Introduction to using the EIDF GPU cluster for
members of EIDF029 and EIDF107

Ulrich Germann

September 2024

What is the Edinburgh International Data Facility (EIDF)?

» “EIDF is a collection of computational, data management and
safe haven services supported by the Data Driven Innovation
Programme of the Edinburgh and South-East Scotland City
Region Deal.”
https://edinburgh-international-data-facility.ed.ac.uk/about/in-a-nutshell

» run by the Edinburgh Parallel Computing Centre, which is
part of the University of Edinburgh

» provides

» computing resources
» data management resources

P access is through “projects”
» EIDF029: Informatics
> EIDF107: GAIL (Genrative Artificial Intelligence Laboratory)

» the GPU cluster runs under Kubernetes

https://edinburgh-international-data-facility.ed.ac.uk/

Getting access

EIDF029: research staff and PGR students in Informatics only
EIDF107: members of the Generative Al Laboratory only

» Create a SAFE account with your UEDIN email address here:
https://safe.epcc.ed.ac.uk/ if you don't have one
already.

» Through the SAFE portal, request access to project EIDF029
or EIDF107. You will be notified by email once approved.

» Once approved, set up ssh keys and MFA on the SAFE Portal
(Go to 'Login Accounts' in the navigation bar on the top.)

https://safe.epcc.ed.ac.uk/

Logging in

Access to the cluster is through ssh via a gateway Jump Host

ssh -i $SSH_KEY \
-J $USERQeidf -gateway.epcc.ed.ac.uk \
$USER@$PROJECT_HOST_IP

You can make your life easier by adding this to your
~ /.ssh/config

Host $EIDF_PROJECT
User $USER
IdentityFile $SSH_KEY
HostName $PROJECT_HOST
ProxyJump $USERQeidf -gateway.epcc.ed.ac.uk
IgnoreUnknown Usekeychain
UseKeychain yes

What is Kubernetes?

developed at Google to manage Software-as-a-Service at scale
focus is on keeping services live and available
dynamic scaling

vvyYyy

unlike Slurm, NOT per se an batch queueing system
(conceptually, resources are assumed to be always available)

v

resources are separated by Name Spaces

v

no notion of individual ownership of Kubernetes artefacts by
user

» has Docker containerisation technology at its heart

Docker

Docker Images typically contain all but only the software to
run a particular programme or application (the Docker
command or entry point)

Docker Images are hosted in a Docker Repository, or on the
local host

When you run an Image, the Docker Daemon lets you specify
certain parameters, set environment variables, forward ports,
and mount directories into the Docker Container that
instantiates the image.

Philosopy: one Image per service

Docker Containers are not Virtual Machines!!!

Example of a Docker run

docker run --name web -p 8080:80 --rm \
-v /path/to/document/root:/usr/share/nginx/html nginx
The Docker Daemon
» pulls the nginx Image from the remote Repository if necessary
» names the Container ‘web’
» maps the port 80 inside the Container to port 8080 on the
Docker Host
» mounts /path/to/document/root from the host into the
Container as /usr/share/nginx/html
» removes the Container when it is finished / stopped (--rm)
All changes to the Container are lost when the container is
removed!!!

Kubernetes Pods: container orchestration

» Remember the Docker philosophy: one Image/Container per
service

» Containers are orchestrated to form more complex web
services, e.g.,

» Containerl: mysql database
» Container2: web frontend
» Container3: authentication service

» Kubernetes Pods orchestrate containers

Our first Pod

apiVersion: vl
kind: Pod
metadata:
name: $USER-hello-worldil
labels:
eidf /user: $USER
spec:
containers:
- name: ubuntu
image: ubuntu:20.04
command: ["/bin/bash", "-c", "echo ’Hello World!’"]
resources:
limits:
nvidia.com/gpu: 0
cpu: 1
memory: 4Gi
restartPolicy: Never

Persistent Volume Claims (PVCs)

» Claim storage provided by Kubernetes

» Read-write

» Currently each PVC can be mounted into only one Pod at a
time

» PVCs can only be accessed when mounted into a Pod

Creating PVCs

apiVersion: vl
kind: PersistentVolumeClaim
metadata:
name: $PVCNAME
labels:
eidf /user: $USER
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: $STORAGE
storageClassName: csi-rbd-sc

Mounting PVCs

» add the following to .spec in your Pod specification

volumes:
- name: workspace
persistentVolumeClaim:
claimName: $PVCNAME

» add the following to the respective container specification in
.spec.containers:

volumeMounts:
- name: workspace
mountPath: /workspace

Mounting NFS directories (1)

» any accessible NFS server can be mounted
» currently EIDF029 has its own NFS server that
» s accessible on the login node (RW)
» can be mounted into Pods (RO)
» currently has a quota of 50GB per user
» provides a mirror of commonly used datasets and models
» EIDF107 currently has none, but the EIDF029 NFS server is
mountable from EIDF107

» Apologies to EIDF107-only users! An NFS server is in the
works ...

