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What is the point?
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In the beginning (in the 2010s) ...

Features of the model (feature ablation)
0:12 Mohammad et al.

Table VI. Stance Classification: F-scores obtained for each of the targets (the columns) by the benchmark systems
and our classifier. Macro- and micro-averages across targets are also shown. Highest scores are shown in bold.

Atheism Climate Feminist Hillary Legal. of F- F-
Classifier Change Movemt. Clinton Abortion macroT microT
I. Benchmarks

a. Random 31.1 27.8 29.1 33.5 31.1 30.5 33.3
b. Majority 42.1 42.1 39.1 36.8 40.3 40.1 65.2
c. First in shared task 61.4 41.6 62.1 57.7 57.3 56.0 67.8
d. Oracle Sentiment 65.8 34.3 61.7 62.2 41.3 53.1 57.2
e. Oracle Sentiment and Target 66.2 36.2 63.7 72.5 41.8 56.1 59.6

II. Our SVM classifier
a. n-grams 65.2 42.4 57.5 58.6 66.4 58.0 69.0
b. a. + POS 65.8 41.8 58.7 57.6 62.6 57.3 68.3
c. a. + encodings 65.7 42.1 57.6 58.4 64.5 57.6 68.6
d. a. + target 65.2 42.2 57.7 60.2 66.1 58.3 69.1
e. a. + sentiment 65.2 40.1 54.5 60.6 61.7 56.4 66.8

same patterns. Due to space constraints, we show results only on the test set — Table
VI. Rows I.a. to I.e. present benchmarks. Row I.a. shows results obtained by a random
classifier (a classifier that randomly assigns a stance class to each instance), and Row
I.b. shows results obtained by the majority classifier (a classifier that simply labels
every instance with the majority class).11 Observe that the F-microT for the majority
classifier is rather high. This is mostly due to the differences in the class distributions
for the five targets: for most of the targets the majority of the instances are labeled as
‘against’ whereas for target ‘Climate Change is a Real Concern’ most of the data are
labeled as ‘favor’. Therefore, the F-scores for the classes ‘favor’ and ‘against’ are more
balanced over all targets than for just one target. Row I.c. shows results obtained
by the winning system (among nineteen participating teams) in the 2016 SemEval
shared task on this data (Task #6).
Results of Oracle Sentiment Benchmarks:
The Stance Dataset with labels for both stance and sentiment allows us, for the first
time, to conduct an experiment to determine the extent to which stance detection can
be solved with sentiment analysis alone. Specifically, we determine the performance of
an oracle system that assigns stance as follows: For each target, select a sentiment-to-
stance assignment (mapping all positive instances to ‘favor’ and all negative instances
to ‘against’ OR mapping all positive instances to ‘against’ and all negative instances to
‘favor’) that maximizes the F-macroT score.12 We call this benchmark the Oracle Sen-
timent Benchmark. This benchmark is informative because it gives an upper bound
of the F-score one can expect when using a traditional sentiment analysis system for
stance detection by simply mapping sentiment labels to stance labels.13

In our second sentiment benchmark, Oracle Sentiment and Target, we include the
information on the target of opinion. Recall that the Stance Dataset is also annotated
for whether the target of opinion is the same as the target of interest. We use these
annotations in the following way: If the target of opinion is the same as the target
of interest, the stance label is assigned in the same way as in the Oracle Sentiment
Benchmark; if the target of opinion is some other entity (whose relation to the target of
interest we do not know), we select the sentiment-to-stance assignment from the three

11Since our evaluation measure is the average of the F1-scores for the ‘favor’ and ‘against’ classes, the
random benchmark depends on the distribution of these classes and is different for different targets. The
majority class is determined separately for each target.
12Tweets with sentiment label ‘neither’ are always mapped to the stance label ‘neither’.
13This is an upper bound because gold sentiment labels are used and because the sentiment-to-stance as-
signment is made in a way that is not usually available in real-world scenarios.

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0, Publication date: 2016.

From Mohammad et al. (2017).
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Some thoughts

• If you don’t know where to start, look at some examples!

• Often: less good results → more error analysis

• This doesn’t need to be the case!

• Process is often not straightforward
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Example: my recollection of an error analysis process

Chronological order (paper order) for Allaway and McKeown (2020)

1. (5) Look manually at outputs→ observe error types → label types

→ evaluate by type

2. (6) Think stance & sentiment are related → look at examples → observe

patterns → evaluate with swapping

3. (2) Think not satisfied with explanation of results → think about difference →
look at difference (clusters)

4. (3) Observe big clusters of topics → evaluate by cluster size

5. (4) Think some topics have few examples → evaluate by number of examples

6. (1) Reviewer: what if topics are lexically similar → extra analysis

8
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Easiest: dataset based

Statistics or metric across partitions of your dataset. For example

• Labels

• Language

• Source domain

• Length

Important when imbalanced data

9



Example 1: labels

8919

F1 All F1 Zero-Shot F1 Few-Shot
pro con all pro con all pro con all

CMaj .382 .441 .274 .389 .469 .286 .375 .413 .263
BoWV .457 .402 .372 .429 .409 .349 .486 .395 .393
C-FFNN .410 .434 .300 .408 .463 .417 .413 .405 .282
BiCond .469 .470 .415 .446 .474 .428 .489 .466 .400
Cross-Net .486 .471 .455 .462 .434 .434 .508 .505 .474
BERT-sep .4734 .522 .5014 .414 .506 .454 .524 .539 .544
BERT-joint .545 .591 .653 .546 .584 .661 .544 .597 .646
TGA Net .573* .590 .665 .554 .585 .666 .589* .595 .663

Table 5: Macro-averaged F1 on the test set. ⇤ indicates significance of TGA Net over BERT-joint, p < 0.05.

Test Topic Cluster Topics
drug addicts war drug, cannabis, legalization, marijuana popularity, social effect, pot, colorado,

american lower class, gateway drug, addiction, smoking marijauana, social drug
oil drilling natural resource, international cooperation, renewable energy, alternative energy,

petroleum age, electric car, solar use, offshore drilling, offshore exploration, planet
free college
education

tax break home schooling, public school system, education tax, funding education,
public service, school tax, homeschool tax credit, community, home schooling parent

Table 6: Topics from test examples and training examples in their assigned cluster.

