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Claims as generalisations

Many ways to express generalisations

• Quantifiers

• Most models perform well on the MT tasks

• We find that generally our method produces fewer hallucinations than the baselines.

• Scoping

• When using beam search, models produce more fluent outputs.

• Generics

• Our model outperforms or performs comparably to the baselines.
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Generalisations and frequency

Lion

Mane

Tiger

Stripes *All Tigers have stripes
*Most Tigers have stripes

*Most Lions have manes
*Some Lions have manes
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Generalisations and frequency

Tigers have stripes

Lions have manesLion

Mane

Tiger

Stripes

Mosquitos carry malaria

Tigers are mammals
p(y | x)  1�

p(y | x)  1=

p(y | x) > 0.5

p(y | x) < 0.1

HAS

HAS

Mosquito
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Generic overgeneralization

All
Most
Some

Lions have manes

This lion has a mane

Exception

Lionesses don’t
have manes

Leslie et al. (2011) 24
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Probing for overgeneralization

All Lions have manes. 
Yes or No?

Lionesses don’t have manes. 
Yes or No?

Yes

Yes

Yes

No

Overgeneralisation

No Overgeneralisation
From Allaway et al. (2024).
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Consistent overgeneralization in LLMs

From Allaway et al. (2024). 26



Generic generalisations
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Generics are not like quantified statements (Calderón et al., 2025). 27



Hasty generalisations

with larger samples, or with higher country or region counts (generalized articles: r =–0.05,
p = 0.29; articles with generics: r =–0.03, p = 0.52). Results by journal are shown in Table 5.

Regarding sample diversity, the overall three most sampled countries were the USA (273,
51.2%), UK (176, 33.0%), and Canada (129, 24.2%) (see also S2 Table). 201 (70.5%) of all 285
articles with generalized claims had only tested either Western (n = 154, 54.0%) or non-West-
ern (n = 47, 16.5%) samples alone (S3 Table, S1 Fig). However, only in 5 of these 201 articles

Fig 2. The proportion of articles with generalized, generic, unrestricted, hedged, or practice-related result claims (derived by dividing the number of articles
with these claims with the total number of articles of each journal). Error bars indicate standard error for the variability in proportion estimates.

https://doi.org/10.1371/journal.pone.0306749.g002

Table 3. χ2 test results comparing journals in terms of their number of generalized articles and articles with generics. Bonferroni correction for multiple comparions
α = 0.008.

Journal comparison Generalized articles χ2 (1) p ϕ
Lancet vs. NEJM 118 vs. 105 51.61 < 0.001 0.37

Lancet vs. JAMA 118 vs. 21 104.35 < 0.001 0.65

Lancet vs. BMJ 118 vs. 41 1.56 0.21 – 0.09

NEJM vs. JAMA 105 vs. 21 23.07 < 0.001 0.26

NEJM vs. BMJ 105 vs. 41 15.61 < 0.001 0.24

JAMA vs. BMJ 21 vs. 41 49.76 < 0.001 0.55

Articles with generics

Lancet vs. NEJM 108 vs. 88 50.52 < 0.001 0.37

Lancet vs. JAMA 108 vs. 13 103.85 < 0.001 0.64

Lancet vs. BMJ 108 vs. 37 1.34 0.25 – 0.08

NEJM vs. JAMA 88 vs. 13 25.39 < 0.001 0.27

NEJM vs. BMJ 88 vs. 37 15.84 < 0.001 0.24

JAMA vs. BMJ 13 vs. 37 54.94 < 0.001 0.58

https://doi.org/10.1371/journal.pone.0306749.t003

Hasty generalizations and generics in medical research

PLOS ONE | https://doi.org/10.1371/journal.pone.0306749 July 5, 2024 9 / 19

From Peters et al. (2024)
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Hasty generalisations

regions mentioned in unrestricted versus restricted articles.13 We also did not find
evidence of a statistically significant correlation between scope of conclusion and
number of countries/regions.14 In sum, we found no evidence that unrestricted versus
restricted articles had or were correlated with larger or more diverse samples.15

3.2.5 RQ5
Is the scope of experimental philosophers’ conclusions related to the impact of their studies
such that broader conclusions correlate with higher impact?

Using citation count as a proxy for impact, time effects on publishing may
confound the results, as older articles will have had more time to accrue citations
than newer ones. Citation count data thus need to be normalized. One previously used
normalization method (Li and Zhu 2023) is calculating the relative citation rate (RCR):

RCR ! Observed citation count "OCC#
Expected citation count "ECC#

:

OCC represents a given article’s raw total citations. ECC captures an article’s
expected citations in the year it was published. For instance, in our sample, forty-four
articles were published in 2021, receiving 303 total citations until data collection.
Therefore, the ECC for any article published in 2021 is 6.9. If an article published in
2021 has been cited fourteen times so far, its RCR will be 2. By controlling for the
number of years an article has been published, this normalized citation rate allows for
comparing an article’s impact across the time span we investigated.

Figure 2. Full distribution of sample sizes within each group of x-phi articles.

13 Number of countries/regions mentioned in unrestricted articles, n= 119, mean rank= 83.15, vs.
restricted articles, n= 52, mean rank= 92.52; U= 2,755.00, p=0.212.

14 rrb(169) = −0.10, 95 percent CI [−0.247, 0.060], p= 0.213.
15 These two trends remained when we excluded articles without information on country/region.

Philosophy of Science 671
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From Peters and Lemeire (2024)
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Exercise - evaluating claim soundness

1. Rate each claim on a scale of 1-5 (least to most) in terms of robustness,

replicability, and generalisability.

2. Find and identify where the evidence for each claim is located.

• Highlight table or figure labels (e.g., Figure 1) or sentences.

• Use a separate color for the evidence corresponding to each claim.

3. Consider whether there is any non-supporting evidence.

• If so, highlight or mark this evidence (e.g., cells in a table).

4. Rerate the claims, taking into account the evidence you have seen.

• If your rating is di↵erent from initially, please describe why briefly.

5. Discuss the claims and your ratings with your partner and come to a consensus for

each aspect.
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Exercise - evaluating claim soundness

Observations?

• How did evidence impact your perception?

• Did non-supporting evidence influence your perception?

• Did either of these things surprise you?

31
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