
NAT-DL Self-study and answers: MOO & HH         Set 6 (week 8)

1. Portfolio selection is a typical application for multi-objective MHO algorithms. For the 
portfolio a selection of assets has to be made, so that the task consists in finding an optimal 
distribution of a budget over these assets. In addition to maximal return, also risk 
minimisation and asset preferences by the clients play a role. Specify fitness functions for a 
metaheuristic MOO algorithm, and discuss your approach to solving the problem.

Answer: The problem is similar to the knapsack problem that was discussed in an earlier 
tutorial. There is a total amount of money that is to be spent over stocks, and --- like the 
items in the knapsack having weight and usefulness --- each stock has a utility and a cost. 
The (expected) utility of a stock can be defined in various ways, just like the utility of an 
item in the knapsack depends on where the hike goes, how long it will take, and who's 
joining. For the portfolio selection it is possible to find out as much as possible about the 
customers in order to use a scalarisation approach. If this is not possible, e.g., if there are 
many different customers, then a variety of stocks with various ratios between expected 
revenue and risk need to be found within the part of the search space that suits the customers 
preferences. It is also possible to use a fitness for the customer preference. For example, if 
the customer state "Invest in green energy, perhaps in natural gas, but not in coal", then gas-
related stock would get lower fitness and coal would get fitness minus infinity. As this is a 
separate fitness function, the customer can decide later, whether they want to buy any low-
risk high-gain gas stocks, while coal would remain ruled out, of the customer has agreed 
before that the eco-fitness cannot be ignored. 
Note that here the number of trial is limited in a different way than before, because any gain 
can be used to pay for more fitness evaluations, although also models or data-based 
evaluation schemes exist. It is not really known whether metaheuristic methods are used in 
finance in practice, because revealing their usefulness would change the type of the 
optimisation problem. There are many studies and, now and then, announcements in the 
news that is has been tried, which is neither a guarantee that they are being used.
It may be also interesting to note that Jianming Xia (2004)] has shown that for a coordinated 
group of investors the expected share of the return per investor is higher than what can be 
expected by a single investor. This could be related to the co-evolutionary free lunch, but it 
is also recommended considering the social and ethical implications.

2. Consider the following variant of the All-Ones problem over a discrete search space with 
two objectives:

f1(x)=  |2 x1 − x2 | if x≠"11 . . . 11", and otherwise f1 ("11 . . . 11") = x1 x2  

f2(x)=  |2 x2 − x1 | if x≠"11 . . . 11", and otherwise f2 ("11 . . . 11") = x1 x2 

where x is a string of an even number of bits, with x1 represents the number of bits equal to 1 
in the first half of the string, and x2 the number of bits equal to 1 in the second half of the 
chain. What is the optimal Pareto front? What approximations of the Pareto front are likely 
to be found? Show that using a genetic algorithm one can reach quickly the global optimum, 
whereas the local search is likely to get trapped. (adapted from Exercise 4.21 in Talbi)

Answer: The problem is obviously that the first objective implies to have many 1s in the 
first part and very few in the second part, while the second objective suppressed 1s in the 
first part and accumulates 1s in the second part. Note that the factor 2 in both objectives 
helps that the gain of 1s in one half by one criterion is preferable to loosing any 1s in this 
part by the other criterion.
The optimal Pareto front is by definition the point "11 . . . 11", but as long as this point has 
not yet been found, the Pareto front is approximated by the best individuals in the 
population which are initially any vectors that are biased to either side. Later, the individuals 



that most strongly biased towards one side are the approximation of the Pareto front which 
is likely to converge to the two points "1 . . . 10 . . . 0" and "0 . . . 01 . . . 1". You can 
visualise the problem by drawing a two-dimensional array spanned by the x1 axis and the x2 
axis. For random vectors the population is initially near the centre (x1, x2)=(N/4, N/4). A 
local algorithm would move the points toward the corners (x1, x2)=(N/2, 0) or (x1, x2)=(0, 
N/2), i.e. not towards the global optimum at (x1, x2)=(N/2, N/2). So, by following the Pareto 
front, an algorithm that works only locally would be drawn away from the global optimum. 
This is a characteristic of a deceptive problem which we see here to be possible in multi-
objective optimisation as well. A GA would be able to crossover the two subsolutions, once  
they are found, and to jump right to the global optimum (x1, x2)=(N/2, N/2). This means that 
there are some optimisation problems that are easy for one optimisation algorithm and 
difficult for other algorithms. 
For completeness, if the length of the strings is only 2, then the two points "10" and "01" are 
global optima, while "11" has only fitness 1 and, because it is neighbouring to a better state, 
is not even a local optimum. If the length is 4 (not odd string lengths here), then "1100", 
"0011" and "1111" are all global optima, so we should have said that the length of the string 
is at least 6 to make the problem straightforward. We did this at best implicitly by writing 
out 4 digits and added some dots.

