
NAT-DL: Self-study questions (and answers) on ACO etc. Set 4 (week 6)

1. The figure on the right shows an example from the ACO book by Dorigo and Stuetzle. What
results do you expect for an ant colony algorithm that does not use taboo lists (except for
inhibition of immediate return to the previous node)?

Answer: Assume the visibility is given by
the inverse of the lengths of the links in the
picture. The densely connected path in the
lower part of the graph will most likely lead
to cycles. Cycles can be discouraged by a
high evaporation rate, but then the algorithm
will not generate a memory of good
solutions. So without a taboo list, cycles
seem to be unavoidable. Some ants will
travel the upper part which leads them
straight to the goal such that in most of the
runs the algorithm will end up with the
suboptimal solution along the upper part (8
vs. 5 steps in the lower part). Because the
problem is small, there is still some chance to find the optimal solution. Conclusion: Taboo lists
are useful.

2. Discuss the application of ACO to the eight-queens puzzle. This puzzle is the problem of
putting eight chess queens on an 8x8 chessboard such that none of them are able to capture any
other using the standard chess queen's moves, cf. en.wikipedia.org/wiki/Eight_queens_puzzle.

Answer: (s. S. Khan et al.“Solution of n-Queen problem using ACO”. In proc. of 13th IEEE
International Multi-topic Conference (INMIC 2009), Islamabad, Pakistan.)
Each ant simply place queen by queen on the chessboard, which can be done in a search space of n
times nxn nodes. Think of nxn rows and n columns: each ant runs from left to right (i.e. n steps including
the initial placement) each time selecting one of the nxn fields of the chessboard). Local heuristic is
whether a queen can “kill” any one of the queens that are already there for this ant. The paper also
studies alpha and beta and finds alpha slightly >1 and beta about 1.5 to be good values.

3. [Numerical exercise] Run the standard ACO on the travelling salesperson problem with N
cities. You may use code from http://www.aco-metaheuristic.org/aco-code/ or elsewhere or
partially reuse your code from the 1st assignment. Start with nants=N, alpha=1, beta=2, rho=0.75.
How can you influence the quality of the stationary solution. Consider the standard deviation of
the tour length over the ants during one iteration.

Answer: Strictly speaking, the quality of the stationary solution can only be influenced by the
choice (or changes) of the parameters before the solution becomes stationary. However,
theoretical studies often consider quasi-stationary solutions: Run the algorithm for some
parameters and wait until the characteristics (effective decree, mean, and variance of the
solutions) do not change any more, then change parameters. In physics, this is called adiabatic
approximation, it allows us to tell whether the parameters are responsible for a certain change or
whether it had happened anyway).
Smaller values of alpha and beta should help, as well as higher evaporation, i.e. larger rho.
Generally a low standard deviation is a sign of (premature) convergence, while high standard
deviation is not a problem if you make sure to keep the overall-best ant (and to reinsert it should
the mean tend to increase or to use some other form of elitism).

4. Consider the following (very small) TSP:
d(A,B) = 2, d(A,C) = 3, d(A,D) = 5, d(B,C) = 3, d(B,D) = 3, d(C,D) = 4.

a. How many different tours are possible? What are the lengths of these tours?
b. Which tour is most likely to be found by the ants?
c. Compare the case of a single ant to a population of two or more ants on this problem.

Answer:
a) (4 choices for first city) x (3 for 2nd) x (2 for third) = 4! = 24. Circular permutations are the
same so divide by 4. In addition, it is to be checked whether tours can be reversed, i.e. whether
ABCDA is the same as ADCBA (etc.): The ants may choose the two tours differently based on
the local heuristics, so we need to consider 6 tours, i.e. N!/N = (N-1)! (assuming you go back to
the starting city).
Two tours have lengths of 12 (ABDCA, ACDBA), the other four have all length 14. So,
avoiding the longest link (AD) specifies already the optimum.
b) The ants will initially prefer to go from A to B. The next decision (whether to go from B to C
or D) is equally likely, but the tour the continues from B to C will receive less pheromone.
c) We essentially have three unique tours, after removing circular permutations, and reverse
orderings, two of which are equivalent. In this problem, we aim to avoid the longer tours.
A single ant will make its first decision, and it is more likely that it ends up in one ot the longer
tours, and in the single shorter tour. It will put some pheromone, and will then be even more
likely to continue on the longer tour and may get stuck there (if there is not enough further
exploration). For two ants, it is more likely that at least one ant finds the short tour, and will
guide by its pheromone also the other ant to the better tour, so more ants are less likely to get
trrapped. If there is deception (a short first leg), then it is even more likely to get trapped. We
cannot hope to have no deception in problems to which we apply ACO (in the same way one
cannot hope to have no local optima in the other algorithms that we have considered), but the
collective "intelligence" of the ants is able to mitigate the effects of decptions or multiple paths.