Figure 2: Percentage (right y-axis) each model is best
on the test set as a function of the number of unique
topics in each cluster. Histogram (left y-axis) of unique
topics shown in gray.

We first observe that CMaj and BoWV are strong
baselines for zero-shot topics. Next, we ob-
serve that BiCond and Cross-Net both perform
poorly on our data. Although these were designed
for cross-target stance, a more limited version of
zero-shot stance, they suffer in their ability to gen-
eralize across a large number of targets when few
examples are available for each.

We see that while TGA Net and BERT-joint
are statistically indistinguishable on all topics, the
topic-grouped attention provides a statistically sig-
nificant improvement for few-shot learning on ‘pro’
examples (with p < 0.05). Note that conditional
encoding is a crucial part of the model, as this
provides a large improvement over embedding the
comment and topic separately (BERT-sep).

Additionally, we compare the performance of

Figure 3: Percentage (right y-axis) each model is best
on the test set as a function of the number of exam-
ples per cluster. Histogram of cluster sizes (left y-axis)
shown in gray.

TGA Net and BERT-joint on both zero-shot
LexSimTopics and non-LexSimTopics. We find that
while both models exhibit higher performance on
zero-shot LexSimTopics (.70 and .72 F1 respec-
tively), these topics are such a small fraction of
the zero-shot test topics that zero-shot evaluation
primarily reflects model performance on the non-
LexSimTopics. Additionally, the difference be-
tween performance on zero-shot LexSimTopics and
non-LexSimTopics is less for TGA Net (only 0.04
F1) than for BERT-joint (0.06 F1), showing our
model is better able to generalize to lexically dis-
tinct topics.

To better understand the effect of topic-grouped
attention, we examine the clusters generated in
§4.3 (see Table 6). The clusters range in size from
7 to 257 examples (median 62) with the number

From Allaway and McKeown (2020).

10



Example 2: languages

BLEU

Language from English to English

Somali 21.8 29.4

Swahili 44.5 37.8

Tagalog 37.2 36.2

Table 1: Neural machine translation performance.

Model ROUGE-1 ROUGE-2 ROUGE-L

NYT-base 48.26 29.30 36.81

Paulus 47.03 30.51 43.27
Celikyilmaz 48.08 31.19 42.33

Table 2: Baseline summarizer performance.

et al., 2018) to translate the NYT corpus into
Somali, Swahili, and Tagalog, and back to En-
glish. The systems were developed at the Uni-
versity of Edinburgh and were trained on a mix
of clean, human-curated parallel data (about 23k
sentences for Somali and Swahili and 51k for
Tagalog); noisy, web-crawled parallel data (So-
mali only, about 354k sentences); and synthetic,
backtranslated parallel data created from monolin-
gual sources including news articles, the Common
Crawl, and Wikipedia (250-600k sentences). Ta-
ble 1 shows the performance of the machine trans-
lation systems for each of the three languages on
held-out test sets of 500 sentences taken from the
clean, human-curated parallel data.

4.2 Abstractive Summarization

For our abstractive summarizers (hereafter ab-
stractors), we implemented See et al.’s (2017)
pointer-generator network in PyTorch (Paszke
et al., 2017). We pre-train for 12 epochs on the un-
modified NYT corpus to obtain a baseline system.
Table 2 shows the performance of this baseline
on the unmodified NYT test set; our baseline un-
derperforms the more complex systems of Paulus
et al. (2018) and Celikyilmaz et al. (2018), but
we are more interested in the improvements our
fluency-focused approach makes over this baseline
than in the baseline’s performance compared to
state-of-the-art systems. We use each of the three
noisy English corpora to train the baseline system
for another 8 epochs, producing three language-
specific abstractors. We also train a fourth, mixed-
language abstractor using 100k articles randomly
selected from the Somali, Swahili, and Tagalog
training sets, evenly split among the three.

Model ROUGE-1 ROUGE-2 ROUGE-L

NYT-base 32.94 10.36 22.51

Abs-so* 37.72 15.39 26.56

Abs-mix* 38.07 15.76 26.82

(a) Performance on Somali NYT.

Model ROUGE-1 ROUGE-2 ROUGE-L

NYT-base 35.28 12.96 25.64

Abs-sw* 39.24 17.01 29.88

Abs-mix* 39.96 17.56 30.24

(b) Performance on Swahili NYT.

Model ROUGE-1 ROUGE-2 ROUGE-L

NYT-base 37.17 14.67 27.27

Abs-tl* 40.96 18.72 31.06

Abs-mix* 40.87 18.91 31.14

(c) Performance on Tagalog NYT.
Table 3: Abs-so, -sw, and -tl are the Somali, Swahili,
and Tagalog systems, respectively. * indicates signifi-
cant improvement over NYT-base (p < 1.16× 10−19).

Perplexity

Model Somali NYT Swahili NYT Tagalog NYT

NYT-base 4986 4428 4707

Abs-so 3357 3429 3528

Abs-sw 3384 3247 3312
Abs-tl 3501 3476 3457

Abs-mix 3464 3285 3402

Table 4: Language model perplexity of generated sum-
maries on noisy Somali, Swahili, and Tagalog NYT.

5 Evaluation

5.1 Noisy NYT Evaluation.

Table 3 shows the performance of our abstrac-
tors on the Somali, Swahili, and Tagalog NYT test
sets. Differences among the language-specific sys-
tems are not statistically significant, and the more
general mixed model achieved the best scores1.
However, we found that abstractors trained solely
on one language and tested on another signif-
icantly (p < 0.05) underperformed the mixed
model, which was trained on all three languages,
suggesting that training on some same-language
data is still important.

We also trained a bigram language model on
the entire set of NYT reference summaries and

1These results are shown in Appendix A, along with all
combinations of the language-specific models on the three
languages.

