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Replication and Reproducibility



What do we expect of scientific results?
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From: Pineau et al. (2021) and https://github.com/WhitakerLab/ReproducibleResearch



https://github.com/WhitakerLab/ReproducibleResearch

Issue in NLP

Table 1
Distribution of data and code availability in both 2011 and 2016.

2011: data 2016: data 2011: code 2016: code

Data / code available 116 75.8% 196 86.3% 48 33.1% 131 59.3%
- working link in paper 98 64.1% 179  789% 27 18.6% 80 36.2%

- link sent 11 7.2% 15 6.6% 17 11.7% 50 22.6%
- repaired link sent 7 4.6% 2 0.9% 4 2.8% 1 0.5%
Data / code unavailable 37  24.2% 31 13.7% 97  66.9% 90 40.7%
- sharing impossible 19 12.4% 14 6.2% 46  31.7% 42 19.0%
- no reply 17 11.1% 12 5.3% 43 29.7% 32 14.5%
- good intentions 0 0.0% 2 0.9% 5 34% 12 5.4%
- link down 1 0.7% 3 1.3% 3 2.0% 4 1.8%

From Wieling et al. (2018)



Efforts to improve reproducibility

The ARR Responsible NLP Research checklist, based on:

v’ For all reported experimental results

oooo

O

Description of computing infrastructure
Average runtime for each approach
Details of train/validation/test splits

Corresponding validation performance for each
reported test result

A link to implemented code

v For experiments with hyperparameter search

O
O

Dodge

Bounds for each hyperparameter

Hyperparameter ~ configurations  for
performing models

Number of hyperparameter search trials

best-

The method of choosing hyperparameter values
(e.g., uniform sampling, manual tuning, etc.) and
the criterion used to select among them (e.g., ac-
curacy)

Expected validation performance, as introduced
in §3.1, or another measure of the mean and vari-
ance as a function of the number of hyperparam-
eter trials.

et al. (2019)

3.0 Safe use of data is ensured. (Check all that apply)

3.1.0 The data does not include any protected information (e.g. sexual orientation or political views under GDPR),

(]

or a specified exception applies. See Section
The paper is accompanied by a data statement describing the basic demographic and geographic characteri:
of the population that is the source of the language data, and the population that it is intended to represent.

See .
If applicable: the paper describes whether any characteristics of the human subjects were self-reported
(preferably) or inferred (in what way), justifying the methodology and choice of description categories. See
Section ___.

The paper discusses the harms that may ensue from the limitations of the data collection methodology,
inali ions, and specifies the scope within which the data can

See Section ___.

If any personal data is used: the paper specifies the standards applied for its storage and processing, and any
anonymization efforts. See Section ___.
If the individual speakers remain identifiable via search: the paper discusses possible harms from misuse of
this data, and their mitigation. See Section ___.

g mar,

Sp y
be used safely.

Rogers et al. (2021)


https://aclrollingreview.org/responsibleNLPresearch/

Limitations & Risks

Limitations (week 3), Risks (now)

e Examples
e potential malicious or unintended harmful effects & uses
e environmental impact
e fairness
® privacy
e security
e Consider particularly
e Dual use
e Variety of stakeholders impacted
e Relevant mitigation strategies

From A2: https://aclrollingreview.org/responsibleNLPresearch/


https://aclrollingreview.org/responsibleNLPresearch/

Exercise - why are items on the checklist

For each item on the checklist, discuss

e Why is the information useful?

e What area of reproducible research does it contribute to?



B - Scientific Artifacts

B1l. Cite creators?

B2. Licenses and terms of use?

B3. Intended use?

B4. Uniquely identifying information or offensive content?
B5. Documentation of artifacts?

B6. Statistics of artifacts?
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C - Compute Experiments

C1. Parameters and compute information?
C2. Hyperparameters?
C3. Descriptive statistics of results?

C4. Packages and settings?
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D - Human Annotations & Participants

D1. Instructions to participants?
D2. Recruitment information?
D3. Consent?

D4. Ethics approval?

