
Introduction to the Informatics
GPU Cluster

Researching Responsible and Trustworthy Natural Language Processing
9 October 2024

Frank Keller
Slide credit: Tom Sherborne

Overview
● GPUs in NLP
● Working with GPUs
● What is a cluster and Slurm
● When to use a cluster
● How to access and use it
● Walkthrough running experiments
● Getting help
● Sort demo

Reading the room
● ✅ I’m comfortable with shells/bash, ssh and remote access

● ✅ I am comfortable writing code for my experiments

● ✅ I know how to use CUDA and run GPU experiments

● ✅ I have used a cluster (any cluster) before

● ✅ I have used a Slurm managed cluster before

GPUs in NLP

Machine Learning demands many calculations
>>> import torch

>>> a = torch.randn((1024,512))

>>> b = torch.randn((2048,1024))

>>> torch.matmul(b,a)

Approximately 1B operations!

● CPUs have few, high power processing cores

● On a CPU, each product must be calculated
sequentially leading to slow processing.

● But each operation is a simple instruction, so
can this be sped up?

● Can we delegate processing to many smaller
processing cores?

What is a GPU?
● GPUs enable rapid parallel processing of

operations.

● Many small cores working in parallel rather
than a few large CPU cores.

● Useful for graphical tasks and gaming but
now a must-have tool for NLP and AI

https://www.omnisci.com/technical-glossary/cpu-vs-gpu

Working with GPUs
● We use the NVIDIA CUDA interface to integrate

GPUs into our code.

● All our code today is in PyTorch which plugs
into CUDA without us writing GPU instructions.
Other options exist if desired.

● Write code as normal then move matrices to
the GPU for speed up.

● GPUs have their own memory.
○ Small models fit entirely on a GPU
○ Or process data through a GPU model in batches.
○ Or distribute your model across multiple GPUs

>>> import torch

>>> a = torch.randn((1024,512))

>>> b = torch.randn((2048,1024))

>>> torch.matmul(b,a)

7.39s to compute 1000x

>>> a = a.cuda()

>>> b = b.cuda()

>>> torch.matmul(b,a)

2.36s to compute 1000x

https://developer.nvidia.com/cuda-zone
https://pytorch.org/

Workflow of using a GPU in NLP

input

you write code

CPU runs main process for model

GPU does heavy lifting

model +
prediction

.cuda()
your data

output

What is a cluster?

What is a cluster?
● An arrangement of servers to execute computationally intensive work on dedicated

high-performance machines in the background.

● You log into the head node, format your experiments and then submit scripts as “jobs”.

● Your jobs are assigned a compute node (with a GPU) which runs your script and accesses a
shared or local file system for data.

● Jobs are assigned, managed and controlled using a scheduler program.
Informatics uses the Slurm scheduler.

Why use a cluster?

● ✅ Debug models during development
with direct shell access to model e.g. using
PDB

● ❌ GPU also required to run monitor and
other processes.

● ❌ One experiment at a time.

● ❌ Computer possibly not usable during
experiments.

● ❌ No direct access to shell. Hard to
debug errors .

● ✅ GPU dedicated to your experiment.

● ✅ Run many parallel experiments.

● ✅ Sharing GPUs maximises usage
without grinding your own PC to a halt.

Single GPU experiments Cluster experiments

What do we have in Informatics?
● Head node: mlp.inf.ed.ac.uk; Lustre file system with lots of space
● ILCC partitions:

○ 48 GPUs in in the ILCC-Standard partition
○ 16 GPUs in the ILCC-CDT partition
○ A combination of NVIDIA RTX2080 Ti / NVIDIA RTX1080 Ti cards with 11GB memory.

● PGR partitions:
○ damnii[01-12] nodes in the PGR-Standard partition.
○ Each node has 8 NVIDIA RTX 2080 Ti GPUs with 11GB memory.
○ crannog[01-07] nodes in the PGR-Standard partition.
○ Each node has 4 NVIDIA A40 GPUs with 48GB memory.

● Alternative: EIDF GPU cluster; more GPUs, bigger and faster GPUs. But: uses Kubernetes as control
infrastructure; Slurm is a lot easier to use.

Compute Node

Slurm

/disk/scratch/

Compute Node

/disk/scratch/

Compute Node

/disk/scratch/

Compute Node

/disk/scratch/

Compute Node

/disk/scratch/
/home/ is shared!
/disk/scratch/ is not!

/home/

Head Node
mlp.inf.ed.ac.uk

Disk space on the cluster
● Like on DICE, you will have a home folder as /home/${USER}/
● Move data between machines using rsync or scp.
● Your user space is on a Lustre file system that all nodes can access.

○ The file system is large but comparatively slow.
○ There are no backups! Got important work? Copy it out of the cluster.

● Each compute node has a local disk drive at /disk/scratch/
○ This is fast to read and write to during an experiment.
○ Save weights and large files here during training.

■ Copy what you need back to your user space at the end.
■ Delete everything else you haven’t stored from here at the end.

What is Slurm?
● Slurm is an open source scheduler that controls the allocation and execution of

jobs on our cluster.

● You write your experiment script then...
○ You submit your script to the Slurm controller while logged into the head node.
○ Slurm finds an available compute node and assigns resources to execute your script.
○ You can monitor your job output and status using Slurm monitoring commands.
○ No free compute node? Slurm places your jobs in a queue to execute when a GPU is free.

