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Abstract

Instruction optimization provides a lightweight,
model-agnostic approach to enhancing the rea-
soning performance of large language models
(LLMs). This paper presents the first system-
atic comparison of instruction optimization,
based on the DSPy optimization framework,
for tabular fact verification. We evaluate four
out-of-the-box prompting techniques that cover
both text-only prompting and code use: direct
prediction, Chain-of-Thought (CoT), ReAct
with SQL tools, and CodeAct with Python ex-
ecution. We study three optimizers from the
DSPy framework—COPRO, MiPROvV2, and
SIMBA— across four benchmarks and two
model families.

1 Introduction

Verifying natural language claims against struc-
tured data is a central capability for trustworthy
NLP systems deployed in science, public health,
and information quality assurance. While numer-
ous methods have been proposed for tabular fact
verification (Yang and Zhu, 2021; Ou and Liu,
2022; Lu et al., 2025; Zhang et al., 2024b, inter
alia), the resulting systems are often specialized to
a particular dataset or fail to outperform simpler
prompting approaches.

In this work, we conduct a comparative study of
out-of-the-box prompting techniques, paired with
instruction optimization, for tabular fact verifica-
tion. Instruction optimization is a technique that al-
lows for improvements to LLM performance with-
out gradient updates. Since LLMs are known to
be sensitive to prompt formulation (Webson and
Pavlick, 2022; Leidinger et al., 2023), we analyze
the impacts of instruction optimization on practi-
cal and generalizable prompting techniques, such
as Chain-of-Though (Wei et al., 2022), used with
open LLMs.

Recent frameworks for instruction optimization
(e.g., DSPy; Khattab et al., 2024) treat multi-step

LLM pipelines as programs whose textual parame-
ters can be automatically tuned by search or meta-
reasoning, yielding large gains on diverse tasks.
Despite this progress, a systematic understanding
of how instruction optimization affects tabular fact
verification is lacking. The following impacts are
particularly underexplored: (1) prompting tech-
niques that differ in their intermediate computa-
tion (e.g., direct prediction, CoT, and program-
aided reasoning via SQL and Python), (2) opti-
mizer families, and (3) model scale and families.
Tool-augmented agents (e.g., ReAct; Yao et al,,
2023) promise stronger grounding by interleaving
thoughts with executable actions, but their end-to-
end effectiveness depends critically on the learned
tool interface and execution reliability—factors that
instruction optimization may help or hinder.

We present the first comparative study of instruc-
tion optimization for tabular fact verification using
the DSPy optimization framework. Our study fo-
cuses on three optimizers within DSPy: COPRO,
MiPROV2, and SIMBA!. We analyze these across
four benchmarks (TabFact, PubHealthTab, and Sc-
iTab, MMSci), four prompting techniques (Direct
prediction, CoT, ReAct, and CodeAct), and two
base LLMs (Qwen3 and Gemma3). We conduct
a comprehensive analysis to address the following
research questions:

* What is the impact of optimized instructions on
CoT reasoning?

* How does the optimized instructions affect the
tool calling behavior of ReAct agents?

* Does program-aided reasoning show consistent
advantages over CoT in tabular fact checking?

'We restrict MiPROV?2 and SIMBA to instruction-only tun-
ing to isolate the effect of instructions from few-shot example
selection.



2 Related Work

Table-based Fact Checking Verifying claims
against structured evidence requires composi-
tional reasoning over diverse table schema. Tab-
Fact (Chen et al., 2020) established the first large-
scale benchmark for binary fact verification on
Wikipedia tables. Later datasets incorporated more
nuanced labeling schema (e.g., three labels instead
of only two) and more complex claims requiring
multi-hop reasoning (Wang et al., 2021). Among
these, several domain-specific datasets have been
created: PubHealthTab (Akhtar et al., 2022), which
targets claims about public health, SciTab (Lu et al.,
2023), which includes claims from computer sci-
ence publications, and SciAtomicBench (Zhang
et al., 2025), which covers computer science along
with other domains such as finance. While fact ver-
ification datasets typically present tabular data in
textual form, multi-modal datasets have also been
created (Yang et al., 2025b). Additionally, some
fact-verification datasets mix tabular evidence with
text (Aly et al., 2021; Schlichtkrull et al., 2023;
Zhao et al., 2024) and figures (Wang et al., 2025;
Chan et al., 2024).

