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Abstract001

Instruction optimization provides a lightweight,002
model-agnostic approach to enhancing the rea-003
soning performance of large language models004
(LLMs). This paper presents the first system-005
atic comparison of instruction optimization,006
based on the DSPy optimization framework,007
for tabular fact verification. We evaluate four008
out-of-the-box prompting techniques that cover009
both text-only prompting and code use: direct010
prediction, Chain-of-Thought (CoT), ReAct011
with SQL tools, and CodeAct with Python ex-012
ecution. We study three optimizers from the013
DSPy framework—COPRO, MiPROv2, and014
SIMBA— across four benchmarks and two015
model families.016

1 Introduction017

Verifying natural language claims against struc-018

tured data is a central capability for trustworthy019

NLP systems deployed in science, public health,020

and information quality assurance. While numer-021

ous methods have been proposed for tabular fact022

verification (Yang and Zhu, 2021; Ou and Liu,023

2022; Lu et al., 2025; Zhang et al., 2024b, inter024

alia), the resulting systems are often specialized to025

a particular dataset or fail to outperform simpler026

prompting approaches.027

In this work, we conduct a comparative study of028

out-of-the-box prompting techniques, paired with029

instruction optimization, for tabular fact verifica-030

tion. Instruction optimization is a technique that al-031

lows for improvements to LLM performance with-032

out gradient updates. Since LLMs are known to033

be sensitive to prompt formulation (Webson and034

Pavlick, 2022; Leidinger et al., 2023), we analyze035

the impacts of instruction optimization on practi-036

cal and generalizable prompting techniques, such037

as Chain-of-Though (Wei et al., 2022), used with038

open LLMs.039

Recent frameworks for instruction optimization040

(e.g., DSPy; Khattab et al., 2024) treat multi-step041

LLM pipelines as programs whose textual parame- 042

ters can be automatically tuned by search or meta- 043

reasoning, yielding large gains on diverse tasks. 044

Despite this progress, a systematic understanding 045

of how instruction optimization affects tabular fact 046

verification is lacking. The following impacts are 047

particularly underexplored: (1) prompting tech- 048

niques that differ in their intermediate computa- 049

tion (e.g., direct prediction, CoT, and program- 050

aided reasoning via SQL and Python), (2) opti- 051

mizer families, and (3) model scale and families. 052

Tool-augmented agents (e.g., ReAct; Yao et al., 053

2023) promise stronger grounding by interleaving 054

thoughts with executable actions, but their end-to- 055

end effectiveness depends critically on the learned 056

tool interface and execution reliability—factors that 057

instruction optimization may help or hinder. 058

We present the first comparative study of instruc- 059

tion optimization for tabular fact verification using 060

the DSPy optimization framework. Our study fo- 061

cuses on three optimizers within DSPy: COPRO, 062

MiPROv2, and SIMBA1. We analyze these across 063

four benchmarks (TabFact, PubHealthTab, and Sc- 064

iTab, MMSci), four prompting techniques (Direct 065

prediction, CoT, ReAct, and CodeAct), and two 066

base LLMs (Qwen3 and Gemma3). We conduct 067

a comprehensive analysis to address the following 068

research questions: 069

• What is the impact of optimized instructions on 070

CoT reasoning? 071

• How does the optimized instructions affect the 072

tool calling behavior of ReAct agents? 073

• Does program-aided reasoning show consistent 074

advantages over CoT in tabular fact checking? 075

1We restrict MiPROv2 and SIMBA to instruction-only tun-
ing to isolate the effect of instructions from few-shot example
selection.
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2 Related Work076