3. Tracking objects in a video in conditions can be difficult for changes of lighting or if the 
object is get frequently occluded or if it rotates. Design a population-based metaheuristic 
based on particle swarms for such a tracking task. It can use a number of interest points that 
characterise the object, although not all of these points can be identified all the time.

Answer: Assume we are given a library of interest point (or features) such as corners, 
centres of symmetry, branching points etc. Some are more likely to be miss-detected or lost 
in sample task over which a set of indicators can be found. The idea would be that not just 
the individual indicators are to be evaluated and then "selected", but their joint usefulness so 
that for all relevant objects such an optimal set can be found. We can use here a hierarchical 
hybrid which first detects what object it is and then employs the best set (or continues to 
evolve the set). This should be done in a population so that several object hypotheses can be 
maintained. Alternatively, a relay-type hybrid can be considered, where the object 
identification and feature matching are used alternately, so that a wrong object identification 
can be corrected when the feature set has turned out to work poorly. Note that for this 
application ist can make sense to check the Reynolds rules in particular velocity alignment.

4. In multi-objective metaheuristic optimisation, various strategies have been proposed to 
maintain diversity. For instance, the NSGA-II algorithm is based on a crowding distance 
measure. Propose a modification of the NSGA-II algorithm in which the crowding operator 
is replaced by a k-means clustering algorithm for some given value of k.  

(adapted from Exercise 5.18 in Talbi)

Answer: Hybrid algorithms can include methods from outside MHO, and mostly will. As 
usual in k-means, it is not easy to find a good value for k, but let us assume k is fixed. We 
can now consider all solutions that have made it into the first Pareto front, and apply the k-
means algorithm to them. After k-means has nicely converged (which is not always the 
case), we can calculate the mean distance of the solutions from their nearest cluster centre. 
While k-means aims at minimising this mean distance, we can reward solutions that 
contribute much to this mean distance, which can help to avoid the data from clustering at 
particular positions. To take to methods or mechanisms and let them fight, is an often used 
approach not only in MHO but generally in machine learning. It is also possible to assign 
higher fitness solutions that join a centroid that represents fewer points than other centroids  
or that has a large standard deviation. 



5. In many problems some solution components are discrete and some are continuous. How 
can a hyperheurstic algorithm be applied to this problem? This problem is occurs in most GP 
applications. Can you think of any interesting or more specific cases?

Answer: A hyperheuristic algorithm could try to find out which components are discrete and 
which continuous. It does not need to state this explicitly, but would simply choose a 
different optimisation algorithms for either. E.g. certain numerical constants in GP may be 
discrete other continuous, without this being clear from the beginning, so the higher order 
algorithm can decide which optimisation method to apply. 
In a more simplified setting a hybrid approach can be taken where a continuous 
metaheuristic in the inner loop optimises the problem for any configuration of the discrete 
decision variables that are fixed for the moment. In the outer loop, a discrete metaheuristic 
will optimise the problem while the continuous variables are fixed to the best known values 
found by in the inner loop. The search then alternate between the space of continuous 
variables and the space of discrete variables. The drawback of such a nested optimisation 
strategy is that it takes very long and there is no guarantee that it converges. The 
aforementioned hyperheuristic approach could work better if its outer loop can be optimised 
over a certain set of problems.

6. It is easy to produce toy examples with a non-connected Pareto front. Can you think of an 
example of a real-world problem where the Pareto front is non-connected?

Answer: Obviously in discrete cases the Pareto front is not connected, which follows from 
the very idea of discreteness. For a practical example, we could consider the task to buy as 
much as possible for least cost. The criterion of minimal cost will lead to by a small 
package, while the goal of buying a large amount will imply choosing the large package. 
Obviously, there cannot be continuously many package sizes, but package sizing is clearly a 
problem that is solved by optimisation. In other cases, we have one (quasi-)continuous and 
one discrete variable, as for example in tax categories. A fully continuous case could be 
driving with the goals of being fast with minimal energy usage and minimal risk. And we 
can consider the case of decision-making whether to overtake a car in front.