Early methods for tabular fact verification used
symbolic or programmatic reasoning (Chen et al.,
2020; Zhong et al., 2020; Shi et al., 2020; Zhang
et al., 2020; Yang et al., 2020; Yang and Zhu, 2021;
Ou and Liu, 2022). While some recent work has
also made use of neuro-symbolic systems (Glenn
et al., 2024; Aly and Vlachos, 2024; Cheng et al.,
2023), there has been an increasing focus on adapt-
ing and making use of LL.Ms. To this end, prior
works have developed both pre-training (Eisensch-
los et al., 2020; Dong and Smith, 2021; Zhang
et al., 2024a) and fine-tuning (Wu and Feng, 2024;
Jiang et al., 2025) approaches for table-based fact
verification, as well as more general table-based
reasoning tasks (Herzig et al., 2020; Liu et al.,
2022). Additionally, several works propose prompt-
ing techniques for improving model reasoning over
tables (Wang et al., 2024b; Zhang et al., 2025; Ab-
hyankar et al., 2025; Zhang et al., 2024b). Recently,
work has also begun to investigate agentic systems
and tool-use for table-based fact verification (Lu
et al., 2025; Zhou et al., 2025). However, despite
these advances, many systems are computationally
intensive or specialized to a particular dataset. In
contrast, our work explores computationally light
instruction optimization techniques applied to gen-
eral prompting strategies.

Most closely related to our work are two recent
analyses into the challenges of various table under-
standing tasks, including fact verification. Bhan-
dari et al. (2025) examine how instruction tuning,
in-context examples, and model size impact per-
formance on tabular reasoning tasks, while Wu
et al. (2025) survey approaches to table understand-
ing tasks more broadly. In contrast to these anal-
yses, our work compares instruction optimization
techniques applied to simple prompting strategies
(standard baselines such as CoT as well as simple
programmatic reasoning models such as ReAct).
Additionally, while Bhandari et al. (2025) cover
multiple table understanding tasks, our work fo-
cuses only on table-based fact verification, opting
instead to cover a wider range of datasets tabular
fact verification.

3 Method

3.1 Prompting Techniques

Chain-of-Thought Chain-of-thought reasoning
(CoT) (Wei et al., 2022) encourages LLMs to gener-
ate intermediate reasoning steps before producing
the final answer. With CoT, LLMs can decompose
a complex query into sub-problems and progres-
sively build the solution in the reasoning traces.

ReAct ReAct (Yao et al., 2023) serves as a foun-
dational framework for tool-based agents by inter-
leaving reasoning with task-specific actions. ReAct
enables LLMs to interact with external tools, allow-
ing them to collect additional evidence and ground
their reasoning in the tool execution output. In our
experiments, we evaluate a ReAct agent with ac-
cess to a standard SQL tool that can execute SQL
queries on the table data to retrieve relevant infor-
mation and perform math operations.

CodeAct CodeAct (Wang et al., 2024a) lever-
ages executable Python code as the primary action
modality for tool-based agents. Unlike existing
paradigms that rely on tool calls in text or JSON
formats, CodeAct enables multi-step operations
and flexible tool chaining through code execution,
allowing the agent to perform sophisticated actions
by integrating with Python’s control flow and ex-
isting libraries. In our experiments, the CodeAgent
has no access to pre-defined tools. It generates free-
form python codes to process the table data and
perform math operations step by step.



3.2 Instruction Optimization

In our analysis, we focus on three LLM-
based instruction optimization approaches in the
DSPy (Khattab et al., 2024) framework: COPRO,
MiPROV2 (Opsahl-Ong et al., 2024) and SIMBA.

DSPy Framework DSPy is a framework for
algorithmically optimizing model prompts and
weights, treating LLM pipelines as programmes
that can be automatically compiled and optimized.

COPRO Cooperative Prompt Optimization (CO-
PRO) systematically explores various candidate
instructions in a beam search-like manner and eval-
uates their performance on the train set. The op-
timizer iteratively refines the prompt instruction
by proposing multiple new candidate instructions
based on the N best prompts among previous at-
tempts and their corresponding evaluation scores.