Table-based Fact Checking Verifying claims077

against structured evidence requires composi-078

tional reasoning over diverse table schema. Tab-079

Fact (Chen et al., 2020) established the first large-080

scale benchmark for binary fact verification on081

Wikipedia tables. Later datasets incorporated more082

nuanced labeling schema (e.g., three labels instead083

of only two) and more complex claims requiring084

multi-hop reasoning (Wang et al., 2021). Among085

these, several domain-specific datasets have been086

created: PubHealthTab (Akhtar et al., 2022), which087

targets claims about public health, SciTab (Lu et al.,088

2023), which includes claims from computer sci-089

ence publications, and SciAtomicBench (Zhang090

et al., 2025), which covers computer science along091

with other domains such as finance. While fact ver-092

ification datasets typically present tabular data in093

textual form, multi-modal datasets have also been094

created (Yang et al., 2025b). Additionally, some095

fact-verification datasets mix tabular evidence with096

text (Aly et al., 2021; Schlichtkrull et al., 2023;097

Zhao et al., 2024) and figures (Wang et al., 2025;098

Chan et al., 2024).099

Early methods for tabular fact verification used100

symbolic or programmatic reasoning (Chen et al.,101

2020; Zhong et al., 2020; Shi et al., 2020; Zhang102

et al., 2020; Yang et al., 2020; Yang and Zhu, 2021;103

Ou and Liu, 2022). While some recent work has104

also made use of neuro-symbolic systems (Glenn105

et al., 2024; Aly and Vlachos, 2024; Cheng et al.,106

2023), there has been an increasing focus on adapt-107

ing and making use of LLMs. To this end, prior108

works have developed both pre-training (Eisensch-109

los et al., 2020; Dong and Smith, 2021; Zhang110

et al., 2024a) and fine-tuning (Wu and Feng, 2024;111

Jiang et al., 2025) approaches for table-based fact112

verification, as well as more general table-based113

reasoning tasks (Herzig et al., 2020; Liu et al.,114

2022). Additionally, several works propose prompt-115

ing techniques for improving model reasoning over116

tables (Wang et al., 2024b; Zhang et al., 2025; Ab-117

hyankar et al., 2025; Zhang et al., 2024b). Recently,118

work has also begun to investigate agentic systems119

and tool-use for table-based fact verification (Lu120

et al., 2025; Zhou et al., 2025). However, despite121

these advances, many systems are computationally122

intensive or specialized to a particular dataset. In123

contrast, our work explores computationally light124

instruction optimization techniques applied to gen-125

eral prompting strategies.126

Most closely related to our work are two recent 127

analyses into the challenges of various table under- 128

standing tasks, including fact verification. Bhan- 129

dari et al. (2025) examine how instruction tuning, 130

in-context examples, and model size impact per- 131

formance on tabular reasoning tasks, while Wu 132

et al. (2025) survey approaches to table understand- 133

ing tasks more broadly. In contrast to these anal- 134

yses, our work compares instruction optimization 135

techniques applied to simple prompting strategies 136

(standard baselines such as CoT as well as simple 137

programmatic reasoning models such as ReAct). 138

Additionally, while Bhandari et al. (2025) cover 139

multiple table understanding tasks, our work fo- 140

cuses only on table-based fact verification, opting 141

instead to cover a wider range of datasets tabular 142

fact verification. 143

3 Method 144

3.1 Prompting Techniques 145

Chain-of-Thought Chain-of-thought reasoning 146

(CoT) (Wei et al., 2022) encourages LLMs to gener- 147

ate intermediate reasoning steps before producing 148

the final answer. With CoT, LLMs can decompose 149

a complex query into sub-problems and progres- 150

sively build the solution in the reasoning traces. 151

ReAct ReAct (Yao et al., 2023) serves as a foun- 152

dational framework for tool-based agents by inter- 153

leaving reasoning with task-specific actions. ReAct 154

enables LLMs to interact with external tools, allow- 155

ing them to collect additional evidence and ground 156

their reasoning in the tool execution output. In our 157

experiments, we evaluate a ReAct agent with ac- 158

cess to a standard SQL tool that can execute SQL 159

queries on the table data to retrieve relevant infor- 160

mation and perform math operations. 161

CodeAct CodeAct (Wang et al., 2024a) lever- 162

ages executable Python code as the primary action 163

modality for tool-based agents. Unlike existing 164

paradigms that rely on tool calls in text or JSON 165

formats, CodeAct enables multi-step operations 166

and flexible tool chaining through code execution, 167

allowing the agent to perform sophisticated actions 168

by integrating with Python’s control flow and ex- 169

isting libraries. In our experiments, the CodeAgent 170

has no access to pre-defined tools. It generates free- 171

form python codes to process the table data and 172

perform math operations step by step. 173
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3.2 Instruction Optimization174

