
Using GPUs for NLP in Informatics
Doing Research in Natural Language Processing

Tom Sherborne
11/13 October 2023



Overview
● GPUs in Machine Learning
● Working with GPUs
● What is a cluster and slurm
● When to use a cluster
● How to access and use it
● Walkthrough running 

experiments
● Resources for workflow

● Getting help
● Demo + Tutorial on the ILCC 

cluster (Friday!)



Reading the room
● ✅ I’m comfortable with shells/bash, SSH and remote access

● ✅ I am comfortable writing my own experimental code

● ✅ I know how to use CUDA and run GPU experiments

● ✅ I have used a cluster (any cluster) before

● ✅ I have used a Slurm managed cluster before



GPUs in Machine Learning



Machine Learning demands many calculations
>>> import torch

>>> a = torch.randn((1024,512))

>>> b = torch.randn((2048,1024))

>>> torch.matmul(b,a)

# Approximately 1B operations!

● CPUs have few, high power processing cores

● On a CPU, each product must be calculated 
sequentially leading to slow processing.

● But each operation is a simple instruction so can 
this be sped up?

● Can we delegate processing to many smaller 
processing cores?



What is a GPU?
● GPUs enable rapid parallel processing of 

operations. 

● Many small cores working in parallel rather 
than a few large CPU cores. 

● ~4300 cores means less concurrency 
constraints!

● Useful for graphical tasks and gaming but 
now a must-have tool for Machine Learning 
and Scientific Computing.

https://www.omnisci.com/technical-glossary/cpu-vs-gpu


Working with GPUs
● We use the NVIDIA CUDA interface to integrate 

GPUs into our code.

● All our code today is in PyTorch which plugs 
into CUDA without us writing GPU instructions. 
Other options exist if desired.

● Write code as normal then move matrices to 
the GPU for speed up.

● GPUs have their own memory. 
○ Small models fit entirely on a GPU (not BERTLlama!)
○ Or process data through a GPU model in batches. 
○ Need multiple GPUs? We will look at this later...

>>> import torch

>>> a = torch.randn((1024,512))

>>> b = torch.randn((2048,1024))

>>> torch.matmul(b,a)

7.39s to compute 1000x

>>> a = a.cuda()

>>> b = b.cuda()

>>> torch.matmul(b,a)

2.36s to compute 1000x

https://developer.nvidia.com/cuda-zone
https://pytorch.org/


Workflow of using a GPU in NLP

input

you write code

CPU runs main process for model

GPU does heavy lifting

model + 
prediction 

.cuda()
your data

output



A typical experiment outline
● A model training experiment can be 

automated into a shell-script to complete 
setup, training, inference and cleanup. 

● This is for after model development, when you 
are confident that your model operates as 
intended.

● Formatting your experiments as a script 
makes migrating to clusters easy!

#!/bin/bash

1. Create folders, check data 
and environment

2. Train model using GPU

3. Generate predictions and 
scores from test set

4. Cleanup from experiment

5. Done!



What is a cluster?



What is a cluster?
● An arrangement of servers to execute computationally intensive work on dedicated 

high-performance machines in the background. 

● You log into the head node, format your experiments and then submit scripts as “jobs”. 

● Your jobs are assigned a compute node (with a GPU) which runs your script and accesses a 
shared or local file system for data. 

● Jobs are assigned, managed and controlled using a scheduler program.
Informatics uses the Slurm scheduler. 



Why use a cluster?

● ✅ Debug models during development 
with direct shell access to model e.g. using 
PDB

● ❌ GPU also required to run monitor and 
other processes. 

● ❌ One experiment at a time.

● ❌ Computer possibly not usable during 
experiments.

● ❌ No direct access to shell. Hard to 
debug errors .

● ✅ GPU dedicated to your experiment.

● ✅ Run many parallel experiments.

● ✅ Sharing GPUs maximises usage 
without grinding your own PC to a halt.

Single GPU experiments Cluster experiments



What do we have in Informatics?
● ILCC cluster: ilcc-cluster.inf.ed.ac.uk / escience6

○ ~80 GPUs for your work across various machines. CDT students have their own partition.
○ A combination of NVIDIA RTX2080 Ti / NVIDIA RTX1080 Ti cards with 11GB memory.
○ One very large storage disk (ostrom) connected by NFS.