MiPROv2 Multi-Stage Instruction Prompt Op-
timization (MiPROvV2) is an advanced framework
that can refine both the instruction and few-shot
demonstrations through a three-stage pipeline.
First, the optimizer bootstraps multiple candidate
sets of few-shot demonstrations from the training
data. Then, it generates diverse prompt instructions
and demonstrations based on previously evaluated
candidates, the properties of the downstream task,
and randomly sampled prompting strategies. Fi-
nally, MiPROv2 employs Bayesian optimization
method to efficiently search the best combination
of candidate instruction and demonstration.

Compared with COPRO, MiPROV2 provides a
richer context for the generation of new candidate
instructions and performs more efficient evaluation
on mini-batches of training data.

SIMBA Stochastic Introspective Mini-Batch As-
cent (SIMBA) is an introspective prompt optimiza-
tion algorithm that leverages the language model’s
capacity for self-reflection to iteratively improve
instruction quality. The optimizer identifies chal-
lenging training instances where model outputs
exhibit high variability, then applies two comple-
mentary strategies to refine prompts. One strat-
egy performs contrastive analysis, where the model
compares successful and unsuccessful execution
traces to generate explicit improvement rules that
are appended to the original instruction. Another
strategy incorporates successful execution trajecto-
ries as few-shot demonstrations.

4 Experiments

4.1 Datasets

We evaluate the performance of various LLMs on
four tabular fact checking datasets: TabFact (Chen
et al., 2020), PubHealthTab (Akhtar et al., 2022),
SciTab (Lu et al., 2023) and MMSci (Yang et al.,
2025b). These datasets cover diverse domains and
table types, ranging from general knowledge to
specialized data, thereby enabling a more compre-
hensive evaluation of the generalization ability of
different approaches. In SciTab, PubHealthTab,
and MMSci, there are three labels: supports, re-
futes and not enough info; TabFact is a binary clas-
sification task with only supports and refutes labels.

SciTab SciTab (Lu et al., 2023) is a benchmark
designed for scientific claim verification, leverag-
ing real-world table evidence from scientific publi-
cations in machine learning and natural language
processing domains. The dataset presents unique
challenges in claim ambiguity, compositional rea-
soning and numerical analysis of scientific data.

PubHealthTab PubHealthTab (Akhtar et al.,
2022) is a table-based fact checking dataset focus-
ing on public health claims. The evidence tables are
extracted from multiple web sources, which exhibit
noisy and complex table structure with varying con-
tent quality.

TabFact TabFact (Chen et al., 2020) is a large-
scale table-based fact verification dataset that con-
sists of human-annotated claims with Wikipedia
tables as evidence. TabFact provides two test sets
that differ in the claim complexity, and we use the
complex test set for evaluation.

MMSci MMSci (Yang et al., 2025b) is a bench-
mark for multimodal scientific reasoning across
three table-based tasks. We use the table fact veri-
fication test set, converting table images to textual
format, to evaluate generalization to unseen data.

4.2 Optimization

For each considered LLM, we evaluate the perfor-
mance of different prompting techniques, includ-
ing direct prompting, CoT, ReAct and CodeAct
to study the impact of instruction optimization on
both language-based reasoning and program-aided
reasoning. We use the same instructions in the sys-
tem prompt before optimization for different exper-
iments, i.e. verify the given claim against



Dataset Train Dev Test
TabFact 92,585 12,851 8,609
SciTab 210 429 429
PubHealthTab 1440 177 180
MMSci - - 1,038

Table 1: Statistics of the fact checking datasets.

the provided table data. All the experiments
are conducted in zero-shot setting.

4.3 Evaluation Setup

Models and Baselines We conduct our experi-
ments using Qwen3 (Yang et al., 2025a), Gemma3
(Team et al., 2025) and GPT-40 models, which al-
lows us to systematically investigate the impact
of instruction optimization on reasoning and tool-
calling behavior across different model families
and sizes. The same model is used for proposing
candidate instructions and evaluating instruction
quality during optimization. To examine the effec-
tiveness of optimized instructions, we compare the
model performance in GPT-40 experiments with
ReActable (Zhang et al., 2024b), a ReAct frame-
work that uses GPT-40 with human-written instruc-
tions and SQL and Python as tools.