From Ouyang et al. (2019). 11



Still pretty easy: model ablations

How do various components impact the model? For example

• Features

• Base LM family

• Base LM size

12



Example 3: components of the model

4666

MUC B3 CEAF-e
P R F1 P R F1 P R F1 C-F1

Lemma 71.3 83 76.7 53.4 84.9 65.6 70.1 52.5 60.0 67.4
Barhom et al. (2019) 78.6 80.9 79.7 65.5 76.4 70.5 65.4 61.3 63.3 71.2
Cattan et al. (2020) 85.7 81.7 83.6 70.7 74.8 72.7 59.3 67.4 63.1 73.1
Caciularu et al. (2021) 88.1 91.8 89.9 82.5 81.7 82.1 81.2 72.9 76.8 82.9
BERT-SeqWD + Adapt 78.0 39.2 52.2 89.6 34.5 49.8 34.9 76.1 47.9 50.0
BERT-SeqXdoc + Adapt 80.2 69.8 74.6 76.6 54.2 63.5 49.6 64.8 56.2 64.8
SeqXdoc+IC 83.6 81.5 82.5 76.0 66.7 71.1 65.7 69.3 67.4 73.7
+ Adapt 83.9 84.7 84.3 74.5 70.5 72.4 70.0 68.1 69.2 75.3

Table 2: Entity coreference on the ECB+ test set, combined within- and cross-document scores using predicted
document clusters. C-F1 is CoNLL F1. Bold indicates best overall, underline indicates our best model.

MUC B3 CEAF-e
P R F1 P R F1 P R F1 C- F1

Lemma 76.5 79.9 78.1 71.7 85.0 77.8 75.5 71.7 73.6 76.5
Kenyon-Dean et al. (2018) 67.0 71.0 69.0 71.0 67.0 69.0 71.0 67.0 69.0 71.0
Barhom et al. (2019) 77.6 84.5 80.9 76.1 85.1 80.3 81.0 73.8 77.3 79.5
Cremisini and Finlayson (2020) 89.4 84.9 87.1 74.3 69.2 71.6 49.6 60.7 54.6 71.1
Meged et al. (2020) 78.7 84.7 81.6 75.9 85.9 80.5 81.1 74.8 77.8 80.0
Cattan et al. (2020) 85.1 81.9 83.5 82.1 82.7 82.4 75.2 78.9 77.0 81.0
Yu et al. (2020b) 88.1 85.1 86.6 86.1 84.7 85.4 79.6 83.1 81.3 84.4
Zeng et al. (2020) 85.6 89.3 87.5 77.6 89.7 83.2 84.5 80.1 82.3 84.3
Caciularu et al. (2021) 87.1 89.2 88.1 84.9 87.9 86.4 83.3 81.2 82.2 85.6
BERT-SeqWD + Adapt 68.9 28.9 40.7 91.1 48.5 63.3 49.3 83.9 62.1 55.4
BERT-SeqXdoc + Adapt 82.2 66.8 73.7 84.2 66.8 74.5 65.9 80.8 72.6 73.6
SeqXdoc+IC 81.6 85.9 83.7 69.5 80.6 74.4 75.3 67.1 71.0 76.4
+ Adapt 81.7 82.8 82.2 80.8 81.5 81.1 79.8 78.4 79.1 80.8

Table 3: Event coreference on the ECB+ test set, combined within- and cross-document scores using predicted
document clusters. C-F1: is CoNLL F1. Bold indicates best overall, underline indicates our best model.

Entity Event
F1 ∆ F1 ∆

Our Model 75.3 80.8
− Coref feat (§3.6) - - 79.6 -1.2
− Args (§3.2) 74.8 -0.9 78.7 -2.1
− Arg comp (§3.2) 74.6 -0.7 78.3 -2.5
− CLS (Eq. 1) 74.5 -0.8 78.9 -1.9
−MP cosine (§3.4) 74.5 -0.8 79.1 -1.7
+ GloVE 70.1 -5.2 76.7 -4.1
+ RoBERTa 71.2 -4.1 78.1 -2.7

Table 4: Feature ablation results (CoNLL F1) on the
ECB+ test set. For entity coreference arguments (Args)
are events, for event coreference they are entities.

RoBERTa (Cattan et al., 2020; Yu et al., 2020b).
We experiment with replacing BERT-base with
RoBERTa-base and with using GloVE in addition
BERT in our models (see Appendix B for imple-
mentation) and observe large drops in performance.
We hypothesize that the substantial performance
difference between BERT and RoBERTa is due to
the Next Sentence Prediciton (NSP) used to train

BERT but not RoBERTa. The NSP may force
BERT to learn attention multiple sentences, and
therefore to understand the document as a whole,
an ability that is important for coreference resolu-
tion. Therefore, we hypothesize that without task-
specific fine-tuning, adaptive pre-training is most
beneficial for coreference on ECB+.

We also observe that our entity coreference
model is relatively less susceptible to feature
changes than the event coreference model. For ex-
ample, the event coreference model is particularly
reliant on the argument features. Both replacing
the argument composition BiLSTM with a mean-
pooling operation (−Arg comp) and removing all
argument information (−Args) result in large drops
in performance (-2.5 and -2.1 respectively).

Finally, the contribution of the multi-perspective
cosine similarity underscores the importance of
cosine similarity as observed by Cremisini and
Finlayson (2020). These ablations, including on
the importance of document-level information (−
CLS) suggest new directions for token and docu-

From Allaway et al. (2021). 13



Example 4: base model

Method Model Recall Precision Full

Answers only

0-shot

4B Instruct 27.4 51.8 2.4
4B Thinking 55.5 71.2 32.6
235B MoE Instruct 44.0 72.0 10.8
235B MoE Thinking 53.1 55.1 37.2

SFT 4B Instruct 40.6 50.8 21.9

Interpretations and Answers

CoT

4B Instruct 20.5 27.2 9.3
4B Thinking 20.7 25.1 12.2
235B MoE Instruct 60.5 63.2 38.2
235B MoE Thinking 51.8 43.2 38.1

SFT 4B Instruct 32.9 51.4 9.1
IntentRL 4B Instruct 66.9 58.2 49.1

Table 7: Recall, Precision, and Full Coverage (%)
on AmbiQT (SFT/IntentRL trained on Ambrosia).

tions which serves as out-of-domain evaluation for
trainable methods. AmbiQT has 1,954 ambigu-
ous questions over real-world databases with more
complex schemas than the synthetic databases in
Ambrosia. Nevertheless, generalization is possi-
ble as it consists of vague ambiguous questions
that are also present in the Ambrosia training set.