In our analysis, we focus on three LLM-175

based instruction optimization approaches in the176

DSPy (Khattab et al., 2024) framework: COPRO,177

MiPROv2 (Opsahl-Ong et al., 2024) and SIMBA.178

DSPy Framework DSPy is a framework for179

algorithmically optimizing model prompts and180

weights, treating LLM pipelines as programmes181

that can be automatically compiled and optimized.182

COPRO Cooperative Prompt Optimization (CO-183

PRO) systematically explores various candidate184

instructions in a beam search-like manner and eval-185

uates their performance on the train set. The op-186

timizer iteratively refines the prompt instruction187

by proposing multiple new candidate instructions188

based on the N best prompts among previous at-189

tempts and their corresponding evaluation scores.190

MiPROv2 Multi-Stage Instruction Prompt Op-191

timization (MiPROv2) is an advanced framework192

that can refine both the instruction and few-shot193

demonstrations through a three-stage pipeline.194

First, the optimizer bootstraps multiple candidate195

sets of few-shot demonstrations from the training196

data. Then, it generates diverse prompt instructions197

and demonstrations based on previously evaluated198

candidates, the properties of the downstream task,199

and randomly sampled prompting strategies. Fi-200

nally, MiPROv2 employs Bayesian optimization201

method to efficiently search the best combination202

of candidate instruction and demonstration.203

Compared with COPRO, MiPROv2 provides a204

richer context for the generation of new candidate205

instructions and performs more efficient evaluation206

on mini-batches of training data.207

SIMBA Stochastic Introspective Mini-Batch As-208

cent (SIMBA) is an introspective prompt optimiza-209

tion algorithm that leverages the language model’s210

capacity for self-reflection to iteratively improve211

instruction quality. The optimizer identifies chal-212

lenging training instances where model outputs213

exhibit high variability, then applies two comple-214

mentary strategies to refine prompts. One strat-215

egy performs contrastive analysis, where the model216

compares successful and unsuccessful execution217

traces to generate explicit improvement rules that218

are appended to the original instruction. Another219

strategy incorporates successful execution trajecto-220

ries as few-shot demonstrations.221

4 Experiments 222

4.1 Datasets 223

We evaluate the performance of various LLMs on 224

four tabular fact checking datasets: TabFact (Chen 225

et al., 2020), PubHealthTab (Akhtar et al., 2022), 226

SciTab (Lu et al., 2023) and MMSci (Yang et al., 227

2025b). These datasets cover diverse domains and 228

table types, ranging from general knowledge to 229

specialized data, thereby enabling a more compre- 230

hensive evaluation of the generalization ability of 231

different approaches. In SciTab, PubHealthTab, 232

and MMSci, there are three labels: supports, re- 233

futes and not enough info; TabFact is a binary clas- 234

sification task with only supports and refutes labels. 235

SciTab SciTab (Lu et al., 2023) is a benchmark 236

designed for scientific claim verification, leverag- 237

ing real-world table evidence from scientific publi- 238

cations in machine learning and natural language 239

processing domains. The dataset presents unique 240

challenges in claim ambiguity, compositional rea- 241

soning and numerical analysis of scientific data. 242

PubHealthTab PubHealthTab (Akhtar et al., 243

2022) is a table-based fact checking dataset focus- 244

ing on public health claims. The evidence tables are 245

extracted from multiple web sources, which exhibit 246

noisy and complex table structure with varying con- 247

tent quality. 248

TabFact TabFact (Chen et al., 2020) is a large- 249

scale table-based fact verification dataset that con- 250

sists of human-annotated claims with Wikipedia 251

tables as evidence. TabFact provides two test sets 252

that differ in the claim complexity, and we use the 253

complex test set for evaluation. 254

MMSci MMSci (Yang et al., 2025b) is a bench- 255

mark for multimodal scientific reasoning across 256

three table-based tasks. We use the table fact veri- 257

fication test set, converting table images to textual 258

format, to evaluate generalization to unseen data. 259

4.2 Optimization 260

For each considered LLM, we evaluate the perfor- 261

mance of different prompting techniques, includ- 262

ing direct prompting, CoT, ReAct and CodeAct 263

to study the impact of instruction optimization on 264

both language-based reasoning and program-aided 265

reasoning. We use the same instructions in the sys- 266

tem prompt before optimization for different exper- 267

iments, i.e. verify the given claim against 268
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Dataset Train Dev Test