D5. Annotator population characteristics?
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Is the checklist effi
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From Magnusson et al. (2023) 13



Perceived usefulness of the checklist
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From: Magnusson et al. (2023)

g
Any ltem

(B)

~77 KAVGREPROD
I A= YES
B A=No

. B A=N/A

HAVGREPROD XA

Mean percieved reproducibility score conditioned on X,A

g g
LNk ToCoODE NEWDATADESCRIPTION 14



Potentially bad faith responses

Response Conference Submissions ACCEPT
EMNLP 2020 134 (4.5%) —9.9%
YES EMNLP 2021 238 (7.3%) —6.7%
NAACL 2021 79 (6.4%) —3.3%
ACL 2021 213 (7.3%) —8.2%
EMNLP 2020 1(0.0%) —39.7%
No EMNLP 2021 0 (0.0%) -
NAACL 2021 0 (0.0%) -
ACL 2021 0 (0.0%) -

From: Magnusson et al. (2023)
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Work still difficult to reproduce

Intermediate B Advanced
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Figure 2: Mean reproducibility difficulty rating (1-5

5 being most difficult) for each step of experiments
From Storks et al. (2023) 16



Code is a major blockers to reproduction

Reproducibility Blocker Frequency
Insufficient Code Dependency Specification 38
Difficult-to-Access External Resources 27
Unclear Code Usage Documentation 17
Pre-Existing Bugs in Code 16
Difficult-to-Read Code 11
Other 30

From Storks et al. (2023)
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Challenges doing reproducible research

o Takes time!

my DATA....
PEQPLE MIGHT

e Held to higher standards NEEDTO
e Openness to mistakes MAKE IT
0k 70 BE

Publication bias towards novel findings

HUMAN

[} |P/Conf|dentla|lty iSSUeS SPRINGER NATURE

From Data et al. (2017)
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Exercise - recommendations

Magnusson et al. (2023) and Storks et al. (2023) both make recommendations for the

checklist:
1. Checklist responses made public Suggested ACLRC Addition Frequency
Standards for Documentation Clarity 22
2. Extra time allowed for submitting the Full Specification of Code Dependencies 18
. . 0 Demonstration of Code Usage 9
checklist & accompanying items Provision of Support for Issues 8
Standards for Code Clarity 5

Should these be implemented?
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Further reading

e Reproducibility, correctness, and buildability: The three principles for ethical public
dissemination of computer science and engineering research (Rozier and Rozier,

2014)

e Three Dimensions of Reproducibility in Natural Language Processing (Cohen
et al., 2018)

e A practical taxonomy of reproducibility for machine learning research (Tatman
et al., 2018)

20



Generalisation
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p(y|x)=1

Tigers are mammals
p(y|x)= 1

Tigers have stripes

Lions have manes
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Generic overgeneralization

All .
Lions have manes

{ This lion has a mane } h\

Leslie et al. (2011) 23



Generic overgeneralization

All .
Lions have manes

{ This lion has a mane } h\

Exception

Lionesses don't
have manes

Leslie et al. (2011) 23



Probing for overgeneralization

%AII Lions have manes.

Yes or No? Yes
No

Lionesses don’t have manes.

Yes or No?
Yes
Yes

Overgeneralisation

No Overgeneralisation
From Allaway et al. (2024).
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Consistent overgeneralization in LLMs

Response Types to Question Pairs
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From Allaway et al. (2024). 25



Claims as generalisations

Many ways to express generalisations

e Quantifiers

e Most models perform well on the MT tasks
e We find that generally our method produces fewer hallucinations than the baselines.

e Scoping
e When using beam search, models produce more fluent outputs.
e Generics

e Our model outperforms or performs comparably to the baselines.

26



Generic generalisations
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Generics are not like quantified statements (Calderén et al., 2025). o



Hasty generalisations
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Figure 2. Full distribution of sample sizes within each group of x-phi articles.

From Peters and Lemeire (2024)
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Hasty generalisations
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Fig 2. The proportion of articles with generalized, generic, unrestricted, hedged, or practice-related result claims (derived by dividing the number of articles
with these claims with the total number of articles of each journal). Error bars indicate standard error for the variability in proportion estimates.

From Peters et al. (2024)
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Exercise - evaluating claim soundness

1. Rate each claim on a scale of 1-5 (least to most) in terms of robustness,
replicability, and generalisability.
2. Find and identify where the evidence for each claim is located.

e Highlight table or figure labels (e.g., Figure 1) or sentences.
e Use a separate color for the evidence corresponding to each claim.

3. Consider whether there is any non-supporting evidence.
e If so, highlight or mark this evidence (e.g., cells in a table).
4. Rerate the claims, taking into account the evidence you have seen.
e |f your rating is different from initially, please describe why briefly.
5. Discuss the claims and your ratings with your partner and come to a consensus for
each aspect.

30



Exercise - evaluating claim soundness

Observations?

e How did evidence impact your perception?
e Did non-supporting evidence influence your perception?

e Did either of these things surprise you?

31
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