Table 7 presents our results on AmbiQT. De-
spite using real-world databases and more com-
plex SQL queries, zero-shot results reveal that
AmbiQT is less challenging than Ambrosia: the
4B Thinking model achieves 55.5% recall in the
answers-only setting compared to 35.9% on Am-
brosia. Unlike Ambrosia, reasoning models pro-
vide substantial improvements over instruct mod-
els on AmbiQT (55.5% vs. 27.4% recall for
4B models). Although SFT achieves strong in-
domain performance on Ambrosia, it fails to gen-
eralize to AmbiQT, achieving 21.9% full cov-
erage when generating answers only and 9.1%
when generating interpretations and answers. SFT
learns dataset-specific patterns like the structure
of databases and common query templates rather
than the underlying task of identifying ambiguity.

IntentRL generalizes much better, identifying
all valid interpretations for nearly half of the ques-
tions without training on this dataset (66.9% re-
call and 49.1% full coverage). IntenRL learns gen-
eral reasoning skills about ambiguity that transfer
across domains, databases, and queries.

Comparison with Two-Stage Approach In Ta-
ble 6, we compare IntentRL with DisambigParse

Dataset Alignment Agreement

Abg-CoQA 90.0 81.0
Ambrosia 91.7 84.0

Table 8: Human evaluation: interpretation align-
ment accuracy and all-annotators agreement.

(Saparina and Lapata, 2025), a recent state-of-
the-art method for handling ambiguity in seman-
tic parsing. In addition to our metrics, we include
Single Coverage (percentage of questions where
the model correctly identifies at least one valid in-
terpretation) to fully match their evaluation setup.

We outperform DisambigParse across all met-
rics on both datasets, achieving substantially
higher precision on Ambrosia (77.5% vs. 26.3%)
and AmbiQT (58.2% vs. 35.3%), while also more
than doubling full coverage (74.1% vs. 30.5% on
Ambrosia, 49.1% vs 30.0% on AmbiQT). Produc-
ing at least one valid interpretation is relatively
easy as both approaches achieve high single cov-
erage (over 80%). Notably, we achieve these sig-
nificant gains while learning from answers alone
in a single stage, whereas DisambigParse requires
gold interpretations during training.

6 Evaluating Interpretation Alignment

Automatic metrics evaluate the quality of the gen-
erated answers, but do not measure if the interpre-
tations align with and explain their answers. Abg-
CoQA does not have gold interpretations, and
while Ambrosia does, we did not use them during
training, so our model’s interpretations may differ
in style and wording. We thus assess the quality of
the predicted interpretations via a human study.

Human Evaluation Setup We sampled
30 ambiguous examples from each dataset
(80 interpretation-answer pairs in Abg-CoQA and
92 in Ambrosia). We focused on ambiguous cases
as appropriate interpretations are more critical
when multiple plausible answers exist. For each
pair, three annotators judged whether the interpre-
tation is compatible with its answer (i.e., whether
it supports or explains it). Annotators were given
the full context, the ambiguous question, and
instructions to evaluate alignment even in cases
where the answer was incorrect; an interpretable
wrong answer is better than an unexplained one
since it allows users to quickly identify and reject
wrong answers. See Appendix F for more details.

From Saparina and Lapata (2025).
14



A tiny bit harder: sensitivity analysis

How sensitive is the model to changes. For example

• Hyperparameters

• Training data

• Random seed

• Prompt formulation

15



Example 5: number of prompt examples

Model
Shots

Avg. Acc. (%) SD (across seeds) SD (across prompts)

0 8 64 512 0 8 64 512 0 8 64 512

GPT-5 19.8 73.3 83.3 87.2 1.7 1.4 1.1 1.3 0.0 0.4 0.9 1.4
GPT-5-nano 18.9 61.4 64.3 65.2 1.1 1.8 2.1 2.0 0.4 0.5 0.9 1.9
GPT-4o-mini 19.8 40.3 44.3 47.2 1.7 2.1 1.8 2.1 0.0 0.2 1.7 4.4
Llama3 8B 18.4 28.5 32.7 - 1.5 2.0 1.2 - 9.0 13.5 14.3 -
Qwen2.5 0.5B 3.9 5.0 8.0 1.8 1.3 0.9 0.9 0.2 2.6 5.8 1.9 1.2
Qwen2.5 1.5B 17.4 19.4 19.4 16.9 1.0 0.9 1.3 1.7 1.0 0.4 0.4 2.9
Qwen2.5 3B 19.0 29.4 31.6 31.0 1.3 1.7 2.0 0.8 1.9 3.6 3.8 4.4
Qwen2.5 7B 19.0 29.1 34.7 38.7 1.6 2.9 1.8 2.9 0.1 3.0 2.5 3.0
Qwen2.5 14B 19.7 33.0 45.2 49.3 1.7 1.3 1.3 2.1 0.1 1.8 4.2 4.4
Qwen2.5 32B 19.7 42.3 51.2 57.6 1.7 2.0 1.3 2.8 0.0 3.5 1.1 1.0
Qwen2.5 72B 19.8 40.8 46.8 51.1 1.7 2.5 1.3 0.8 0.0 1.9 3.3 3.9

Table 2: Inductive performance (avg. acc.) and standard deviation (SD) across seeds or prompt variants, under 0, 8,
64, and 512 shots. Model performance is stable even when the test sets are dynamically constructed.

3.3 Feature Highlights
Our benchmark design offers several advantages,
including reproducibility, robustness to overfitting,
extensibility, and comprehensiveness, which tackle
a few pain points of existing math test sets. These
features ensure the benchmark’s long-term rele-
vance as a stable tool for measuring generalization.

The procedural and seeded test generation en-
sures both reproducibility and robustness to memo-
rization. By using the same random seed, a test set
can be fully replicated. On the other hand, using
different random seeds creates a moving target (test
set), making the benchmark resistant to contamina-
tion and memorization.

