
NAT-DL: Self-study questions with answers             Set 1 (week 3)

1. The knapsack (or: rucksack) problem is as follows: Given a set of weights W, and a target 
weight T, find a subset of W whose sum is as close to T as possible.

 

Example: W = {5, 8, 10, 23, 27, 31, 37, 41}, T = 82
 

a) Solve the instance of the knapsack problem given above.
 

Answer: 82 = 41+31+10 is one solution. Another is 41+23+10+8. Any other solutions?
 

b) Consider solving the knapsack problem using the canonical GA. How can a solution be 
encoded as a chromosome?

Answer: If the weights set is of size W, then each bit in a chromosome encodes whether 
item w[i] is present or not.

c) What fitness function can be used for the knapsack problem, so that better solutions have 
higher fitness?

Answer: If D is the total sum of the candidate solution,  f(D) = 1/(1+|T-D|). Think of 
possible alternative functions if possible, e.g. linear tent-shaped function, T-|T-D|. See also 
question e)

d) Given your answer to question b, what selection methods would be appropriate?

Answer: Rank or Tournament. Fitness-proportionate may give too much emphasis to strong 
solutions, which may not be important in the present example, but the population may be 
dominated by individuals that contain the largest item(s), although the optimal solution may 
consist of many small ones.

e) Consider also the case that the total weight of the subset must not exceed T. Would you 
need to change your approach?

Answer: Whether solutions with D>T are acceptable depends on the context, but it would 
often be reasonable to say that D>T is not admissible. In this case the fitness should be 
(T-D)Θ(T-D), i.e. f(D)=T-D if T≥D and f(D)=0 otherwise (Θ is the Heaviside step function). 
Note that this fitness function is not deceptive, although it may help to allow initially 
violations of admissibility in the sense that a symmetric fitness is used, while the non-
exceedance enforce only in later generations.

2. Computer exercise: Implement a simple GA with fitness-proportionate selection, roulette-
wheel sampling, N=100, pc=0.7, pm=0.001. As fitness, use the integer value that is obtained 
when considering the genome of an individual as a binary number. 

a) How does the number of generations needed to find the optimum depend on the size of 
the genome? This is just an exercise, not an assignment, so just try a few sizes and 
record the result.

b) Compare your result with a hill-climbing algorithm on the same problem.

c) For a fixed size of the genome (D=20) the time to find the solution depends on the 
parameters pc and pm as shown in the figure 1 below (green (x) is for random, red (+) for 
zero initialisation). Discuss the figure.

d) The second figure show analogous results for a “deceptive” fitness function over a 



discrete search space {0,1,….,31}, with F(x) = x2 for x = 1, …, 30, and F(0) = 961 and 
F(31) = 0. Why are the results here independent of  pc? Why is the curve monotonous?

Answer: Check how your program, tests, parameters, problems etc. differ from solutions by 
other students your group. Check if you understand the results that you have obtained (this is 
not always possible, but for the simple problem considered here not too difficult.

There is no program for hill-climbing included: The idea is that because hill climbing finds 
the optimal solution in D steps, where D is the dimension of the search space, no computing 
is necessary. Note that hill-climbing also approaches the optimum optimally fast, because it 
checks by which mutation it achieves the largest progress. In other problems this may not 
work, though.

c) and d) are based on the figures (see below). For c), consider first the case with a zero 
initialisaton (red “+”s): Every “1” needed for the solution needs to be produced by a 
mutation in at least one individual. If there are very few mutations (one the left), a long time 
is needed before this the last 1 is finally found. The spread of the “1”s that are already there 
has happened by this time, simply be selection, even for a small recombination rates 
(crossover probabilities are from 0 to 1 in steps of 0.1, from bottom to top). If there are too 
many mutations (on the right), then it is likely that “1”s that are already there are lost from 
individual that have already collected a large number of “1”s. For an intermediate rate of 
mutations, the selection can counterbalance the loss of “1”s among the good individuals. 
Recombination (the top curve has the lowest recombination rate) helps to reduce the time 
further, as “1”s that are found by some individuals can spread quickly, and the lucky 
individuals that got many in a crossover, get a high fitness and will soon dominate the 
population.

