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@ Types and applications of MHO algorithms
o Landscape analysis

@ Automated algorithm selection
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Number of publications per algorithm
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Hussain, Kashif et al. Metaheuristic research: A comprehensive survey. Al Review 52:4 (2019) 2191. [1]
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Classification of problems

o Exploratory landscape
analysis B3] —

o Classification of problems
to be optimized [4, 6]

@ Problem is implied by a
fitness function f : X — R

Global to local

loptima contras

Level of classification
@ Instances or templates (or sets) of instances (SAT, TSP, ...)
e Types of prior knowledge (see figure from [3])
@ Amount of available knowledge and respective costs

@ Generating or evolving of additional problem instances
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O. Mersmann ea. (2010) Benchmarking evolutionary algorithms: Towards exploratory landscape analysis.
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O. Mersmann ea. (2010) Benchmarking evolutionary algorithms: Towards exploratory landscape analysis.
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ELA

e ELA aims at finding a relation between problems (fitness
functions) and algorithms based on landscape features which
can be extracted by suitable methods

@ There may be more direct or comprehensive ways to identify
alignement (see NFL theorem) between algorithms and
problems.
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Classification of algorithms

Deterministic
> Optimization method
Stochastic
Local
> Navigation scope strategy
Global
Trajectory-based
>— Solution Search strategy
Population-based

Solution Manipulation Strategy

Memory-less ey
/ Memory strategy
Memory-based

Source of Inspiration

Static

Environment type <
Purebred
Hybridization <

Solution Encoding

Parallelism -<
multi-processing
Objective Function Manipulation <

Dynamic

Hybrid

Metaheuristics

mono processing

Static

Dynamic

* Solution manipulation refers to algorithm details: Best suited for classification.
** The source of inspiration may be irrelevant and is often not even unique.
*** Encoding is crucial in practical applications; this may help for re-use of algorithms.

Peres, F. and Castelli, M.: Combinatorial Optimization Problems and Metaheuristics: Review,
Challenges, Design, and Development. Applied Sciences 11:14 (2021) 6449.
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Matching of algorithms and problems

o Ideally: Alignment (see NFL theorem)
e Hyperheuristic algorithms (ibid.)

@ Algorithm selection (next slides)

Decisions based on performance measures

Resources or runtime needed for given solution quality

Solution quality obtainable by given budget

Robustness (stochasticity of the algorithm's search behaviour,
complexity of fitness landscape, problem noise)

Performance relative to problem class

Time course of performance (e.g. slower for hyperheuristics)

Deviation of fitness from estimate by a surrogate model
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Algorithm selection guideline
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Hill-Climber Trajectory Population Hybrid Surrogate
Line Search, Simulated Annealing, Evolutionary Algorithms, Memetic Bayesian Optimization,
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computational
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and very low low to medium medium to high extremly high high
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Stork e.a.: A new taxonomy of global optimization algorithms. Natural Computing (2020) 1-24.[5]
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Automated algorithm selection

Machine Learning for Algorithm Selection
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Kerschke e.a.: Automated algorithm selection: Survey and perspectives. Evol. Comp. 27:1 (2019) 3-45.
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Remarks: Automated algorithm selection

@ Algorithm selection (AS) for portfolio selection

o Specialised: SATzilla [7] or

e More general: AutoFolio [2] for speed-up

o Algorithm schedules [Lindauer 2014, 2016]

o Machine learning: Bag of landscape features [Shirakawa &
Nagao, 2016]

o See review [Kerschke e.a., 2019]

@ No clear winner: AS for AS or hyper-hyperheuristics?

@ Background knowledge on problem instance or problem class
can be more useful than automated AS
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DIY

@ moPLOT landscape explorer: Visualizing Multi-Objective
Optimization Problems

o ParadisEO: Heuristic Optimization Framework (S. Cahon
(2004) Paradiseo: A framework for the reusable design of
parallel and distributed metaheuristics. Journal of Heuristics
10:3 ,357-380)

@ irace: Automated algorithm configuration tool (M.
Lépez-Ibafiez et al. (2016) The irace package: Iterated racing

for automatic algorithm configuration. Operations Research
Perspectives 3, 43-58)

@ |OHprofiler: Experimental platform (C. Doerr et al. (2018)
IOHprofiler: A benchmarking and profiling tool for iterative
optimization heuristics. arXiv:1810.05281)
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Conclusions

@ Landscape analysis is suggestive, but perhaps not easier than
optimisation itself.

@ Other attempts with huge numbers of features have been
made.

@ AAS is an advanced form of hyperheuristics.

@ Evolved into automatic algorithm composition based on neural
networks
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