Data processing Each fact checking dataset is
processed into a unified data format. We then split
three of the datasets (TabFact, SciTab, and Pub-
HealthTab) into train, development and test sets;
our fourth dataset, MMSci, is used only for evalua-
tion. We create a hybrid training set for instruction
optimization by randomly sampling 100 instances
from the training splits of the three datasets. We
sample 40 PubHealthTab instances, 40 SciTab in-
stances and 20 TabFact instances to ensure the la-
bel distribution of the hybrid dataset is balanced.
Statistics of the processed datasets are in Table 1.

Evaluation metrics We optimize the instructions
using the hybrid train data, and evaluate the per-
formance on the development and test sets of all
four datasets with accuracy and macro-F1. During
instruction optimization, only accuracy is used to
measure the quality of different candidate prompts.

5 Results

We report the test performance of different prompt-
ing techniques with Qwen3 models on four fact
checking datasets in Table 2. For direct prompting
and CoT, larger models generally achieve higher
accuracy and F1 than their smaller counterparts

across most test sets. For program-aided reason-
ing paradigms (ReAct, CodeAct), increasing model
size does not yield significant performance gains.
Although larger models have similar baseline per-
formance to smaller versions, they benefit substan-
tially more from instruction optimization and show
greater improvement with refined instructions.

The effectiveness of instruction optimization
for tabular reasoning is highly dependent on both
model scale and the prompting technique. For opti-
mizing CoT reasoning, MiPROV2 brings the most
consistent gains, achieving the highest accuracy
and F1 on PubHealthTab and TabFact for Qwen3-
8B, and showing competitive results across three
datasets with Qwen3-32B. For program-based rea-
soning, SIMBA provides the strongest performance
gain on SciTab, particularly for improving ReAct
with the Qwen3-32B model. COPRO also offers
moderate benefits for Qwen3-32B model but less
consistently than SIMBA. This suggests that larger
models are better at identifying patterns of success-
ful trajectories through self-reflection and compar-
ative analysis, leading to more effective rules for
optimizing tool use in diverse scenarios.

According to Table 3, the general trend observed
with the Gemma3 model family is slightly dif-
ferent from Qwen3. The larger Gemma3 model
shows consistently higher performance for both
CoT reasoning and program-aided reasoning. Un-
like Qwen3, where the optimizers fail to enhance
the performance for ReAct and CodeAct with a
smaller model, Gemma3 models respond more pos-
itively to instruction optimization across different
prompting techniques and show greater improve-
ment with refined instructions at both sizes.

Similar to Qwen3 experiments, MiPROV?2 still
delivers significant improvements when optimiz-
ing CoT. SIMBA performs exceptionally well for
improving ReAct and CodeAct, particularly for
the larger 27B model. COPRO remains effective
for smaller model (12B) but provides smaller in-
cremental gains relative to MiPROv2 and SIMBA.
Overall, the Gemma3 model family underperforms
Qwen3, even after applying instruction optimiza-
tion. For both Gemma3 and Qwen3 models,
CoT reasoning consistently achieves higher per-
formance than program-aided reasoning paradigms
on tabular fact checking.

Table 4 summarizes the test performance of
GPT-40 models. Due to budget considerations,
GPT-40 models and ReActable are evaluated on a
smaller TabFact test set (TabFact-mini) with 400