Our modularized design makes the benchmark
easily customizable and extensible. Data can be ex-
tracted and seeded from any mathematics domain.
It is also easy to implement new transformations
for the test, which can be utilized to adjust the dif-
ficulty or further avoid overfitting to the existing
transformations. Additionally, our benchmark can
be used to test both inductive and deductive reason-
ing, enabling a more fine-grained analysis of the
model’s reasoning abilities.

4 Experiments and Findings

Our experiments serve to validate MATHEMAGIC

and to study the reasoning ability of LLMs under
novel mathematical transformations.

Technical details We assess a range of open-
source LLMs: Llama3 8B Instruct (Grattafiori
et al., 2024); the Qwen2.5 Instruct series (Qwen
et al., 2025) from 0.5B to 72B. We also evaluate
several proprietary models: the general-purpose
GPT-4o-mini (OpenAI, 2024), and GPT-5-nano
and GPT-5 (OpenAI, 2025) in their default ’think-

ing’ modes. In our evaluation, we generated five
versions of test sets using five different random
seeds, each containing 405 unique problems cover-
ing our nine mathematical transformations. In all
experiments, we use greedy decoding. The model
output is extracted from the LaTeX \boxed{} and
considered correct if within a relative and absolute
tolerance of 10−4 of the reference value. Unless
otherwise specified, all experiments use a prompt
asking for step-by-step reasoning before answering
(Appendix A). We run zero to 512-shot prompting,
but Llama3 8B is limited to a maximum of 256
shots due to its context size.

Stability of a dynamic benchmark First of all,
to validate our benchmark’s reliability, we assessed
the stability of models’ inductive performance
against two variations: five different random seeds
to measure robustness to numerical changes; and
four distinct instruction prompts (Appendix A) to
measure sensitivity to phrasing. LLMs demon-
strated consistent performance across both seed
and prompt variations, as shown in Table 2, with
Llama3 8B as an exception, exhibiting instability
in response to different prompts, which suggests
its reasoning is more dependent on input wording.
Overall, the observed stability justifies our use of a
dynamically constructed benchmark.

4.1 Does induction performance improve with
more in-context examples?

A foundational capability of modern LLMs is in-
context learning, where a model adapts to a new
task based on examples provided directly in its
prompt. First, we establish a baseline by investigat-
ing how model performance on our counterfactual
tasks scales with the number of examples.

4

From O’Brien et al. (2025).
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Example 6: subcomponents

4667

Entity Event
F1 ∆ F1 ∆

Our Model 75.3 80.8
HeSRL - C 75.3 -0.0 80.4 -0.4
HeSRL + BhR + C 74.9 -0.4 79.2 -1.6
Swirl + BhR + C 75.4 +0.1 80.0 -0.8
Swirl + BhR 75.4 +0.1 78.7 -2.1

Table 5: Ablation results (CoNLL F1) on methods for
identifying event structures on ECB+ test set. HeSRL
is He et al. (2018), BhR is additional rules for aligning
the SRL and annotations from (Barhom et al., 2019), C
is entity type constraint (see §4.2).

ment representations in coreference.

5.3 Effects of SRL
We investigate the impact of using a recent SRL
parser to extract event structures (§4.2), compared
to the Swirl parser used in prior work (see Table 5).

We first observe that the additional extraction
rules used in Barhom et al. (2019) are not necessary
when using the new SRL parser. In fact, these rules
actually result in a decrease in performance for
both entity and event coreference (−1.6 and −0.4
respectively). In addition, when using the Swirl
parser and additional rules (Swirl+Bh-rules), we
observe a large drop for event coreference (−2.1)
compared to entity coreference. This aligns with
the heavier dependence of event coreference mod-
els on arguments (§ 5.2), which will lead to greater
model sensitivity to errors in the entity-event struc-
tures (from the SRL). Furthermore, we also see
that the type constraint improves event coreference
more when using the Swirl SRL (∆ = 1.3) than
when using the new SRL (∆ = 0.4). Note that
because we do not use role information for entity
coreference (i.e., no argument coreference feature),
adding or removing the type constraint does not
affect entity coreference. These results highlight
the importance of minimizing error propagation
from the SRL into the coreference resolution.

6 Conclusion

In this paper, we propose a new model for cross-
document coreference resolution that extends the
efficient sequential prediction paradigm to multiple
documents. The sequential prediction is combined
with incremental candidate composition that allows
the model to use the history of past coreference de-
cisions at every step. Our model achieves compet-
itive results for both entity and event coreference
and our analysis provides strong evidence of the

efficacy of both sequential models and higher-order
inference in cross-document settings. In future, we
intend to adapt this model to coreference across
document streams and investigate alternatives to
greedy prediction (e.g., beam search).
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Example 7: prompt

(a) Please answer with only “more likely”, “less likely”,
or “it has no impact”.
Consider the following information: [P i]
From this information we can draw a conclusion
about [KH].
Conclusion: [H].
Now suppose we are given additional information.
Additional information: [Px]
Given the additional information,
how likely are you to believe the conclusion?

(b) Please answer with only “strengthens”, “weakens”
or “it has no impact”.
Consider the following premises: [P i]
This entails the conclusion that [H].
Additional information: [Px]
How does the given additional information
impact the conclusion??

(c) Please answer with only “more likely”, “less likely”,
or “it has no impact”.
Let’s think step by step.
First, consider the following information: [P i]
From this information we can draw a conclusion
about [KH].
Conclusion: [H].
Now suppose we are given additional information.
Additional information: [Px]
Given the additional information,
how likely are you to believe the conclusion?

Table 8: The three prompts used in our experiments.
The system instruction is in italics about the dashed
line.

In Table 10 we show the Pearson’s r correlation
between the presence of “not” in the additional
premises and the prediction of “weakens” by a
model. Note that correlation is computed across
examples where “weakens” is not the correct label.
The p-values for significance are computed using
a two-sided t-test. The correlation and p-values
computed using Scipy11 and therefore p-values of
0.0 are indicative of numerical underflow. Addi-
tionally, GPT-4o does not predict any “weakens”
label for the subset considered for prompts (b) and
(c). Therefore, the correlation (and p-value) are
undefined (NaN) in these cases.