● PGR Cluster: mlp.inf.ed.ac.uk / uhtred
○ Crannog[01-07] each has 4xA40s (48GB memory) + 510 GB RAM
○ Damnii[1-12]  each has 7/8 RTX 2080s (11 GB memory) + 190GB RAM
○ 123 GPUs for use between all PGR students.
○ Other partitions (e.g., `Teach-Standard`) are used by others and sometimes shared. 

e.g., `landonia` machines have some A6000s.

● EIDF is a new resource to be demo’d in Second Semester (uses a Docker/Kubernetes system)

● Some CDT-NLP students will refer to CSD3. This is no longer available through the CDT



Compute Node

slurm

/disk/scratch

Compute Node

/disk/scratch

Compute Node

/disk/scratch

Compute Node

/disk/scratch

Compute Node

/disk/scratch
/home is shared!
/disk/scratch is not!

/home

Head Node
ilcc-cluster.inf.ed.ac.uk



Disk spaces on the cluster
● Like DICE, you will have a home folder as /home/${USER}/
● Move data between machines using rsync or scp.
● Your user space is on a network disk that all nodes can access.

○ /home/ is actually /disk/nfs/ostrom
○ 168TB disk shared between all users. Keep results and environments here.
○ This disk is large but also slow. 
○ There are no backups! Got important work? Copy it out of the cluster.

● Each compute node has a local disk drive at /disk/scratch/
○ This is fast to read and write to during an experiment. 
○ Save weights and large file here during training. 

■ Copy what you need back to your user space at the end.
■ Delete everything else you haven’t stored from here at the end.



What is Slurm?
● Slurm is an open source scheduler that controls the allocation and execution of 

jobs on our cluster.

● You write your experiment script then...
○ You submit your script to the Slurm controller while logged into the head node.
○ Slurm finds an available compute node and assigns resources to execute your script.
○ You can monitor your job output and status using Slurm monitoring commands.
○ No free compute node? Slurm places your jobs in a queue to execute when a GPU is free.



Slurm commands
● sbatch - submit a job for hands-off execution on the cluster.

● srun - request an interactive shell session on a compute node (for debugging)

● squeue - check the execution of your jobs and the queue of waiting jobs

● sinfo - check cluster information

● scontrol - update job configuration (won’t be covering today)



Head Node

ssh

For example:
ssh ${USER}@ilcc-cluster.inf.ed.ac.uk

ssh ${USER}@mlp.inf.ed.ac.uk

ssh ${USER}@${cluster_name}.inf.ed.ac.uk

Use ssh to access the head node
Local computer



sbatch

Compute Node

Head Node
mlp.inf.ed.ac.uk

You

Your job script

● You SSH onto the head node.

● Submit your job using sbatch.

● Slurm assigns the job to a  
compute node and then executes 
the job in the background.



srun

Compute Node

Head Node
mlp.inf.ed.ac.uk

You

Your job script

● Slurm assigns you an interactive 
session on the compute node (like 
SSH)

● Useful if your job is going wrong 
somewhere/debugging.

● No automatic processing and job is 
not a background process. 



Comparing sbatch and srun

● ✅ Your experiment runs as a background 
process without direct supervision. 

● ✅ Run all your experiments in parallel on 
compute nodes.

● ✅ The intended use case for cluster 
computing.

● ✅ Go home and rest. Your work is 
happening while you sleep!

● ✅ Gives you an SSH-like session on a 
compute node. Useful if something has gone 
wrong and you need to check your model on 
the cluster.

● ❌ Hoards GPU resources if used 
excessively. 

● ❌ The cluster becomes less useful and 
effective.

● ❌  Encourages poor experiment design and 
babysitting your jobs.

sbatch srun



Everything all together...
● Assume that experiments are bash scripts that specify all steps of computation.

● We access a cluster by SSHing on to the head node.

● Submit an experiment job using sbatch to request a compute node to run the job.

● Slurm manages the allocation, execution and running of jobs.



