
NAT-DL: Self-study questions (and answers) on ACO etc.   Set 4 (week 6)

1. The figure on the right shows an example from the ACO book by Dorigo and Stuetzle. What 
results do you expect for an ant colony algorithm that does not use taboo lists (except for 
inhibition of immediate return to the previous node)?

Answer: Assume the visibility is given by 
the inverse of the lengths of the links in the 
picture. The densely connected path in the 
lower part of the graph will most likely lead 
to cycles. Cycles can be discouraged by a 
high evaporation rate, but then the algorithm 
will not generate a memory of good 
solutions. So without a taboo list, cycles 
seem to be unavoidable. Some ants will 
travel the upper part which leads them 
straight to the goal such that in most of the 
runs the algorithm will end up with the 
suboptimal solution along the upper part (8 
vs. 5 steps in the lower part). Because the 
problem is small, there is still some chance to find the optimal solution. Conclusion: Taboo lists 
are useful.

2. Discuss the application of ACO to the eight-queens puzzle. This puzzle is the problem of 
putting eight chess queens on an 8x8 chessboard such that none of them are able to capture any 
other using the standard chess queen's moves, cf. en.wikipedia.org/wiki/Eight_queens_puzzle.

Answer: (s. S. Khan et al.“Solution of n-Queen problem using ACO”. In proc. of 13th IEEE 
International Multi-topic Conference (INMIC 2009), Islamabad, Pakistan.)
Each ant simply place queen by queen on the chessboard, which can be done in a search space of n 
times nxn nodes. Think of nxn rows and n columns: each ant runs from left to right (i.e. n steps including 
the initial placement) each time selecting one of the nxn fields of the chessboard). Local heuristic is 
whether a queen can “kill” any one of the queens that are already there for this ant. The paper also 
studies alpha and beta and finds alpha slightly >1 and beta about 1.5 to be good values.    

3. [Numerical exercise] Run the standard ACO on the travelling salesperson problem with N 
cities. You may use code from http://www.aco-metaheuristic.org/aco-code/ or elsewhere or 
partially reuse your code from the 1st assignment. Start with nants=N, alpha=1, beta=2, rho=0.75. 
How can you influence the quality of the stationary solution. Consider the standard deviation of 
the tour length over the ants during one iteration.

Answer: Strictly speaking, the quality of the stationary solution can only be influenced by the 
choice (or changes) of the  parameters before the solution becomes stationary. However, 
theoretical studies often consider quasi-stationary solutions: Run the algorithm for some 
parameters and wait until the characteristics (effective decree, mean, and variance of the 
solutions) do not change any more, then change parameters. In physics, this is called adiabatic 
approximation, it allows us to tell whether the parameters are responsible for a certain change or 
whether it had happened anyway).
Smaller values of alpha and beta should help, as well as higher evaporation, i.e. larger rho. 
Generally a low standard deviation is a sign of (premature) convergence, while high standard 
deviation is not a problem if you make sure to keep the overall-best ant (and to reinsert it should 
the mean tend to increase or to use some other form of elitism).



4. Consider the following (very small) TSP: 
d(A,B) = 2, d(A,C) = 3, d(A,D) = 5, d(B,C) = 3, d(B,D) = 3, d(C,D) = 4. 

a. How many different tours are possible? What are the lengths of these tours?
b. Which tour is most likely to be found by the ants?
c. Compare the case of a single ant to a population of two or more ants on this problem.

Answer: 
a) (4 choices for first city) x (3 for 2nd) x (2 for third) = 4! = 24. Circular permutations are the 
same so divide by 4. In addition, it is to be checked whether tours can be reversed, i.e. whether 
ABCDA is the same as ADCBA (etc.): The ants may choose the two tours differently based on 
the local heuristics, so we need to consider 6 tours, i.e. N!/N = (N-1)! (assuming you go back to 
the starting city).
Two tours have lengths of 12 (ABDCA, ACDBA), the other four have all length 14. So, 
avoiding the longest link (AD) specifies already the optimum.
b) The ants will initially prefer to go from A to B. The next decision (whether to go from B to C 
or D) is equally likely, but the tour the continues from B to C will receive less pheromone.
c) We essentially have three unique tours, after removing circular permutations, and reverse 
orderings, two of which are equivalent. In this problem, we aim to avoid the longer tours.
A single ant will make its first decision, and it is more likely that it ends up in one ot the longer 
tours, and in the single shorter tour. It will put some pheromone, and will then be even more 
likely to continue on the longer tour and may get stuck there (if there is not enough further 
exploration). For two ants, it is more likely that at least one ant finds the short tour, and will 
guide by its pheromone also the other ant to the better tour, so more ants are less likely to get 
trrapped. If there is deception (a short first leg), then it is even more likely to get trapped. We 
cannot hope to have no deception in problems to which we apply ACO (in the same way one 
cannot hope to have no local optima in the other algorithms that we have considered), but the 
collective "intelligence" of the ants is able to mitigate the effects of decptions or multiple paths. 

