
NAT-DL: Self-study questions with answers: PSO                      Set 2 (week 4)
 

Exercises
 

1. Check your understanding of the PSO algorithm:
a. Why do we call the terms with α1, α2 “forces” and ω itself “inertia”?

Answer: This relates to a suggestive physical interpretation: Inertia is the tendency to 
retain a certain movement, and force is proportional to acceleration, i.e., the change of 
the velocity. We don’t care about units [such as seconds] here, but we have the para-
meters α1, α2 and ω in place to account for the fact that there is a proportionality rather 
than an equality of the terms and the respective physical quantities. Besides, inertia in 
the physical sense would imply ω=1, so the use of arbitrary values of ω could be seen as 
“degree of inertia”, it is still often called “inertia” in the context of PSO.

b. Would the algorithm work with negative values for α1 and/or α2 ?
Answer: For negative α’s, the particles are repelled from the current best solutions, and 
the further the particles are away from the bests the stronger the repulsion gets such that 
the swarm will diverge even for small negative values of  α1 < 0 and α2 < 0. If α1 < 0 < 
α2 and |α1| < |α2|, i.e., the personal best is repulsive, but the global best is attractive, the 
algorithm can still work, namely, if we assume that p=g, then the combined effect is still 
attractive for α2  + α1 > 0. If the bests are not the same, they will more and more appear 
to lie in the same direction, if the particle moves further outwards, so the combined force 
from that region will attract the particle. If the particle returns, it will again be repelled 
from one of the bests, such that it is not very likely to exploit the good regions. In the 
opposite case, similarly to above, the algorithm could still work, but its performance 
might be even worse than in the previous case. 

c. How well would the algorithm work for  α1 >> α2 > 0  or for  0 < α1 << α2 ?
Answer: This is not dynamical problem, but the performance will probably not be great, 
because the stronger global best seems preferable to a stronger personal best for 
relatively simple problems. For complex problems it could be useful to maintain a 
certain diversity which is achieved best by the personal bests. In simulations, it often 
seems to be the case that the sum of the two (or perhaps their quadratic sum) is the more 
essential parameter as compared to their individual values. However, if one of the α’s is 
close to zero, then the performance usually drops.

d. What is the benefit from using ω close to 1? What is the downside of this?
Answer: We assume there that |ω|<1, then the particles continue for a long time and 
perform large excursions, before being retracted by the distance-dependent forces. The 
benefit is more exploration, the downside is less exploitation. In addition, a modulus of 
ω close to 1 leads to increased instability. Namely, if the forces draw in the same 
direction as the velocity, then the particle is accelerated by the combined effect. Due to 
the inertia it will pass the bests and will be slowed down, but for slightly stronger forces 
this slow-down will not be enough, such that the particle diverges. Weak forces on the 
other hand don’t allow the particle to come often near the promising regions such that 
the performance will not be good.

e. Would the algorithm necessarily diverge if  ω  ≥ 1?
Answer: Yes. It may seem that this is not necessary as the forces retract the particles, 
but if there is no damping in the system the oscillation about the bests built up and 
divergence is seen as a spiralling-away. For |ω|=1 the system is in a limit case, so for 
non-zero forces it will still diverge, as randomness adds up and there is no damping. For 
zero forces, the particle simply follows its initial velocity, if this is non-zero.



f. Would it work with negative values for ω?
Answer: This is no problem, unless |ω| 1≥ , see above. Negative inertia does not occur 
in standard physical systems, as it means that the velocity flips-over in every time step,  
but this is no problem for PSO which is a purely computational system. The strong 
velocity changes at every time step do in fact not make much of a difference, except that 
they interfere differently with the force terms, so the situation in not completely 
symmetric with respect to positive or negative ω. 

g. Discuss how diversity can be maintained in a particle swarm.
Answer: The discussions above should give some hints: values of |ω| close to 1 help, 
also overshooting forces (α1 + α2 > 4). The multiplicative randomness doesn’t help 
much towards diversity, as we have discussed in relation to “biases in PSO”.
 

2. Consider a particle “swarm” consisting of a single particle with only a personal best. 
a. How does a deterministic PSO particle move in a one-dimensional search space? 

Assume the random factors are constant and equal to 1, and that the personal best never 
changes. Try to solve the problem analytically. 
Hint: Consider a matrix equation for the 2D vector (v,x)T!