TabFact 92,585 12,851 8,609
SciTab 210 429 429
PubHealthTab 1440 177 180
MMSci - - 1,038

Table 1: Statistics of the fact checking datasets.

the provided table data. All the experiments269

are conducted in zero-shot setting.270

4.3 Evaluation Setup271

Models and Baselines We conduct our experi-272

ments using Qwen3 (Yang et al., 2025a), Gemma3273

(Team et al., 2025) and GPT-4o models, which al-274

lows us to systematically investigate the impact275

of instruction optimization on reasoning and tool-276

calling behavior across different model families277

and sizes. The same model is used for proposing278

candidate instructions and evaluating instruction279

quality during optimization. To examine the effec-280

tiveness of optimized instructions, we compare the281

model performance in GPT-4o experiments with282

ReActable (Zhang et al., 2024b), a ReAct frame-283

work that uses GPT-4o with human-written instruc-284

tions and SQL and Python as tools.285

Data processing Each fact checking dataset is286

processed into a unified data format. We then split287

three of the datasets (TabFact, SciTab, and Pub-288

HealthTab) into train, development and test sets;289

our fourth dataset, MMSci, is used only for evalua-290

tion. We create a hybrid training set for instruction291

optimization by randomly sampling 100 instances292

from the training splits of the three datasets. We293

sample 40 PubHealthTab instances, 40 SciTab in-294

stances and 20 TabFact instances to ensure the la-295

bel distribution of the hybrid dataset is balanced.296

Statistics of the processed datasets are in Table 1.297

Evaluation metrics We optimize the instructions298

using the hybrid train data, and evaluate the per-299

formance on the development and test sets of all300

four datasets with accuracy and macro-F1. During301

instruction optimization, only accuracy is used to302

measure the quality of different candidate prompts.303

5 Results304

We report the test performance of different prompt-305

ing techniques with Qwen3 models on four fact306

checking datasets in Table 2. For direct prompting307

and CoT, larger models generally achieve higher308

accuracy and F1 than their smaller counterparts309

across most test sets. For program-aided reason- 310

ing paradigms (ReAct, CodeAct), increasing model 311

size does not yield significant performance gains. 312

Although larger models have similar baseline per- 313

formance to smaller versions, they benefit substan- 314

tially more from instruction optimization and show 315

greater improvement with refined instructions. 316

The effectiveness of instruction optimization 317

for tabular reasoning is highly dependent on both 318

model scale and the prompting technique. For opti- 319

mizing CoT reasoning, MiPROv2 brings the most 320

consistent gains, achieving the highest accuracy 321

and F1 on PubHealthTab and TabFact for Qwen3- 322

8B, and showing competitive results across three 323

datasets with Qwen3-32B. For program-based rea- 324

soning, SIMBA provides the strongest performance 325

gain on SciTab, particularly for improving ReAct 326

with the Qwen3-32B model. COPRO also offers 327

moderate benefits for Qwen3-32B model but less 328

consistently than SIMBA. This suggests that larger 329

models are better at identifying patterns of success- 330

