range [l , u]d

τ and ρ are decreased over time

Problem: Set of “bests” contracts quickly to the region near
best “best”.
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Harmony Search (Geem et al., 2001)

“Weyland (2013) demonstrates convincingly, that Harmony
Search (Geem, 2001) is nothing more than a special case of
Evolution Strategies (Beyer, 2002) in which each of the
concepts of Evolution Strategies has been relabeled from an
evolution-inspired term to a term inspired by musicians playing
together.”

“Even though the development of Evolution Strategies precedes
that of Harmony Search by at least 30 years, the latter is
proposed as an innovation and has by now attracted an
impressively long list of follow-up research.” [≈ 10,000 citations]

From Sörensen (2013), following Scholarpedia “Metaheuristics”
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Physics- and Chemistry-based Algorithms Siddique and Adeli (2017)

Theoretical Physics as a science is based on optimisation:
Principle of least action (or principle of stationary action):
A particle starting at point x1 at time t1 and reaching position
x2 at time t2 follows a trajectory that is an extremum of the
action integral. ⇒ Nonlocal optimisation in space and time!

Potential advantage: Physical systems are well understood
w.r.t. dynamics, fluctuations, perturbations etc.

Can we extract methods for computational optimisation?

Computational problem may not have a physics counterpart
Physical motion may not be effectively computable
(e.g. chaotic behaviour)
Physics systems may be computationally complex, too
Physics systems may reside in a local optimum
Physics or chemistry may still be merely a metaphor ...

SA and PSO inspired by thermodynamics & statistical physics
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Electromagnetism-like optimisation (EMO) Birbil & Fang(2003)

Coulomb’s law: Force between two particles with charges qi
and qj at resp. positions xiand xj

Fij = ke
qi qj

|xi − xj |2
(xi − xj)

For use in optimisation, determine charges according to fitness

qi = exp

(

(f (xi )− f (xbest))D
∑N

j=1 f (xj)− f (xbest)

)

where D is the dimension of the search space and N the
number of particles
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Electromagnetism-like optimisation (EMO)

The direction of the force is defined as towards the particle
with higher fitness, i.e. a particle is attracted to the better
particle and repelled from a worse one

Particle i experiences the following force from particle j

Fij =







qi qj

|xi−xj |2 (xj − xi) attraction if f (xi ) < f (xj)

qi qj

|xi−xj |2 (xi − xj) repulsion if f (xi ) ≥ f (xj)

It moves then by a random amount ρ according to the force

xi = xi +
∑

j 6=i

ρFij

|Fij |

The best particle does not move.

In spite of the normalisations, it is advisable to restrict the
movement by bounds.
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EMO: Function for 3 particles

x3 is better than x1,
but worse than x2

No natural scaling between
forces (fitnesses) and states

Spiralling-like dynamics,

prone to premature
convergence

Repulsion strongest if both
particles are not too bad

Many variants that include
more noise, subpopulations
etc.

Elsewhere, many nice
applications of EM-like
algorithms exists, e.g.
untangling of graphs
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Opposition-based EMO

Given a population X = {x1, . . . , xN}
x̄i = (x̄i1, . . . , x̄iD) is opposed to xi = (xi1, . . . , xiD) if
x̄ik = Lk + (Uk − xik) for all k , where Lk and Uk are the lower
and upper limits of the k-th dimension of the search space.

Given X calculate X̄ = {x̄1, . . . , x̄N} and choose the N fittest
individuals from X

⋃

X̄

Opposition procedure can be applied initially or also later
during runtime, or only to dome of the dimensions

Implements a search bias based on the idea the search space
was a good choice

good solutions may be symmetric w.r.t. the centre of the
search space
If the global optimum is near the centre of the search space,
then the search is more efficient.
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Related algorithms

Gravitational Search Algorithm

Central force optimisation

includes acceleration (similar to PSO with ω > 0)
nontrivial powers (like α, β in ACO)

Charged System search
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Hysteretic Optimisation (Ising 1925, Lin 2013)

Encode a binary combinatorial optimisation problem by an
Ising model

H ({σi}) = −
1

2

N
∑

ij

Jijσiσj − γ
∑

i

hiσi

P ({σi}) = 1
Z
exp (−βH ({σi}))

See SA how to change behaviour by changing β

We can also change γ to couple the state {σi} more tightly to
the external field hi ∈ [−1, 1]

System undergoes a hysteresis when γ is changed in either
direction.