Cluster Workflow



Anatomy of an sbatch script

● Slurm configuration
● A Python environment
● Training and test data 
● The model to train (model.py)
● Training command (train.py)
● Prediction command 

(predict.py)

You will need...#SBATCH Args here....

conda activate pt

rsync data /home/ to /disk/scratch/

python train.py

python predict.py

rsync results /disk/scratch/ to /home/ 

rm -rf /disk/scratch/${USER}/exp



Conda Environments
● Miniconda provides isolated runtime environments for your Python code. This manages 

your packages so you can be sure what dependencies you are using in your programme. 

● Install a specification of packages to an environment and use it for all your experiments! 

● Different experiments have different specifications? Use a new environment!

● We will install tools such as PyTorch in an environment. 



Data transfer
Head 
Node

git + results

miniconda

input data

logs

input data

results

input data      -> 

DFS      <-

scratch/home/

compute node 
scratch

results from 
compute node 

scratch

Compute
Node
processing

1

3
2



Software to use Writing code

Moving data
&

Version control

Package management
& virtual environments



Experiment checklist
☑ A working model pushed to GitHub (or other VCS) to clone from

☑ Code and data in my /home/$USER/ folder on the shared file system

☑ A conda environment to run my Python code within

☑ I know how much RAM and GPUs I need

☑ Bash script defining the stages of the experiment, config and data transfer.



3. Download your code by 
cloning repo from GitHub

Head Node Compute node

ssh slurm

1. Write your code and get 
it working with a conda 
virtual environment

2. Version control your 
code with git and put it in a 
repository online with 
GitHub

5. Get your input data onto 
the DFS e.g. scp / rsync 

6. Test your code on an 
srun interactive session
7. Last minute code edits 
on command line editors 
like vim or emacs8. Run YOUR JOBS with 

sbatch

Local Computer

4. Create/activate conda 
environment.



Now what?



● #computing channel in the CDT in NLP slack
○ Peer support from other cluster users
○ Also useful if you want to help other people out!
○ (Note: I am not in this slack.)

 
● Ask your research group

○ Most senior-ish PhD students have got the hang of the cluster.
○ Most of us are happy to help share our knowledge.

● Submit Tickets to Computing Support 🎫
○ Try and be as specific as possible. 

What do you think is the error? 
Is it reproducible? 
What Slurm job # caused this?

Getting help

https://www.inf.ed.ac.uk/systems/support/form


Cluster etiquette
● Be nice!

● Running a lot of jobs? Consider staggering so many users can use the queue

● Or use Array jobs (not covered today but included in the demo) 

● If you see someone misbehaving then consider emailing them (they may be unaware)

● Similarly, another user may notify you if they see a process of yours acting improperly (e.g. 
running Python on the head node)



The cluster-scripts repository
Repo here: 
https://github.com/cdt-data-science/cluster-scripts

1. scripts to make your life easier
2. examples for quick learns
3. templates for running experiments 

fast

We will use this in today’s 
demonstration!

https://github.com/cdt-data-science/cluster-scripts


Common mistakes
● Conda environment not set up properly to use a GPU.

○ Check torch.cuda.is_available()==True  in an interactive session.

● Training fails due to Out Of Memory errors.
○ Consider adjusting batch sizes to reduce peak GPU memory.
○ Or reformat your model to use multiple GPUs. 

● Nothing happens when I submit using sbatch?
○ Check your sbatch arguments. sbatch will fail silently if the arguments contain an error 

● e.g., –-parition=illc-cluster

● My job stops after a few seconds
○ The /disk/scratch  of a compute node might be full. Identify the node and submit a ticket!



Not covered today
● Using EIDF cluster:

○ Many GPUs and resources but an entirely different experiment paradigm. 
○ To be explained in Semester 2

● CSD3 Cluster:
○ No longer supported by CDT. You may get access through your supervisor.

● Multi GPU jobs:
○ Used to be much more complex but now tools like HuggingFace Trainer / Mosaic Composer can seamlessly use all available GPUs.

● Using singularity in a Slurm job:
○ Computing Support have a help page for this: https://computing.help.inf.ed.ac.uk/singularity

● Using Array jobs
○ An example of this is in the Demo on Friday

https://computing.help.inf.ed.ac.uk/singularity


Demonstration
● Cluster Scripts

● Setting up a workspace
● Experiment walkthrough

https://github.com/cdt-data-science/cluster-scripts