ful trajectories through self-reflection and compar- 331

ative analysis, leading to more effective rules for 332

optimizing tool use in diverse scenarios. 333

According to Table 3, the general trend observed 334

with the Gemma3 model family is slightly dif- 335

ferent from Qwen3. The larger Gemma3 model 336

shows consistently higher performance for both 337

CoT reasoning and program-aided reasoning. Un- 338

like Qwen3, where the optimizers fail to enhance 339

the performance for ReAct and CodeAct with a 340

smaller model, Gemma3 models respond more pos- 341

itively to instruction optimization across different 342

prompting techniques and show greater improve- 343

ment with refined instructions at both sizes. 344

Similar to Qwen3 experiments, MiPROv2 still 345

delivers significant improvements when optimiz- 346

ing CoT. SIMBA performs exceptionally well for 347

improving ReAct and CodeAct, particularly for 348

the larger 27B model. COPRO remains effective 349

for smaller model (12B) but provides smaller in- 350

cremental gains relative to MiPROv2 and SIMBA. 351

Overall, the Gemma3 model family underperforms 352

Qwen3, even after applying instruction optimiza- 353

tion. For both Gemma3 and Qwen3 models, 354

CoT reasoning consistently achieves higher per- 355

formance than program-aided reasoning paradigms 356

on tabular fact checking. 357

Table 4 summarizes the test performance of 358

GPT-4o models. Due to budget considerations, 359

GPT-4o models and ReActable are evaluated on a 360

smaller TabFact test set (TabFact-mini) with 400 361
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Qwen3-8B Qwen3-32B

Module Optimizer PubHealth SciTab TabFact MMSci PubHealth SciTab TabFact MMSci

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

Direct

Baseline 73.3 73.4 58.7 56.5 58.0 52.8 57.2 41.5 84.4 82.3 52.9 49.6 64.1 62.8 68.2 46.3
+COPRO 73.3 73.4 58.7 56.6 58.1 52.8 57.0 41.2 84.4 82.7 53.4 51.1 65.3 63.9 69.5 47.7
+MiPROv2 72.8 72.9 56.4 54.3 58.5 53.4 56.6 41.3 84.4 82.3 53.1 50.0 64.1 62.8 68.2 46.3
+SIMBA 73.3 73.4 58.7 56.5 58.1 52.8 57.3 41.4 85.6 84.3 52.7 50.0 67.6 68.7 70.6 49.4

CoT

Baseline 83.9 82.3 64.3 64.4 77.6 80.5 81.9 58.0 88.3 87.6 66.4 66.4 84.5 86.6 86.5 61.6
+COPRO 83.9 82.8 66.2 66.2 76.8 79.9 79.4 56.3 87.2 86.1 67.4 67.3 85.5 87.6 86.7 61.5
+MiPROv2 86.1 85.7 66.0 66.0 80.3 83.1 82.5 59.4 87.2 86.5 68.8 68.6 86.9 88.5 87.7 65.4
+SIMBA 82.2 81.4 62.5 62.2 77.6 80.6 81.6 58.7 90.0 89.6 68.8 68.6 85.2 87.1 87.0 64.2

ReAct

Baseline 86.7 86.6 61.3 61.2 83.8 85.3 82.5 58.5 87.8 87.4 61.5 60.1 86.4 87.0 87.5 62.6
+COPRO 84.4 83.9 62.2 62.1 80.5 81.5 83.6 61.5 86.1 84.7 62.0 61.5 81.5 84.1 85.0 61.0
+MiPROv2 81.7 81.1 61.8 61.8 75.5 80.6 82.2 60.0 87.8 87.2 61.5 60.9 84.2 85.2 86.2 63.0
+SIMBA 86.1 85.2 58.3 58.3 82.9 84.7 80.8 57.3 90.6 90.0 66.2 65.9 86.1 87.0 85.9 65.0

CodeAct

Baseline 86.1 86.0 57.1 57.1 82.0 83.5 81.2 59.2 85.6 84.9 58.0 57.5 85.9 87.1 87.5 66.1
+COPRO 82.8 82.2 59.7 59.1 80.0 82.2 83.3 60.7 87.2 86.6 62.2 61.8 86.7 87.9 88.1 63.3
+MiPROv2 86.1 85.7 56.9 56.6 80.5 82.0 82.1 59.0 83.9 83.5 59.0 58.2 86.4 87.6 86.5 62.7
+SIMBA 85.0 84.9 59.7 59.5 84.8 85.5 84.3 59.8 85.6 85.2 69.2 69.3 85.4 87.0 86.5 62.6

Table 2: Results of Qwen3-8B and Qwen3-32B on test sets. Bold is best performance per method and dataset.