Qwen3-8B Qwen3-32B
Module Optimizer PubHealth SciTab TabFact MMSci  PubHealth SciTab TabFact MMSci
Acc Fl  Acc Fl1 Acc Fl1 Acc Fl Acc FI  Acc F1  Acc Fl1 Acc Fl
Baseline 733 734 58.7 565 580 528 572 415 844 823 529 496 64.1 628 682 463
Direct +COPRO 733 734 587 56.6 58.1 528 57.0 412 844 827 534 511 653 639 695 477
+MiPROv2 72.8 729 564 543 585 534 566 413 844 823 53.1 500 64.1 62.8 682 463
+SIMBA 733 734 587 565 581 528 573 414 856 843 527 500 67.6 68.7 70.6 494
Baseline 839 823 643 644 77.6 805 819 58.0 883 87.6 664 664 845 86.6 865 61.6
CoT +COPRO 839 828 662 662 768 799 794 563 872 86.1 674 673 855 876 86.7 615
+MiPROv2 86.1 85.7 660 66.0 80.3 83.1 825 594 872 865 688 68.6 869 885 87.7 654
+SIMBA 822 814 625 622 776 806 81.6 587 90.0 89.6 68.8 68.6 852 871 87.0 642
Baseline 86.7 86.6 613 612 83.8 853 825 585 878 874 615 60.1 864 87.0 875 62.6
ReAct +COPRO 844 839 622 621 805 815 83.6 615 861 847 620 615 815 841 850 610
+MiPROv2 81.7 81.1 61.8 61.8 755 80.6 822 60.0 878 872 61.5 609 842 852 862 63.0
+SIMBA 86.1 852 583 583 829 847 80.8 573 90.6 90.0 662 659 86.1 87.0 859 65.0
Baseline 86.1 86.0 57.1 57.1 82.0 835 812 592 856 849 58.0 575 859 87.1 875 66.1
CodeAct +COPRO 82.8 822 59.7 59.1 80.0 822 833 60.7 872 86.6 622 61.8 86.7 879 881 633
+MiPROv2 86.1 85.7 569 56.6 80.5 820 82.1 59.0 839 835 59.0 582 864 87.6 865 62.7
+SIMBA 85.0 849 59.7 595 848 855 843 59.8 856 852 692 693 854 87.0 865 62.6

Table 2: Results of Qwen3-8B and Qwen3-32B on test sets. Bold is best performance per method and dataset.

random instances. GPT-40 models demonstrate
much stronger baseline performance, and conse-
quently benefit less from instruction optimization
than Qwen3 and Gemma3 models. For GPT-4o-
mini, MiPROv2 is more effective for improving
CoT reasoning, while SIMBA yields greater im-
provements across the test sets for optimizing Re-
Act. However, no single optimizer provides con-
sistent performance gains for optimizing CodeAct.
For the GPT-40 model, SIMBA performs consis-
tently well and brings improvement to both CoT
and ReAct, whereas MiPROV2 is shown to be effec-
tive for enhancing CodeAct performance. ReAct
with GPT-40 shows slightly worse performance
on SciTab and TabFact-mini compared with the
ReActable baseline, but it can consistently outper-
form ReActable across all test sets after SIMBA
optimization, which demonstrates the superiority
of DSPy-based instruction optimization over man-
ually designed prompts.

According to the test performance on MMSci,
we observe that for Qwen3-32B and Gemma3-27B
model, the optimized instructions with superior per-
formance on PubHealthTab, SciTab and TabFact of-
ten generalize well to MMSci. Specifically, instruc-
tions optimized by SIMBA consistently achieves
the highest F1 scores on MMSci in both direct
prompting and ReAct settings, while CoT instruc-
tions learned by MiPROV2 continues to deliver the
strongest improvements on MMSci. However, this
trend is not observed in GPT-40 models, for which
the performance on the other three fact checking

datasets is not predictive of test performance on
MMSci. Although SIMBA shows strong perfor-
mance on SciTab and TabFact-mini across direct
prompting, CoT and ReAct settings, these perfor-
mance gains do not consistently transfer to MMSci
test data. This may indicate instructions proposed
by GPT-40 during SIMBA optimization generalize
less effectively on unseen data.