Applicable to all problems that can be encoded by Jij and hi .
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Spiral-Based Search algorithms (Tamura & Yasuda, 2010)

Assume x∗ is the current best and a particle x 6= x∗ is
supposed to spiral towards x∗

Idea: Rotate the vector pointing from x∗ towards x by a small
angle ϕ and reduce the distance by a function g < 1, i.e.

x (t + 1) = x∗ + g (|x (t)− x∗| , t)Rϕ(t) (x (t)− x∗)

For D > 2 we need more than one angles, namely 1
2D (D − 1),

or choose randomly two of the dimension and apply the

rotation

(

cosϕ sinϕ
− sinϕ cosϕ

)

to these two.
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Spiral-Based Search algorithms (Tamura & Yasuda, 2010)

Variants:

logarithmic, Archimedean, lituus (distance decays as ϕ−1/2)
fitness-dependent outwards or inwards spirals (g ≷ 1)
random angles, random decay, random noise
spirals alternatingly w.r.t. several bests

Problem:
Coverage of search space not good in higher dimensions

Advantage: More directly controllable (no scales or norms)

Search bias: Local
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A generic algorithm

It seems that most of the continuous metaheuristic optimisation
algorithms can be represented by the following scheme

For population of vectors xi ∈ R
d

vi (t + 1) = ωvi (t) + α
∑

j ,k

ρ ◦ (x̂j (t)− x̂k (t))

xi (t + 1) =

{

xi (t) + vi (t + 1) with Prob. 1− p

κxi (t) + ξ with Prob. p

x̂j , x̂k can be global best, group best or random other more or
less fit individuals

ρ can be 0 or random from an interval [ρmin, ρmax], and can be
different for different dimensions. It can incorporate a
fitness-related probability. Often ω = 0 and α = 1

ξ denotes the replacement of one individual by a random
solution (κ = 0) or the addition of noise (κ = 1)
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Metaphors in Metaheuristic Optimisation

The novelty of the underlying metaphor does not
automatically render the resulting framework "novel".

There is increasing evidence that very few of the
metaphor-based methods are new in any interesting sense.

From Sörensen (2013) following Scholarpedia “metaheuristics”
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How does this relate to the NFL theorem?

Exploration vs. exploitation: Assume that nearby solutions are
of similar quality

Information about the search space: Minimal prior knowledge
is always available

Extraction of information on the problem: Assuming that
initial data have similar properties as later data or that they
allow making inferences about later data

Pragmatic evaluation: It is the performance on your problem
that counts (.. also include cost for time to model, program,
explain to any users etc.)
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Preliminary Conclusion: What questions to be asked?

How can we control the balance of exploration vs.
exploitation?

How to include known information about the search space?

Size, dimension, structure (see below)

Does the algorithm extract and represent any kind of
information on the problem

Step sizes, length scales, adaptive parameters, adaptive
methodology
Dimensionality, constraints, sub-manifolds
Directionality, gradient-like information, correlations
Patterns, higher-order correlations, heterogeneity,
compositionality, building blocks, self-similarity, ...

How do we evaluate the algorithm for a problem of interest?

Better than random walk?
How many fitness evaluations?
How intuitive?
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Conclusion & Outlook

MHO Algorithms from physics are not necessarily “better”
than algorithms from biology: Inspiration is not enough.

Biologically-inspired algorithm are designed based on low
dimensional intuition, physics-inspired likewise,

Biologically optimisation is usually w.r.t. a niche, so
physics-based algorithms may have more potential to
generalise (with the exception of neural networks)

What matters is the alignment of the algorithm: What can we
find out about a problem?

Information theoretic analysis (Steer et al. 2008)
Exploratory landscape analysis (Mersmann et al., 2011)
Hyperheuristic algorithms

How do we choose algorithms in a particular application?
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