random instances. GPT-4o models demonstrate362

much stronger baseline performance, and conse-363

quently benefit less from instruction optimization364

than Qwen3 and Gemma3 models. For GPT-4o-365

mini, MiPROv2 is more effective for improving366

CoT reasoning, while SIMBA yields greater im-367

provements across the test sets for optimizing Re-368

Act. However, no single optimizer provides con-369

sistent performance gains for optimizing CodeAct.370

For the GPT-4o model, SIMBA performs consis-371

tently well and brings improvement to both CoT372

and ReAct, whereas MiPROv2 is shown to be effec-373

tive for enhancing CodeAct performance. ReAct374

with GPT-4o shows slightly worse performance375

on SciTab and TabFact-mini compared with the376

ReActable baseline, but it can consistently outper-377

form ReActable across all test sets after SIMBA378

optimization, which demonstrates the superiority379

of DSPy-based instruction optimization over man-380

ually designed prompts.381

According to the test performance on MMSci,382

we observe that for Qwen3-32B and Gemma3-27B383

model, the optimized instructions with superior per-384

formance on PubHealthTab, SciTab and TabFact of-385

ten generalize well to MMSci. Specifically, instruc-386

tions optimized by SIMBA consistently achieves387

the highest F1 scores on MMSci in both direct388

prompting and ReAct settings, while CoT instruc-389

tions learned by MiPROv2 continues to deliver the390

strongest improvements on MMSci. However, this391

trend is not observed in GPT-4o models, for which392

the performance on the other three fact checking393

datasets is not predictive of test performance on 394

MMSci. Although SIMBA shows strong perfor- 395

mance on SciTab and TabFact-mini across direct 396

prompting, CoT and ReAct settings, these perfor- 397

mance gains do not consistently transfer to MMSci 398

test data. This may indicate instructions proposed 399

by GPT-4o during SIMBA optimization generalize 400

less effectively on unseen data. 401
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Gemma3-12B Gemma3-27B

Module Optimizer PubHealth SciTab TabFact MMSci PubHealth SciTab TabFact MMSci

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

Direct

Baseline 77.8 72.8 48.3 43.4 57.6 54.6 64.7 38.9 82.8 80.4 53.6 50.7 58.6 60.3 66.7 45.0
+COPRO 80.6 77.2 49.9 46.4 58.8 58.9 65.9 45.3 82.8 80.2 51.5 48.2 54.4 59.2 65.7 44.9
+MiPROv2 80.6 79.4 55.0 54.7 63.2 64.1 66.9 45.0 82.8 80.3 55.9 54.6 59.2 61.6 67.4 46.0
+SIMBA 81.7 79.5 54.3 52.8 59.2 60.1 64.5 45.0 85.6 83.7 60.6 60.6 62.9 62.9 67.3 47.4

CoT

Baseline 87.8 86.4 54.3 52.3 75.5 77.7 79.3 54.6 87.8 86.9 62.2 61.9 78.3 80.8 82.9 58.9
+COPRO 87.8 86.5 57.3 56.4 74.5 76.6 79.8 54.8 89.4 88.7 61.5 61.3 78.4 81.6 84.6 59.8
+MiPROv2 87.2 85.6 58.3 57.8 80.1 82.2 84.7 60.5 88.9 87.8 64.8 64.4 81.4 83.4 85.8 62.5
+SIMBA 89.4 88.8 60.1 59.6 77.6 79.3 83.2 57.7 88.9 87.6 63.6 63.8 75.8 79.1 81.9 59.0

ReAct

Baseline 83.9 82.9 49.2 48.7 64.9 72.8 79.9 57.5 87.8 86.8 52.9 52.9 76.3 80.8 82.9 58.7
+COPRO 87.2 86.5 58.3 57.1 77.1 79.4 84.7 61.0 85.0 83.6 48.0 47.9 72.9 78.4 69.3 52.5
+MiPROv2 84.4 83.5 49.0 48.7 64.6 72.5 79.9 57.4 89.4 88.8 63.6 63.2 82.9 84.4 86.5 62.5
+SIMBA 86.7 85.7 53.4 51.0 79.8 81.1 84.8 59.2 90.0 89.3 60.4 58.9 84.0 85.0 85.8 62.6