Mounting NFS directories (2)

» Declare the volume. In .spec.volumes, add, e.g.,

- name: publicdata
nfs:
server: $EIDF029_NFS_SERVER_IP
path: /public
- name: userdata
nfs:
server: $EIDF029_NFS_SERVER_IP
path: /user/$USER

> Mounting the declared volume works just like mounting PVC
volumes. In the respective volumeMounts section, add, for
example,

- name: publicdata
mountPath: /publicdata

- name: userdata
mountPath: /mydata

Interactive Pods/Jobs: Basic Rules

Rule #1
Rule #2

Rule #3
Rule #4

Rule #5

Rule #6

Don't! Unless you absolutely have to.

Request only what you really need (memory, CPUs,
GPUS).

GPUs may only be requested through Jobs, not Pods.

Don't let interactive Pods/Jobs sit idly. Check
frequently if they are up and running, and delete
them when you are done (only your own, of course).

Directly submitted Pods currently bypass the queuing
and quota allocation system. If they ever get in the
way of overall operations, they will be terminated
immediately without warning.

As long as you request laptop-scale resources (1-4
CPUs, 16GB RAM or less, and no GPUs, your Pod
has a good chance of being tolerated, but without
guarantees.

Interactive Pods/Jobs: How-to

» At least one Container within the Pod must be running
forever.

» The most straightforward way to implement this is to specify
something like this in .spec.containers[0].command:
["bash", "-c", "trap TERM; sleep infinity& wait; exit 0"]
in the Pod specification.

> “Log in” to an interactive pod via
kubectl exec -it <podname> -- bash

Kubernetes Secrets

» Kubernetes secrets aren't at all secrets within the Name
Space. Everyone can see them and use them.

» They are still a good way of separating confidential
information from code that you may want to distribute freely.

Creating Kubernetes Secrets

In principle (but won't work on EIDF029/EIDF107 directly!!!)

P specify key-value pairs on the command line
kubectl create secret generic $SECRETNAME
-—from-literal=$KEYWORD1=$VALUE1
--from-literal=$KEYWORD2=$VALUE2

> get value from a file, e.g.
kubectl create secret generic $SECRETNAME
--from-file=id_rsa=$HOME/.ssh/id_rsa
—-—from-file=id_rsa.pub=$HOME/.ssh/id _rsa.pub
> create from an ‘env'-file

kubectl create secrets generic $SECRETNAME
—--from-env-file=./secrets.env

Creating Kubernetes Secrets (2)

kubectl create secret generic $SECRETNAME ...
--dry-run=client -ojson | jq ’.metadata.labels |= {
"eidf/user" : env.USER }’

Using Kubernetes Secrets

» Declare secret as volume in .spec.volumes:

- name: $SECRETNAME
secret:
secretName: $SECRETNAME

> Mount secret in .spec.containers[*].volumeMounts

- name: $SECRETNAME
mountPath: /secrets/$SECRETNAME

» Then access as files from the Pod.

From Pods to Jobs

» currently, only Jobs can be queued
» Pods bypass the queue
» directly scheduled Pods will be deleted without warning

From Pods to Jobs

apiVersion: batch/v1
kind: Job
metadata:
generateName: $USER-job-
labels:
eidf /user: $USER
kueue .x-k8s.io/queue-name: $INFK8S_QUEUE_NAME
spec:
backoffLimit: O
ttlSecondsAfterFinished: 300
template:
metadata:
labels:
eidf/user: $USER
spec:
restartPolicy: Never
containers:
- name: ubuntu
image: ubuntu:20.04
command: ["/bin/bash", "-./run.sh"]
resources:
limits:

Requesting GPUs

» MUST be done in a Job

» specify the number of GPUs requested in
.spec.template.spec.resources.limits.nvidia\.com/gpu

» adjust the RAM requested in
.spec.template.spec.resources.limits.memory (e.g.,
VRAM + 20Gi)

» specify the type of GPU in
.spec.template.spec.nodeSelector.nvidiacom/gpuproduct

»> NVIDIA-A100-SXM4-40GB-MIG-3g.20gb
> NVIDIA-A100-SXM4-40GB
> NVIDIA-A100-SXM4-80GB
> NVIDIA-H100-80GB-HBM3

Customizing your Container

» Quick and dirty: do it at the beginning of your run script
» "The proper way": create your own custom image

» In between: use a python virtual environment in a PVC

User Guide

https://git.ecdf.ed.ac.uk/infk8s/getting-started-on-the-eidf-gpu-cluster

https://git.ecdf.ed.ac.uk/infk8s/getting-started-on-the-eidf-gpu-cluster
https://git.ecdf.ed.ac.uk/infk8s/getting-started-on-the-eidf-gpu-cluster

	Introduction

