
Introduction to using the EIDF GPU cluster for
members of EIDF029 and EIDF107

Ulrich Germann

September 2024

What is the Edinburgh International Data Facility (EIDF)?

▶ “EIDF is a collection of computational, data management and
safe haven services supported by the Data Driven Innovation
Programme of the Edinburgh and South-East Scotland City
Region Deal.”
https://edinburgh-international-data-facility.ed.ac.uk/about/in-a-nutshell

▶ run by the Edinburgh Parallel Computing Centre, which is
part of the University of Edinburgh

▶ provides
▶ computing resources
▶ data management resources

▶ access is through “projects”
▶ EIDF029: Informatics
▶ EIDF107: GAIL (Genrative Artificial Intelligence Laboratory)

▶ the GPU cluster runs under Kubernetes

https://edinburgh-international-data-facility.ed.ac.uk/

Getting access

EIDF029: research staff and PGR students in Informatics only
EIDF107: members of the Generative AI Laboratory only

▶ Create a SAFE account with your UEDIN email address here:
https://safe.epcc.ed.ac.uk/ if you don’t have one
already.

▶ Through the SAFE portal, request access to project EIDF029
or EIDF107. You will be notified by email once approved.

▶ Once approved, set up ssh keys and MFA on the SAFE Portal
(Go to ’Login Accounts’ in the navigation bar on the top.)

https://safe.epcc.ed.ac.uk/

Logging in

Access to the cluster is through ssh via a gateway Jump Host

ssh -i $SSH_KEY \

-J $USER@eidf -gateway.epcc.ed.ac.uk \

$USER@$PROJECT_HOST_IP

You can make your life easier by adding this to your
~ /.ssh/config

Host $EIDF_PROJECT
User $USER
IdentityFile $SSH_KEY
HostName $PROJECT_HOST
ProxyJump $USER@eidf -gateway.epcc.ed.ac.uk
IgnoreUnknown Usekeychain

UseKeychain yes

What is Kubernetes?

▶ developed at Google to manage Software-as-a-Service at scale

▶ focus is on keeping services live and available

▶ dynamic scaling

▶ unlike Slurm, NOT per se an batch queueing system
(conceptually, resources are assumed to be always available)

▶ resources are separated by Name Spaces

▶ no notion of individual ownership of Kubernetes artefacts by
user

▶ has Docker containerisation technology at its heart

Docker

▶ Docker Images typically contain all but only the software to
run a particular programme or application (the Docker
command or entry point)

▶ Docker Images are hosted in a Docker Repository, or on the
local host

▶ When you run an Image, the Docker Daemon lets you specify
certain parameters, set environment variables, forward ports,
and mount directories into the Docker Container that
instantiates the image.

▶ Philosopy: one Image per service

Docker Containers are not Virtual Machines!!!

Example of a Docker run

docker run --name web -p 8080:80 --rm \

-v /path/to/document/root:/usr/share/nginx/html nginx

The Docker Daemon

▶ pulls the nginx Image from the remote Repository if necessary

▶ names the Container ‘web’

▶ maps the port 80 inside the Container to port 8080 on the
Docker Host

▶ mounts /path/to/document/root from the host into the
Container as /usr/share/nginx/html

▶ removes the Container when it is finished / stopped (--rm)

All changes to the Container are lost when the container is
removed!!!

Kubernetes Pods: container orchestration

▶ Remember the Docker philosophy: one Image/Container per
service

▶ Containers are orchestrated to form more complex web
services, e.g.,
▶ Container1: mysql database
▶ Container2: web frontend
▶ Container3: authentication service

▶ Kubernetes Pods orchestrate containers

Our first Pod

apiVersion: v1

kind: Pod

metadata:

name: $USER -hello -world1
labels:

eidf/user: $USER
spec:

containers:

- name: ubuntu

image: ubuntu :20.04

command: ["/ bin/bash", "-c", "echo ’Hello World!’"]

resources:

limits:

nvidia.com/gpu: 0

cpu: 1

memory: 4Gi

restartPolicy: Never

Persistent Volume Claims (PVCs)

▶ Claim storage provided by Kubernetes

▶ Read-write

▶ Currently each PVC can be mounted into only one Pod at a
time

▶ PVCs can only be accessed when mounted into a Pod

Creating PVCs

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

name: $PVCNAME
labels:

eidf/user: $USER
spec:

accessModes:

- ReadWriteOnce

resources:

requests:

storage: $STORAGE
storageClassName: csi -rbd -sc

Mounting PVCs

▶ add the following to .spec in your Pod specification

volumes:

- name: workspace

persistentVolumeClaim:

claimName: $PVCNAME

▶ add the following to the respective container specification in
.spec.containers:

volumeMounts:

- name: workspace

mountPath: /workspace

Mounting NFS directories (1)

▶ any accessible NFS server can be mounted
▶ currently EIDF029 has its own NFS server that

▶ is accessible on the login node (RW)
▶ can be mounted into Pods (RO)
▶ currently has a quota of 50GB per user
▶ provides a mirror of commonly used datasets and models

▶ EIDF107 currently has none, but the EIDF029 NFS server is
mountable from EIDF107

▶ Apologies to EIDF107-only users! An NFS server is in the
works ...