Answer:



b. What would happen in this case in higher dimensions?
Answer: If we ignore the noise, then the picture is not really different in higher 
dimensions, because the dimensions are essentially not interacting in linear dynamics.

c. Without aiming for the maths, discuss the effect or the noise in the original algorithm.
Answer: This is when things are getting difficult, as noise has a number of effects. It 
will blur any expected boundaries of stability, it will lead to long excursions before the 
swarm converges, even if the parameters are in the stable region. It also turns out that it 
is actually stabilising the system, i.e., while the dynamics diverges for large parameters 
from a certain level, the noise is important at the high parameter values. For a more 
comprehensive understanding, we need to consider that there are two eigenvectors in the 
system, one can be unstable, while the other is still stable, and their relation is also 
dependent on the noise. Also, there may be different effects from the attraction to 
personal and global best. The question is, whether the resulting particle dynamics 
actually helps for the optimisation tasks or not.

d. If you like, you can again discuss the PSO search biases here.
Answer: If a particle, its personal best and the global best have one coordinate in 
common, then there is no escape, unless another particle becomes the new global best 
and re-introduces activity in this coordinate. This effect may interfere with stability, but 
one can assume that after some (long) time no new global bests are found, such that the 
effect is asymptotically negligible.

 

3. [Numerical exercise] Compare your findings (or intuition) from the previous question with 
a simulation of a PSO algorithm. Try also to solve an actual optimisation problem such as 
the minimisation of f(x)=x2 or of a more complex function. The algorithm will be available 
before the tutorial, but it should not be too difficult to try writing (or finding) one yourself.
 



PSO performance for the minimisation of a sphere function f(x,y)=x2+y2. The left-hand 
figure shows where the 5% best performing (ω,α) parameter pairs are located (α is the sum 
of the two alphas, which are equal here). The right-hand figure provides a contour 
representation of performance over the whole (ω,α) parameter plane. The solid line (both 
figures) is shows a theoretical result for a balanced swarm, i.e. a swarm that is neither 
converging nor diverging). In all cases a 25-particle unconstrained PSO algorithm is used 
averaged over executions. Note that the larger α are possible here, but do not give the best 
performance, which would be different for problems with many local optima.

4. We have mentioned adding a repulsion term to the velocity rule of PSO. 
a. What happens when the particle is repelled from the globally best particle by which it is 

also attracted?
Answer: Repulsion has a different dependence on distance, attraction increases with 
distance and repulsion decays, i.e., there must be some distance where the two effects 
are neutralising each other, and this is where the particle remains (or about with point its 
oscillates), provided that nothing else (e.g., repulsion from any other particle or change 
of personal best) happens in the meantime.

b. What other terms could you add in order to adapt the PSO algorithm better to a 
particular problem? 
Answer: We have mentioned already speed control, i.e., a term that is proportional to 
the difference of the length of the velocity vector and a target speed and which enters the 
update question as a multiplicative factor for the speed, e.g., -v|v-v0|/(|v|+|v0|). There 
may be attraction to or repulsion from neighbours, alignment to their velocity vectors 
(compare Reynolds' rules), electromagnetic forces that make particle spiralling away 
from pairs or triplets of other particles, or see below for a DE like term.

c. Each of these terms comes with one or more parameters. How can you use a genetic 
algorithm to choose for you the parameters for the new PSO algorithm with inertia, 
attractive forces, repulsion, alignment of velocities, …
Answer: This is quite easy, for, say 5 terms, we can have a 5-bit string that encodes the 
presence or absence of the term. We can add one more bit per term to include also sign 
of each term and more bits for the parameter values. In order to determine the fitness of 
the GA, we ran the multi-term PSO on many problems and use the average performance 
over these problems as a fitness for the GA.

5. The particles in PSO interact only via the global best which is determined over all particles, 
compare this with the interaction of individuals in biological swarms, and discuss resulting 
options for the design of metaheuristic optimisation algorithms.
Answer: It could be interesting to discuss in this context the results of Iain Couzin, who 
showed that in hierarchically organised animals (Macaques) it is typically not the superior 
male who make the decision, but a well networked group of intermediate member of the 



troop decide which seems to work well. In more technical terms, this question aims at the 
effects of topology, as individuals in big animal swarms mostly follow their neighbours, 
while a leader may not be visible. There are various variants of PSO that incorporate such 
observations either by defining network topologies different from the all-to-all topologies 
that is used for fitness comparisons in the original PSO. There are many variants (but there 
is no need to discuss this in detail): 
(i) The swarm can be organised into groups that are fully connected within, i.e., each group 
has a winner, and only group winners are connected to other winners, i.e., receive attractive 
forces from them (the group-best forces are zero for the group winners).
(ii) Each particle is compared to a small number (say 4) of other particles. These 
"neighbours" are chosen randomly in the beginning, but do not need to be close in the search 
space.
(iii) The neighbours are determined by distance, i.e., the "global" bests are determined only 
among the (say 6) local neighbours.
(iv) Hybrid algorithms are discussed later, but it is possible to remark already here that 
hybrids groups are also of interest.