5. Consider one of the following problems (or any other one that seems to be interesting) and 
explain how you would use ant colony optimisation to find an acceptable solution: Sequential 
ordering, classification (e.g. of images), graph colouring, the knapsack problem (or the cutting 
stock problem), protein folding, the shortest common supersequence problem (for details cf. 
wikipedia). For this purpose, Dorigo has suggested answering the following questions:

a) Define a set of candidate solutions and the set of feasible solutions.
b) Define a greedy construction heuristic:

i) What are the solution components?
ii) How do you measure the objective function contribution of addition a solution 
components 
iii) Is it always possible to construct feasible solutions?
iv) How many different solutions can be generated with the constructive heuristic?

c) Define a local search algorithm:
i) How can local changes be defined?
ii) How many solution components are involved in each local search step?
iii) How do you choose which neighbouring solution to move to?
iv) Does the local search always maintain feasibility of solutions?

Answer: Analogous to the AntTSP and AntBin in the lecture. The goal of this exercise is 
twofold: Get an idea to what type of problems ACO is applicable and recall the main steps of 
the algorithm.



6. Recall the main algorithms that we have studied (i.e. GA, GP, ES, ACO, PSO, DE)  and classify 
them according to Dorigo’s criteria for the classification of metaheuristic optimisation 
algorithms. You may like to represent your answer to this question as a table.

a. Is the solution obtained by direct construction or by the use of local search?

b. Are population of solutions used or not?

c. Is a memory used within the search process or not?

d. Is the evaluation function fixed or is it modified during search?

e. Several neighbourhoods or only a single one (i.e. what topology)?

f. Inspired by biology, physics, or otherwise?

g. For what type of problems the algorithm can be expected to work well?

Can you think of new variants of the algorithms, by modification of any criteria or by 
recombination?

Answer: See the table on the next page. Obviously, not all variants covered here, and in many 
of the entries further discussion will be useful.

For variants, we can consider for example

◦ DE as a mixture of GA and PSO. 

◦ Using a population in SA.

◦ In ACO, we could use different pheromone trails for different groups of ants (it could be 
seen as a population of trains, or as well as an island variant of ACO).

◦ Velocity vectors (from PSO) in ES (similar to CMA)

◦ Preferred mutations (based on pheromones as in ACO) in GA or GP.

◦ PSO with mutations, i.e. some vector components are exchanged (similar to DE)

Many other combinations and variants are possible, so which one to choose? The following 
answer are possible (to be discussed later): Choose based on (i) practical experiences with a 
given algorithm on a certain problem, (ii) background knowledge on the problem, or (iii) let 
a hyperheuristic algorithm make the choice.



Criterion/
algorithm

GA ES GP ACO PSO DE

Solution Assumed to be 
constructed from 
building blocks

Direct 
construction

Direct construction 
or by using 
autonomously 
defined subroutines

Probabilistic 
composition 
from partial 
solutions

Direct 
construction

Similar to PSO

Local 
Search

In order to 
ensure 
admissibility;
hill-climbing 

Possible (hill-
climbing)

Editing for 
syntactical 
correctness or 
based on a 
grammar; hill-
climbing to fix 
numerical constants

In order to 
ensure 
admissibility

Often not used Similar to PSO

Population Large population Often 
population of 
subpopulations

Large population Not really, as 
there is a 
single 
pheromone 
matrix

Small number 
of particles in 
the swarm 

Similar to PSO

Memory 
beyond 
current 
solutions

Only when 
elitism is used

Mutabilities Only when elitism is 
used

Taboo lists, 
pheromone 
matrix

Personal best 
and generation 
best

Similar to GA(!) 
(Here the 
diversity of the 
population is 
explicitly used) 

Evaluatio
n

Fitness function Fitness function 
(objective 
function)

Fitness cases
(with cross-
validation) +bloat 
control

Tour length 
used for 
pheromone 
update

Fitness 
function 
(objective 
function)

Similar to PSO

Neigh-
bourhood

Restricted in the 
island variant; 
many 
neighbourhoods 
in the multi-
objective variant

Neighbourhood 
structure is 
learned by 
correlations of 
mutabilities

Usually all-to-all  
competition; islands 
possible  

Ants 
exchange 
information 
via the 
common 
environment 
(stigmergy)

Often on 
graphs, i.e. 
neighbour-
hood chosen in 
dependence on 
problem

Usually all-to-
all, but similar 
to PSO 
variants are 
possible

Inspired 
by nature

Natural evolution Directed 
search, not too 
similar to 
natural 
evolution

Epigenetic 
processes (or 
perhaps the social 
group of 
programmers?)

Possibly by 
real ants, or 
by Bayesian 
theory

Swarm 
intelligence in 
bird flocks or 3-
body problem

Similar to PSO

Appli-
cability

General discrete 
search problems 
of medium 
dimensions

Problem where 
neighbourhood-
based search 
seems 
promising, i.e. 
few local 
minima

Problems where 
short programs are 
expected as 
solutions, or where 
reasonable 
solutions exist that 
can be further 
developed 

Sequential, 
nearly 
separable 
problems for 
which already 
a good local 
heuristics 
exists

Continuous 
search 
problems of 
medium 
dimensions

Similar to PSO, 
also often used 
in hybrid 
algorithms