Mounting NFS directories (2)

▶ Declare the volume. In .spec.volumes, add, e.g.,

- name: publicdata

nfs:

server: $EIDF029_NFS_SERVER_IP
path: /public

- name: userdata

nfs:

server: $EIDF029_NFS_SERVER_IP
path: /user/$USER

▶ Mounting the declared volume works just like mounting PVC
volumes. In the respective volumeMounts section, add, for
example,

- name: publicdata

mountPath: /publicdata

- name: userdata

mountPath: /mydata

Interactive Pods/Jobs: Basic Rules

Rule #1 Don’t! Unless you absolutely have to.

Rule #2 Request only what you really need (memory, CPUs,
GPUS).

Rule #3 GPUs may only be requested through Jobs, not Pods.

Rule #4 Don’t let interactive Pods/Jobs sit idly. Check
frequently if they are up and running, and delete
them when you are done (only your own, of course).

Rule #5 Directly submitted Pods currently bypass the queuing
and quota allocation system. If they ever get in the
way of overall operations, they will be terminated
immediately without warning.

Rule #6 As long as you request laptop-scale resources (1-4
CPUs, 16GB RAM or less, and no GPUs, your Pod
has a good chance of being tolerated, but without
guarantees.

Interactive Pods/Jobs: How-to

▶ At least one Container within the Pod must be running
forever.

▶ The most straightforward way to implement this is to specify
something like this in .spec.containers[0].command:
["bash", "-c", "trap TERM; sleep infinity& wait; exit 0"]

in the Pod specification.

▶ “Log in” to an interactive pod via
kubectl exec -it <podname> -- bash

Kubernetes Secrets

▶ Kubernetes secrets aren’t at all secrets within the Name
Space. Everyone can see them and use them.

▶ They are still a good way of separating confidential
information from code that you may want to distribute freely.

Creating Kubernetes Secrets

In principle (but won’t work on EIDF029/EIDF107 directly!!!)

▶ specify key-value pairs on the command line
kubectl create secret generic $SECRETNAME
--from-literal=$KEYWORD1=$VALUE1
--from-literal=$KEYWORD2=$VALUE2

▶ get value from a file, e.g.
kubectl create secret generic $SECRETNAME
--from-file=id rsa=$HOME/.ssh/id rsa

--from-file=id rsa.pub=$HOME/.ssh/id rsa.pub

▶ create from an ‘env‘-file
kubectl create secrets generic $SECRETNAME
--from-env-file=./secrets.env

Creating Kubernetes Secrets (2)

kubectl create secret generic $SECRETNAME ...

--dry-run=client -ojson | jq ’.metadata.labels |= {
"eidf/user" : env.USER }’

Using Kubernetes Secrets

▶ Declare secret as volume in .spec.volumes:

- name: $SECRETNAME
secret:

secretName: $SECRETNAME

▶ Mount secret in .spec.containers[*].volumeMounts

- name: $SECRETNAME
mountPath: /secrets/$SECRETNAME

▶ Then access as files from the Pod.

From Pods to Jobs

▶ currently, only Jobs can be queued

▶ Pods bypass the queue

▶ directly scheduled Pods will be deleted without warning

From Pods to Jobs
apiVersion: batch/v1

kind: Job

metadata:

generateName: $USER -job -
labels:

eidf/user: $USER
kueue.x-k8s.io/queue -name: $INFK8S_QUEUE_NAME

spec:

backoffLimit: 0

ttlSecondsAfterFinished: 300

template:

metadata:

labels:

eidf/user: $USER
spec:

restartPolicy: Never

containers:

- name: ubuntu

image: ubuntu :20.04

command: ["/ bin/bash", "-./run.sh"]

resources:

limits:

nvidia.com/gpu: 0

cpu: 1

memory: 4Gi

Requesting GPUs

▶ MUST be done in a Job

▶ specify the number of GPUs requested in
.spec.template.spec.resources.limits.nvidia\.com/gpu

▶ adjust the RAM requested in
.spec.template.spec.resources.limits.memory (e.g.,
VRAM + 20Gi)

▶ specify the type of GPU in
.spec.template.spec.nodeSelector.nvidia_com/gpu_product

▶ NVIDIA-A100-SXM4-40GB-MIG-3g.20gb
▶ NVIDIA-A100-SXM4-40GB
▶ NVIDIA-A100-SXM4-80GB
▶ NVIDIA-H100-80GB-HBM3

Customizing your Container

▶ Quick and dirty: do it at the beginning of your run script

▶ ”The proper way”: create your own custom image

▶ In between: use a python virtual environment in a PVC

User Guide

https://git.ecdf.ed.ac.uk/infk8s/getting-started-on-the-eidf-gpu-cluster

https://git.ecdf.ed.ac.uk/infk8s/getting-started-on-the-eidf-gpu-cluster
https://git.ecdf.ed.ac.uk/infk8s/getting-started-on-the-eidf-gpu-cluster

	Introduction