D.1 Human Annotation Study

We conduct an annotation study by randomly se-
lecting 30 generics from DEFREASING∗N-alt and
collecting annotations for all 13 different examples
for each generic (390 examples total). Annota-
tions are done by two annotators who are NLP
researchers familiar with generics. Each annotator
was asked to annotate the examples for 20 generics.

11https://docs.scipy.org/doc/scipy/reference/
stats.html

The generics were split such that the examples for
10 generics were annotated by both annotators.

We show complete agreement measures in Ta-
ble 11. As noted in §5, the majority of disagree-
ments and misalignments arise from the W-case
and S-alt examples. We discuss here in more detail
the S-alt cases, see §5 for discussion of the W-case
examples.

First, we observe that for the S-alt examples
with real types, disagreements arise partly from the
relevance of the alternate concept (K⊕) used in the
premises. For example, for the generic “hawks eat
rabbits” the alternate concept K⊕ =“weasels” is
not relevant to the concept “hawks”, and so does
not provide strengthening evidence. In contrast,
K⊕ =“seagulls” is a valid and relevant alternative
to the concept in the generic “hawks have wings”.
These results suggest that similarity is necessary
for determining whether diverse support is actually
strengthening.

Our second observation builds off of this: for
the S-alt examples with nonsense types there is
0% alignment between either annotator and DE-
FREASING, and 100% agreement between anno-
tators. This suggests that in the absence of any
inferable similarity information about concepts, al-
ternative concepts are treated as irrelevant. Since
this is a departure from the labeling of DEFREAS-
ING, we conduct additional analysis into how re-
labeling the S-alt examples with nonsense types
affects model results. Specifically, we construct a
modified version of DEFREASING where the la-
bels for S-alt examples with nonsense types are
changed from “strengthening” to “no impact”. We
denote this dataset δS-alt . We show the accuracy
on DEFREASING compared to δS-alt in Table 12.
We observe that for some models (e.g., GPT-4 and
GPT-4o) there is a clear improvement on the S-alt
instances with nonsense types in δS-alt . However,
for other models (e.g., Llama3 and Llama3.1) there
is a degradation in performance. This suggests that
models do not consistently behave like either the
humans from Osherson et al. (1990) (on which our
DEFREASING labeling is based) or our human an-
notators. Further work is needed to investigate this
phenomenon.

We note that on δS-alt , the best performing
model (Zephyr) still only achieves 0.697 overall
F1. In comparison, on DEFREASING the best
performing model (Llama3) achieves 0.635 overall
F1; on δS-alt the performance of Llama3 drops to
0.603 F1. Therefore, modifying the labeling does

10555

From Allaway and McKeown (2025). 18



Hard: human evaluation

Humans judge the output based on some criteria

• Some tasks have standard criteria, e.g., fluency

• Recent trend in using LLMs to do this instead
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Example 8: evaluation criteria

2028

Document: mange kimambi ‘i pray for the parliamentary seat for kinondoni constituency for ticket of ccm. not special

seats’ kinondoni without drugs is possible i pray for the parliamentary seat for kinondoni constituency on the ticket of

ccm. yes, it’s not a special seats, khuini kinondoni, what will i do for kinondoni? tension is many i get but we must

remember no good that is available easily. kinondoni without drugs is possible. as a friend, fan or patriotism i urge you to

grant your contribution to the situation and propert. you can use western union or money to go to mange john kimambi.

account of crdb bank is on blog. reduce my profile in my blog understand why i have decided to vie for kinondoni

constituency. you will understand more.

NYT-base: mange kimambi, who pray for parliamentary seat for kinondoni constituency for ticket of ccm in 0 , is on

blog, and not special seats’ kinondoni without drugs.

Abs-mix: mange kimambi, who pray for parliamentary seat for kinondoni constituency for ticket of ccm, comments on

his plans to vie for ‘kinondoni’ without drugs.

Figure 2: An automatically translated Swahili weblog entry and its baseline and mixed abstractor summaries.

Somali Weblogs

Model Content Fluency

NYT-base 1.66 1.62

Abs-so 1.92 1.90

Abs-sw 1.94 1.88

Abs-tl 1.86 1.82

Abs-mix 2.08 2.04

Swahili Weblogs

Model Content Fluency

NYT-base 1.88 1.76

Abs-so 2.14 1.90

Abs-sw 2.22 2.08
Abs-tl 2.18 1.86

Abs-mix 2.36 2.08

Tagalog Weblogs

Model Content Fluency

NYT-base 1.72 1.76

Abs-so 1.76 1.88

Abs-sw 1.94 1.92

Abs-tl 1.80 2.08

Abs-mix 2.08 2.16

Table 5: Average human-rated content and fluency scores on Somali, Swahili, and Tagalog weblog entries.

calculated the average perplexity of our abstrac-
tors’ output as a proxy for fluency (Table 4). We
see that Somali is the most difficult overall, but
all three language-specific systems and the mixed
model produce more fluent English across source
languages than does the base model.

5.2 Weblog Evaluation.
We perform a human evaluation on 20 Somali,

20 Swahili, and 20 Tagalog weblog entries that
we automatically translate into English using the
same neural machine translation systems we used
to create our noisy NYT corpora. Unlike our NYT
data, which we translated from English into the
low-resource languages, these weblogs are real-
world Somali, Swahili, and Tagalog documents –
this evaluation demonstrates the performance of
our system in a real use-case. Figure 2 shows a
Swahili weblog entry and its summaries2. This
example shows the advantage of our approach:
unlike a machine translation system, which must
translate every part of its input, our abstractor is
able to delete most of the long, rambling, and
disfluent blog entry, instead summing it up flu-
ently with the generated phrase “comments on his
plans” and the repurposed phrase “to vie for”.

We use five human judges, all native English
speakers and none of whom are the authors. The

2All four abstractors produced very similar summaries.

judges were shown a translated document and a
summary and asked to rate the content and fluency
of the summary on a scale of 1–3 (Table 5). Our
human judges rated our abstractors higher in both
fluency and content, and we see again that while
the language-specific systems are more fluent on
their own languages than are the language-specific
systems for the other languages, the mixed model
still performs the best. We also see that, while our
improvement in content is more modest, our im-
provement in fluency – the goal of this work – is
significant. The judges achieved substantial agree-
ment (Fleiss’s κ = 0.72).