5. Consider one of the following problems (or any other one that seems to be interesting) and
explain how you would use ant colony optimisation to find an acceptable solution: Sequential
ordering, classification (e.g. of images), graph colouring, the knapsack problem (or the cutting
stock problem), protein folding, the shortest common supersequence problem (for details cf.
wikipedia). For this purpose, Dorigo has suggested answering the following questions:

a) Define a set of candidate solutions and the set of feasible solutions.
b) Define a greedy construction heuristic:

i) What are the solution components?
ii) How do you measure the objective function contribution of addition a solution
components
iii) Is it always possible to construct feasible solutions?
iv) How many different solutions can be generated with the constructive heuristic?

c) Define a local search algorithm:
i) How can local changes be defined?
ii) How many solution components are involved in each local search step?
iii) How do you choose which neighbouring solution to move to?
iv) Does the local search always maintain feasibility of solutions?

Answer: Analogous to the AntTSP and AntBin in the lecture. The goal of this exercise is
twofold: Get an idea to what type of problems ACO is applicable and recall the main steps of
the algorithm.

6. Recall the main algorithms that we have studied (i.e. GA, GP, ES, ACO, PSO, DE) and classify
them according to Dorigo’s criteria for the classification of metaheuristic optimisation
algorithms. You may like to represent your answer to this question as a table.

a. Is the solution obtained by direct construction or by the use of local search?

b. Are population of solutions used or not?

c. Is a memory used within the search process or not?

d. Is the evaluation function fixed or is it modified during search?

e. Several neighbourhoods or only a single one (i.e. what topology)?

f. Inspired by biology, physics, or otherwise?

g. For what type of problems the algorithm can be expected to work well?

Can you think of new variants of the algorithms, by modification of any criteria or by
recombination?

Answer: See the table on the next page. Obviously, not all variants covered here, and in many
of the entries further discussion will be useful.

For variants, we can consider for example

◦ DE as a mixture of GA and PSO.

◦ Using a population in SA.

◦ In ACO, we could use different pheromone trails for different groups of ants (it could be
seen as a population of trains, or as well as an island variant of ACO).

◦ Velocity vectors (from PSO) in ES (similar to CMA)

◦ Preferred mutations (based on pheromones as in ACO) in GA or GP.

◦ PSO with mutations, i.e. some vector components are exchanged (similar to DE)

Many other combinations and variants are possible, so which one to choose? The following
answer are possible (to be discussed later): Choose based on (i) practical experiences with a
given algorithm on a certain problem, (ii) background knowledge on the problem, or (iii) let
a hyperheuristic algorithm make the choice.

Criterion/
algorithm

GA ES GP ACO PSO DE

Solution Assumed to be
constructed from
building blocks

Direct
construction

Direct construction
or by using
autonomously
defined subroutines

Probabilistic
composition
from partial
solutions

Direct
construction

Similar to PSO

Local
Search

In order to
ensure
admissibility;
hill-climbing

Possible (hill-
climbing)

Editing for
syntactical
correctness or
based on a
grammar; hill-
climbing to fix
numerical constants

In order to
ensure
admissibility

Often not used Similar to PSO

Population Large population Often
population of
subpopulations

Large population Not really, as
there is a
single
pheromone
matrix

Small number
of particles in
the swarm

Similar to PSO

Memory
beyond
current
solutions

Only when
elitism is used

Mutabilities Only when elitism is
used

Taboo lists,
pheromone
matrix

Personal best
and generation
best

Similar to GA(!)
(Here the
diversity of the
population is
explicitly used)

Evaluatio
n

Fitness function Fitness function
(objective
function)

Fitness cases
(with cross-
validation) +bloat
control

Tour length
used for
pheromone
update

Fitness
function
(objective
function)

Similar to PSO

Neigh-
bourhood

Restricted in the
island variant;
many
neighbourhoods
in the multi-
objective variant

Neighbourhood
structure is
learned by
correlations of
mutabilities

Usually all-to-all
competition; islands
possible

Ants
exchange
information
via the
common
environment
(stigmergy)

Often on
graphs, i.e.
neighbour-
hood chosen in
dependence on
problem

Usually all-to-
all, but similar
to PSO
variants are
possible

Inspired
by nature

Natural evolution Directed
search, not too
similar to
natural
evolution

Epigenetic
processes (or
perhaps the social
group of
programmers?)

Possibly by
real ants, or
by Bayesian
theory

Swarm
intelligence in
bird flocks or 3-
body problem

Similar to PSO

Appli-
cability

General discrete
search problems
of medium
dimensions

Problem where
neighbourhood-
based search
seems
promising, i.e.
few local
minima

Problems where
short programs are
expected as
solutions, or where
reasonable
solutions exist that
can be further
developed

Sequential,
nearly
separable
problems for
which already
a good local
heuristics
exists

Continuous
search
problems of
medium
dimensions

Similar to PSO,
also often used
in hybrid
algorithms