Slurm commands
● sbatch - submit a job for hands-off execution on the cluster.

● srun - request an interactive shell session on a compute node (for debugging)

● squeue - check the execution of your jobs and the queue of waiting jobs

● sinfo - check cluster information

● scontrol - update job configuration (won’t be covering today)

Head Node

ssh

For example:
ssh ${USER}@mlp.inf.ed.ac.uk

ssh ${USER}@${cluster_name}.inf.ed.ac.uk

Use ssh to access the head node
Local computer

sbatch

Compute Node

Head Node
mlp.inf.ed.ac.uk

You

Your job script

● You ssh onto the head node.

● Submit your job using sbatch.

● Slurm assigns the job to a
compute node and then executes
the job in the background.

srun

Compute Node

Head Node
mlp.inf.ed.ac.uk

You

Your job script

● Slurm assigns you an interactive
session on the compute node (like
ssh)

● Useful if your job is going wrong
somewhere/debugging.

● No automatic processing and job is
not a background process.

Comparing sbatch and srun

● ✅ Your experiment runs as a background
process without direct supervision.

● ✅ Run all your experiments in parallel on
compute nodes.

● ✅ The intended use case for cluster
computing.

● ✅ Go home and rest. Your work is
happening while you sleep!

● ✅ Gives you an ssh-like session on a compute
node. Useful if something has gone wrong and
you need to check your model on the cluster.

● ❌ Hoards GPU resources if used excessively.

● ❌ The cluster becomes less useful and
effective.

● ❌ Encourages poor experiment design and
babysitting your jobs.

sbatch srun

Everything all together...
● Assume that experiments are bash scripts that specify all steps of computation.

● We access a cluster by sshing on to the head node.

● Submit an experiment job using sbatch to request a compute node to run the job.

● Slurm manages the allocation, execution and running of jobs.

Cluster Workflow

Anatomy of an sbatch script

● Slurm configuration
● A Python environment
● Training and test data
● The model to train (model.py)
● Training command (train.py)
● Prediction command

(predict.py)

You will need...#SBATCH Args here....

conda activate pt

rsync data /home/ to /disk/scratch/

python train.py

python predict.py

rsync results /disk/scratch/ to /home/

rm -rf /disk/scratch/${USER}/exp

Conda Environments
● Miniconda provides isolated runtime environments for your Python code. This manages

your packages so you can be sure what dependencies you are using in your programme.

● Install a specification of packages to an environment and use it for all your experiments!

● Different experiments have different specifications? Use a new environment!

● We will install tools such as PyTorch in an environment.

Workflow: data

Head
Node

git + results

miniconda

input data

logs

input data
results

input data —>

 /home/ <—

scratch/home/

compute node
scratch

results from
compute node

scratch

Compute
Node
training and
testing

1

3
2

3. Download your code by
cloning repo from GitHub

Head Node Compute node
ssh Slurm

1. Write your code and get
it working with a conda
virtual environment

2. Version control your
code with git and put it in a
repository online with
GitHub

5. Get your input data onto
the file system e.g. scp, rsync

6. Test your code on an
srun interactive session
7. Last minute code edits
on command line editors
like vim or emacs8. Run your jobs with sbatch

Local Computer

4. Create/activate conda
environment

Workflow: code

Need more power?
● You can request more than 1 GPU using the gres argument to sbatch

○ --gres=gpu:1 requests 1 GPU
○ --gres=gpu:2 requests 2 GPU on 1 compute node...
○ Make sure your configuration can fit into the cluster
○ You will probably need to adjust the TCP port for your job

● Need even more power?
○ It is possible to request multiple nodes.
○ This will make your experimental setup more complicated
○ Bear in mind the Informatics cluster is not the best place to retrain Llama…

Now what?

● #computing channel in the CDT in NLP slack
○ Peer support from other cluster users
○ Also useful if you want to help other people out!

● Ask your research group

○ Likely any senior-ish PhD students have got the hang of the
cluster.

○ Most students are happy to help share their knowledge.

● Submit Tickets to Computing Support 🎫
○ Try and be as specific as possible.

What do you think is the error?
Is it reproducible?
What Slurm job # caused this?

Getting help

https://www.inf.ed.ac.uk/systems/support/form

Cluster etiquette
● Be nice!

● Running a lot of jobs? Consider staggering so many users can use the queue

● Or use Array jobs (not covered today but included in the demo)

● If you see someone misbehaving then consider emailing them (they may be unaware)

● Similarly, another user may notify you if they see a process of yours acting improperly (e.g.
running Python on the head node)

The cluster-scripts repository
Repo here:
https://github.com/cdt-data-science/cluster-scripts

1. scripts to make your life easier
2. examples for quick learns
3. templates for running experiments

fast

We will use this in today’s
demonstration!

https://github.com/cdt-data-science/cluster-scripts

Common mistakes
● Conda environment not set up properly to use a GPU.

○ Check torch.cuda.is_available()==True in an interactive session.

● Training fails due to Out Of Memory errors.
○ Consider adjusting batch sizes to reduce peak GPU memory.
○ Or reformat your model to use multiple GPUs.

● Nothing happens when I submit using sbatch?
○ Check your SBATCH arguments. SBATCH will fail silently if the arguments contain an error.

● My job stops after a few seconds
○ The /disk/scratch/ of a compute node might be full. Identify the node and submit a ticket!

Demonstration