5.3 DUC 2004 Arabic Evaluation.

Finally, we evaluate our system on a new lan-
guage: Arabic. We use the DUC 2004 Task 3 test
set, which consists of real-world Arabic news arti-
cles translated into English, each paired with four
human-written summaries.

Table 6 shows the performance of our abstrac-
tors on the Arabic data, demonstrating their ability
to generalize and improve the fluency of input doc-
uments automatically translated from a previously
unseen language, yielding a significant improve-
ment in ROUGE. Compared to the 28 DUC 2004
systems, our performance would have ranked
1st on summarizing the machine-translated docu-
ments; despite our use of these lower-quality, au-

From Ouyang et al. (2019).
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Scary∗: manual data analysis

• Look through the inputs → patterns that are causing errors

• Look through model outputs → patterns in behavior

∗ This is a bit sarcastic, but manual data analysis is definitely hard.
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Example 9: manual analysis

Results and Discussion We report two met-
rics in Table 8: average alignment accuracy
across all annotations (Alignment) and the per-
centage of pairs where all three annotators agree
(Agreement). Our model achieves 90.0% align-
ment accuracy on Abg-CoQA and 91.7% on
Ambrosia with strong inter-annotator consensus
(81.0–84.0% annotator agreement). Combined
with our answer quality metrics, these results
provide a more complete picture of model per-
formance demonstrating that it learns to gener-
ate meaningful interpretations that explain the
provided answers. Aligned interpretations make
the model’s decision-making transparent, allowing
users to select their intended meaning or quickly
reject incorrect interpretations.

7 Analysis of Model Output

Error Analysis To better understand model fail-
ures, we further analyze the 30 examples sam-
pled for evaluating interpretation alignment (Sec-
tion 6). On Abg-CoQA, we identify three types
of error. First, the model ignores important con-
text from previous dialogue turns. Second, it
sometimes produces valid, well-specified interpre-
tations but then gives factually incorrect answers,
such as referencing a different person than the one
implied in the interpretation. Third, it predicts
generic interpretations like “The question is am-
biguous.” In some cases, this is paired with a spe-
cific answer, without clarifying which interpreta-
tion the answer corresponds to. In other cases, it
is paired with the answer “Unknown” which ap-
pears in some training examples, but the model has
learned to produce it more often than necessary.

We also observe on Ambrosia that interpreta-
tions can be vague, sometimes paraphrasing the
question without resolving the ambiguity. More-
over, the model occasionally produces correct in-
terpretations but predicts queries that do not follow
them (e.g., adding ID fields not mentioned in the
question) and generates non-executable queries,
even noting the error in SQL comments (e.g., “this
column does not exist”). It also repeats the same
interpretation multiple times, although repetitions
can be filtered via execution results.

Reasoning Chains Figure 1 shows average rea-
soning length versus full coverage on ambiguous
examples in Abg-CoQA and Ambrosia. We com-
pare all methods that produce reasoning traces:
models prompted with CoT, thinking models, and

Figure 1: Reasoning length (number of characters)
vs. coverage (ambiguous subsets).

our approach. As can be seen, thinking models
frequently overthink on Abg-CoQA, getting stuck
on the same interpretation rather than considering
alternatives. Traces from our model occasionally
contain repetitions on Abg-CoQA, but they are
significantly more concise. On Ambrosia, think-
ing models sometimes miss interpretations en-
tirely, leading to low full coverage. Instruct mod-
els with CoT are more concise but underperform
on both datasets. Overall, our models demonstrate
the best ratio of efficiency to interpretation cover-
age. Appendix G provides examples of reasoning
traces from our model.

8 Conclusion

We handle ambiguous requests by generating in-
terpretations paired with corresponding answers
and train models to reason about user intent via
reinforcement learning with specialized rewards.
Experiments on conversational question answer-
ing and text-to-SQL parsing show our method
achieves higher full coverage of valid answers.
The generated interpretations align with their an-
swers over 90% of the time, despite lacking ex-
plicit supervision during training. Our approach
offers more efficient reasoning than thinking mod-
els with better coverage. Explicit interpretations
help users quickly clarify their intent or reject in-
correct interpretations, improving both user expe-
rience and safety.

In the future, we plan to use interpretations to
identify and correct errors in real-time, without
requiring a full re-generation of responses. Con-
trolled decoding could further improve efficiency
and accuracy, e.g., ensuring that interpretations are
mutually exclusive. Finally, adapting to individual
user preferences would make interpretations more
personalized and relevant to each user.

Results and Discussion We report two met-
rics in Table 8: average alignment accuracy
across all annotations (Alignment) and the per-
centage of pairs where all three annotators agree
(Agreement). Our model achieves 90.0% align-
ment accuracy on Abg-CoQA and 91.7% on
Ambrosia with strong inter-annotator consensus
(81.0–84.0% annotator agreement). Combined
with our answer quality metrics, these results
provide a more complete picture of model per-
formance demonstrating that it learns to gener-
ate meaningful interpretations that explain the
provided answers. Aligned interpretations make
the model’s decision-making transparent, allowing
users to select their intended meaning or quickly
reject incorrect interpretations.

7 Analysis of Model Output

Error Analysis To better understand model fail-
ures, we further analyze the 30 examples sam-
pled for evaluating interpretation alignment (Sec-
tion 6). On Abg-CoQA, we identify three types
of error. First, the model ignores important con-
text from previous dialogue turns. Second, it
sometimes produces valid, well-specified interpre-
tations but then gives factually incorrect answers,
such as referencing a different person than the one
implied in the interpretation. Third, it predicts
generic interpretations like “The question is am-
biguous.” In some cases, this is paired with a spe-
cific answer, without clarifying which interpreta-
tion the answer corresponds to. In other cases, it
is paired with the answer “Unknown” which ap-
pears in some training examples, but the model has
learned to produce it more often than necessary.