CodeAct

Baseline 86.7 86.0 51.5 49.8 64.7 72.2 83.2 57.7 87.2 86.2 55.9 56.1 73.6 78.7 85.8 61.3
+COPRO 89.4 88.9 54.3 53.4 67.0 74.4 85.0 61.1 88.9 87.9 59.2 59.5 79.0 81.5 84.4 61.1
+MiPROv2 88.3 87.6 49.9 48.6 78.9 81.6 84.7 59.0 85.6 84.8 55.5 56.0 81.3 83.6 86.5 62.8
+SIMBA 85.0 84.0 55.2 54.8 77.5 79.9 83.4 61.7 89.4 88.5 58.3 56.7 83.1 84.4 87.6 65.6

Table 3: Results of Gemma3-12B and Gemma3-27B on test sets. Bold is best performance per method and dataset.

GPT-4o-mini GPT-4o

Module Optimizer PubHealth SciTab TabFact-mini MMSci PubHealth SciTab TabFact-mini MMSci

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

ReActable 52.8 52.9 46.9 46.6 64.9 41.6 50.7 38.8 82.8 82.2 67.8 67.8 91.3 91.3 84.1 61.0

Direct

Baseline 85.6 85.3 58.3 58.4 65.0 66.7 70.0 51.2 90.6 89.8 65.0 65.0 73.2 74.8 82.1 60.1
+COPRO 86.7 87.1 61.1 61.0 65.2 65.7 70.8 51.8 89.4 88.9 64.8 64.7 76.0 77.0 84.7 61.2
+MiPROv2 85.0 85.2 60.1 59.8 63.5 63.9 71.6 52.9 90.0 89.1 65.0 65.1 74.5 76.0 84.4 61.7
+SIMBA 86.1 85.6 57.1 56.6 60.5 64.0 69.7 51.1 89.4 88.5 65.3 65.2 76.5 77.3 82.8 59.8

CoT

Baseline 90.6 90.1 62.9 63.0 79.8 82.4 83.0 58.9 87.8 87.2 69.2 69.1 87.8 89.6 87.7 63.7
+COPRO 90.0 89.6 61.8 61.7 81.0 82.7 83.6 61.3 87.8 87.5 69.7 69.6 88.0 89.8 88.4 65.0
+MiPROv2 89.4 88.9 64.8 64.8 81.2 83.0 84.4 60.9 89.4 88.9 70.6 70.5 88.5 89.9 88.3 65.8
+SIMBA 90.0 89.5 64.3 64.3 78.8 81.1 84.5 62.2 90.0 89.8 70.6 70.5 90.2 91.4 87.9 64.3

ReAct

Baseline 87.8 87.3 55.0 53.1 84.8 85.4 84.4 61.2 88.3 87.3 64.1 62.8 90.0 90.3 89.5 66.2
+COPRO 89.4 88.9 59.4 58.4 82.8 83.7 85.7 61.8 89.4 88.9 67.8 67.3 90.2 91.0 88.7 67.0
+MiPROv2 90.0 89.6 60.1 60.0 82.5 83.2 84.5 60.3 89.4 88.4 66.2 65.6 90.8 91.4 88.5 67.6
+SIMBA 91.7 91.1 60.1 59.9 84.8 86.1 84.0 62.2 88.3 87.6 68.3 68.3 91.0 92.3 88.1 64.0

CodeAct

Baseline 84.4 83.7 59.0 58.8 82.5 83.9 84.5 60.4 87.2 86.7 63.4 62.3 90.2 90.8 89.3 65.4
+COPRO 84.4 82.8 53.4 52.2 83.5 84.7 85.4 61.3 89.4 89.0 62.9 60.7 90.5 91.4 89.7 64.9
+MiPROv2 80.6 77.9 52.2 48.9 85.2 86.6 82.9 57.8 91.1 90.6 65.0 63.9 91.2 91.7 89.2 62.6
+SIMBA 84.4 83.0 55.7 54.9 81.5 83.0 84.1 58.6 88.3 87.6 61.1 60.5 90.0 91.4 89.0 65.4

Table 4: Results of GPT-4o-mini and GPT-4o on test sets. Bold is best performance per method and dataset.
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