For random initialisation (green x), a low mutation rate is not much of a problem, because 
the good bits are already somewhere in the population, but still need to be combined by 
recombination. Therefore the crossover rate has a much bigger impact here.

d) For the fully deceptive problem, it becomes clear that a fully random search is the best 
that can be done in this case, because any information that can be “harvested” along the way 
in here only misleading.  Also, the more noise the better, it is not even possible to add too 
much noise, because there is no information (w.r.t. the optimum) that could be destroyed. 
Likewise, the initialisation does not matter here, as it is quickly forgotten by the 
accumulating noise.

3. The travelling salesperson problem asks to find the shortest path through a set of N cities 
given the pairwise distances. Create randomly the (x,y) positions of  20 - 50 cities, 
determine their distances, and then mutate (how?) a string representing the tour and evolve a 
tour that leads back to the starting city with the shortest distance. 

Answer: Check whether this was done at all by some students. For the GA solution, it 
seems from the numerics that there also a linear increase, although about 20 times slower 
than with hill-climbing, however already at D>50, the numerics becomes a problem, the 
fitness differences are so strong that the algorithm is more greedy and gets a bit faster. Note 
that this is with elitism, while without elitism the results will be qualitatively similar, but 
slower. Not only for the TSP it is important to realise that for large N the algorithm struggles 
to find the global optimum. Nevertheless, encoding and scaling are still interesting points.

4. Termination: The generational process in GA is repeated until a termination condition has 
been reached. Termination is needed to qualify as an algorithm (by definition). What 
termination criteria are suitable in GAs and similar algorithms?

Answer:

◦ A solution is found that has optimal fitness (or is sufficiently close to the optimum)



◦ Fitness indicates a sufficient improvement over alternative algorithms 

◦ Fixed number of generations reached (only for safety!)

◦ Allocated budget (computation time/money) reached 

◦ The diversity of the population has vanished (restart?)

◦ The fitness of the highest ranking solution is reaching or has reached a plateau such that 
successive iterations no longer produce better results (restart?

◦ Combinations of the above

◦ Note that after Termination it is reasonable to decide: Really finish or restart a variant of 
the GA on the same task.

5. Natural evolution: Recall what you know about natural evolution (DNA, genomes, natural 
selection etc.). What features of biological evolution are reflected in Gas, and how could 
GAs be improved by including additional features into the algorithm design? 

Answer: Genetic algorithms are only rough sketch of natural evolution. Most importantly, 
the idea of a fitness function that can be evaluated for a single individual is not meaningful 
in nature where the fitness of a species always depends on the fitness of other individual and 
other species. The logic is  therefore different: In GA we use the fitness function to decide 
which individuals are selected for the next generation, whereas in biology fitness can be 
defined indirectly by the ability of an individual to produce offspring. There are many 
interesting observations some of which we will discuss later in the course such as 

◦ The possibility to improve fitness by learning and adaptation (Baldwin effect), which is 
in a sense what we try to achieve by including a hill-climbing stage into the process. 

◦ The occurrence of "junk"-DNA. Usually we make sure to use an efficient representation, 
but in GP we will mention also cases where the presence of unused parts of code in 
evolving programs is considered to be beneficial for the evolution.

◦ The DNA coding principles: DNA codes directly amino acids, and amino acids that can 
have a similar function are represented by similar codes. Such considerations will usual-
ly be taken by the user of an MHO algorithm when encoding the problem to make sure 
that the fitness function is smooth or even monotonous over the hypercube that repre-
sents the genes. A similar principle is useful in encoding the problem in GAs: Related 
properties in the problem space should be encoded by nearby section of the genome.

◦ Neutral mutations: Biological mutations have often no effect for the individual, which 
can be a result of stabilising mechanisms or error tolerant coding, but it is also possible 
that these mutations are occurring to produce a maximal width of the genome of the 
population filling thus the ecological niche as much as possible. In GA and other MHO 
algorithms this would correspond to methods the increase the diversity with minimal 
effects on fitness.

Note that this list can be extended by many other points. This task was meant as an exercise 
in finding biological inspiration for design and further improvement of MHO algorithms, not 
in itself as learning material.
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