We also observe on Ambrosia that interpreta-
tions can be vague, sometimes paraphrasing the
question without resolving the ambiguity. More-
over, the model occasionally produces correct in-
terpretations but predicts queries that do not follow
them (e.g., adding ID fields not mentioned in the
question) and generates non-executable queries,
even noting the error in SQL comments (e.g., “this
column does not exist”). It also repeats the same
interpretation multiple times, although repetitions
can be filtered via execution results.

Reasoning Chains Figure 1 shows average rea-
soning length versus full coverage on ambiguous
examples in Abg-CoQA and Ambrosia. We com-
pare all methods that produce reasoning traces:
models prompted with CoT, thinking models, and

Figure 1: Reasoning length (number of characters)
vs. coverage (ambiguous subsets).

our approach. As can be seen, thinking models
frequently overthink on Abg-CoQA, getting stuck
on the same interpretation rather than considering
alternatives. Traces from our model occasionally
contain repetitions on Abg-CoQA, but they are
significantly more concise. On Ambrosia, think-
ing models sometimes miss interpretations en-
tirely, leading to low full coverage. Instruct mod-
els with CoT are more concise but underperform
on both datasets. Overall, our models demonstrate
the best ratio of efficiency to interpretation cover-
age. Appendix G provides examples of reasoning
traces from our model.

8 Conclusion

We handle ambiguous requests by generating in-
terpretations paired with corresponding answers
and train models to reason about user intent via
reinforcement learning with specialized rewards.
Experiments on conversational question answer-
ing and text-to-SQL parsing show our method
achieves higher full coverage of valid answers.
The generated interpretations align with their an-
swers over 90% of the time, despite lacking ex-
plicit supervision during training. Our approach
offers more efficient reasoning than thinking mod-
els with better coverage. Explicit interpretations
help users quickly clarify their intent or reject in-
correct interpretations, improving both user expe-
rience and safety.

In the future, we plan to use interpretations to
identify and correct errors in real-time, without
requiring a full re-generation of responses. Con-
trolled decoding could further improve efficiency
and accuracy, e.g., ensuring that interpretations are
mutually exclusive. Finally, adapting to individual
user preferences would make interpretations more
personalized and relevant to each user.

From Saparina and Lapata (2025). 22



Example 10: visualising differences

4730

I saved my friend’s life from a heroin overdose, and she repaid me by hooking up with my boyfriend.

I saved my (at the time) best friend from a heroin overdose by sticking suboxone under her tongue, which I miraculously

had with me at the time. About a month later her and my boyfriend who I had been living with for two years hooked up.

(a) Ouyang et al. gold standard annotation.

I saved my friend’s life from a heroin overdose, and she repaid me by hooking up with my boyfriend.

I saved my (at the time) best friend from a heroin overdose by sticking suboxone under her tongue, which I miraculously

had with me at the time. About a month later her and my boyfriend who I had been living with for two years hooked up.

(b) Pointer-aligner alignment.

I saved my friend’s life from a heroin overdose, and she repaid me by hooking up with my boyfriend.

I saved my (at the time) best friend from a heroin overdose by sticking suboxone under her tongue, which I miraculously

had with me at the time. About a month later her and my boyfriend who I had been living with for two years hooked up.

(c) Jacana alignment.

Figure 7: Ouyang et al. alignments. Due to length restrictions, we show only the best-performing baseline, Jacana.

Botswana is a business partner of De Beers.
Production at mines operated by Debswana – Botswana’s 50-50 joint venture with De Beers – reach 33 million carats.

(a) MSR RTE gold standard annotation, with sure alignments in bold and possible alignments in italics.

Botswana is a business partner of De Beers.

Production at mines operated by Debswana – Botswana’s 50-50 joint venture with De Beers – reach 33 million carats.

(b) Pointer-aligner alignment.

Botswana is a business partner of De Beers.

Production at mines operated by Debswana – Botswana’s 50-50 joint venture with De Beers – reach 33 million carats.

(c) Jacana alignment.

Figure 8: MSR RTE alignments. Due to length restrictions, we show only the best-performing baseline, Jacana.

System P% R% F1%

Sultan et al. 6.7 3.4 4.4
SemAligner 4.1 6.8 5.1
Jacana 5.2 6.7 5.8
pointer 23.4 47.7 31.4

Table 2: Performance on MSR RTE.

not contain any possible alignments. As discussed
in Section 4, Yao et al. found that, even after merg-
ing consecutive single-word alignments, the sure
alignments of the MSR RTE consist overwhelm-
ingly of phrases fewer than four words in length.
It is not until we add in the possible alignments
that the percentage of four-word or longer phrases
grows to 24% in the MSR RTE test set; when
we look only at sentence pairs containing a least
one possible alignment, the percentage of longer
phrases grows to 44%. Thus evaluating only on
the 406 sentence pairs that contain at least one
possible requires systems not only to perform well
on longer alignments, but also to avoid sacrificing
performance on short alignments.

Figure 8 shows alignments from the pointer-

aligner and Jacana on an MSR RTE sentence pair4.
(Note that the pointer-aligner was trained only on
the Ouyang et al. data, and not on any MSR RTE
data.) This particular pair was very good for the
pointer-aligner because the gold standard align-
ment is neatly separated out from the rest of the
sentence as a parenthetical. Jacana’s alignments
shown in green and yellow suffer from the same
noisy, constituent-breaking boundaries as does the
pointer-aligner on sentence pairs less perfectly
suited to our approach.

6 Discussion and Limitations

Comparing the gold standard alignments of the
MSR RTE corpus with those in Ouyang et al., we
see that it is often the case with the Ouyang et
al. alignments that one side contains much more
information than other. While some MSR RTE
alignments have this property (eg. “prominent”
in Figure 6), not all do. This is likely a side ef-
fect of the Ouyang et al. corpus being intended
for summarization – the sentence pairs are com-
posed of an excerpt from a narrative and a human-

4The alignments from the other systems are included in
Appendix C.

From Ouyang and McKeown (2019).
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Overview

Types of Error Analysis

Exercise
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Discuss

• What kinds of analyses would you do?

• How would you do these?
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