Gemma3-12B Gemma3-27B
Module Optimizer PubHealth SciTab TabFact MMSci  PubHealth SciTab TabFact MMSci
Acc F1  Acc F1  Acc FI  Acc Fl Acc Fl1  Acc F1  Acc Fl1 Acc Fl

Baseline 778 728 483 434 576 546 647 389 828 804 536 507 58.6 603 667 450
+COPRO 80.6 772 499 464 588 589 659 453 828 802 515 482 544 592 657 449

Direct  \iPROV2Z 806 79.4 550 547 632 641 669 450 828 803 559 546 592 61.6 674 460
+SIMBA 817 795 543 528 592 60.1 645 450 85.6 837 60.6 60.6 629 629 673 47.4
Baseline  87.8 864 543 523 755 777 793 546 878 869 622 619 783 80.8 829 589
CoT +COPRO 878 865 573 564 745 766 798 548 89.4 887 615 613 784 816 846 59.8
© +MiPROV2 872 856 583 57.8 80.1 822 847 60.5 889 878 648 644 814 834 858 62.5
+SIMBA 894 888 60.1 59.6 77.6 793 832 577 889 876 636 638 758 79.1 819 59.0
Baseline 839 829 492 487 649 728 799 575 878 868 529 529 763 80.8 829 587
Reac  TCOPRO 872 865 583 571 77.1 794 847 610 850 836 480 479 729 784 693 525

+MiPROv2 844 835 49.0 487 64.6 725 799 574 894 888 63.6 632 829 844 865 625
+SIMBA 86.7 857 534 51.0 79.8 81.1 848 592 90.0 89.3 604 589 84.0 850 858 62.6

Baseline 86.7 86.0 515 49.8 647 722 832 57.7 872 862 559 56.1 73.6 787 858 613
CodeAct +COPRO 894 889 543 534 670 744 85.0 61.1 889 879 592 595 79.0 815 844 6l1.1
+MiPROv2 883 87.6 499 48.6 789 81.6 847 59.0 856 848 555 560 813 83.6 865 628

+SIMBA 850 84.0 552 548 775 799 834 617 894 885 583 567 831 844 87.6 65.6

Table 3: Results of Gemma3-12B and Gemma3-27B on test sets. Bold is best performance per method and dataset.

GPT-40-mini GPT-40
Module Optimizer PubHealth SciTab TabFact-mini MMSci PubHealth SciTab TabFact-mini MMSci
Acc F1 Acc Fl Acc F1 Acc F1 Acc Fl Acc Fl Acc F1 Acc Fl
ReActable 528 529 469 466 649 41.6 507 388 82.8 822 678 678 913 913 841 61.0

Baseline 856 853 583 584 650 667 700 512 90.6 898 650 650 732 748 82.1 60.1
+COPRO 86.7 871 61.1 61.0 652 657 70.8 51.8 894 889 648 647 760 770 847 612

Direct +MiPROV2 85.0 852 60.1 598 635 639 716 529 900 89.1 650 651 745 760 844 617
+SIMBA 86.1 856 57.1 566 605 640 69.7 S51.1 894 885 653 652 765 773 828 59.8
Baseline 90.6 90.1 629 63.0 79.8 824 830 589 87.8 872 692 69.1 878 89.6 877 63.7
CoT +COPRO 90.0 89.6 61.8 617 81.0 827 836 613 878 875 69.7 69.6 8.0 898 884 650
+MiPROV2 894 889 648 648 812 83.0 844 609 894 889 70.6 705 885 899 883 658
+SIMBA 90.0 895 643 643 788 81.1 845 622 90.0 898 70.6 70.5 90.2 914 879 643
Baseline 87.8 873 550 53.1 848 854 844 612 883 873 641 628 900 903 89.5 66.2
ReAct +COPRO 894 889 594 584 828 837 857 618 894 889 678 673 902 91.0 887 67.0
+MiPROvV2 90.0 89.6 60.1 60.0 825 832 845 603 894 884 662 656 908 914 885 67.6
+SIMBA 91.7 911 60.1 599 848 861 840 622 883 876 683 683 91.0 923 881 64.0
Baseline 844 83.7 59.0 588 825 839 845 604 872 867 634 623 902 908 893 654
CodeAct +COPRO 844 828 534 522 835 847 854 613 894 89.0 629 60.7 905 914 89.7 649

+MiPROV2 80.6 779 522 489 852 86.6 829 57.8 911 906 650 639 912 917 892 62.6
+SIMBA 844 83.0 557 549 815 830 841 586 883 876 61.1 605 900 914 89.0 654

Table 4: Results of GPT-40-mini and GPT-40 on test sets. Bold is best performance per method and dataset.
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