# Natural Language Understanding, Generation, and Machine Translation 

Lecture 24: Generation, In-Context Learning, and Reasoning with LLMs

Pasquale Minervini
p.minervini@ed.ac.uk March 15th, 2024

## Natural Language Generation with LLMs

Most LLMs are auto-regressive text generation models: at each time step $t$, the model gets a sequence of tokens $\left\{y_{<t}\right\}$ as input, and outputs a new token $\hat{y}_{t}$ Given a $\operatorname{LM} f(\cdot)$ and vocab $V$, we get scores $\mathbf{s}=f\left(\left\{y_{<t}\right\}\right) \in \mathbb{R}^{|V|}$ :

## Natural Language Generation with LLMs

Most LLMs are auto-regressive text generation models: at each time step $t$, the model gets a sequence of tokens $\left\{y_{<t}\right\}$ as input, and outputs a new token $\hat{y}_{t}$ Given a $\operatorname{LM} f(\cdot)$ and vocab $V$, we get scores $\mathbf{s}=f\left(\left\{y_{<t}\right\}\right) \in \mathbb{R}^{|V|}$ :
$P\left(y_{t} \mid\left\{y_{<t}\right\}\right)=\frac{\exp \left(\mathbf{s}_{w}\right)}{\sum_{w^{\prime}} \exp \left(\mathbf{s}_{w^{\prime}}\right)}$

## Natural Language Generation with LLMs

Most LLMs are auto-regressive text generation models: at each time step $t$, the model gets a sequence of tokens $\left\{y_{<t}\right\}$ as input, and outputs a new token $\hat{y}_{t}$ Given a $\operatorname{LM} f(\cdot)$ and vocab $V$, we get scores $\mathbf{s}=f\left(\left\{y_{<t}\right\}\right) \in \mathbb{R}^{|V|}$ :
$P\left(y_{t} \mid\left\{y_{<t}\right\}\right)=\frac{\exp \left(\mathbf{s}_{w}\right)}{\sum_{w^{\prime}} \exp \left(\mathbf{s}_{w^{\prime}}\right)}$


## Natural Language Generation with LLMs

Most LLMs are auto-regressive text generation models: at each time step $t$, the model gets a sequence of tokens $\left\{y_{<t}\right\}$ as input, and outputs a new token $\hat{y}_{t}$ Given a $\operatorname{LM} f(\cdot)$ and vocab $V$, we get scores $\mathbf{s}=f\left(\left\{y_{<t}\right\}\right) \in \mathbb{R}^{|V|}$ :


## Natural Language Generation with LLMs

During inference, the decoding algorithm defines a function to select a token from the distribution over next tokens:

$$
\hat{y}_{t}=g\left(P\left(y_{t} \mid\left\{y_{<t}\right\}\right)\right)
$$

## Natural Language Generation with LLMs

During inference, the decoding algorithm defines a function to select a token from the distribution over next tokens:

$$
\hat{y}_{t}=g\left(P\left(y_{t} \mid\left\{y_{<t}\right\}\right)\right)
$$

$g(\cdot)$ is the decoding algorithm
Greedy decoding: at each step, just select the highest-probability next token according to the model:
$\hat{y}_{t}=\arg \max _{w \in V} P\left(y_{t}=w \mid\left\{y_{<t}\right\}\right)$ $w \in V$

This already works but what else is there?

## Decoding — Finding the Most Likely String

Greedy decoding: select the highest probability token in
$P\left(y_{t} \mid\left\{y_{<t}\right\}\right)$ :

$$
\hat{y}_{t}=\arg \max _{w \in V} P\left(y_{t}=w \mid\left\{y_{<t}\right\}\right)
$$

Beam Search: wider exploration of candidates using beam search; you saw it in the Machine Translation (MT) lectures

## Decoding — Finding the Most Likely String

Greedy decoding: select the highest probability token in
$P\left(y_{t} \mid\left\{y_{<t}\right\}\right)$ :

$$
\hat{y}_{t}=\arg \max _{w \in V} P\left(y_{t}=w \mid\left\{y_{<t}\right\}\right)
$$

Beam Search: wider exploration of candidates using beam search; you saw it in the Machine Translation (MT) lectures

Heuristic: maximum probability decoding is good for low-entropy tasks like MT and summarisation, where the target outputs tend to be more predictable

## Decoding - Generation via Sampling

We can sample a token from the next token distribution:

$$
\hat{y}_{t} \sim P\left(y_{t}=w \mid\left\{y_{<t}\right\}\right)
$$

I ate the pizza while it was still


## Decoding - Generation via Sampling

We can sample a token from the next token distribution:

$$
\hat{y}_{t} \sim P\left(y_{t}=w \mid\left\{y_{<t}\right\}\right)
$$

I ate the pizza while it was still


## Decoding — Top-k Sampling

Problem with "naive" sampling: often $P\left(y_{t} \mid\left\{y_{<t}\right\}\right)$ is "heavy-tailed" - the tail of the distribution can be very long and, in aggregate, have considerable mass; however, some tokens are really wrong!

## Decoding — Top-k Sampling

Problem with "naive" sampling: often $P\left(y_{t} \mid\left\{y_{<t}\right\}\right)$ is "heavy-tailed" - the tail of the distribution can be very long and, in aggregate, have considerable mass; however, some tokens are really wrong!

Solution: Top- $k$ sampling

- we only sample from the top $k$ tokens!


## Model



## Decoding — Top-k Sampling

Problem with Top- $k$ sampling: the cut-off can be too quick/slow -

- When $P$ is flatter, a small $k$ can remove too many viable options
- When $P$ is sharper, a high $k$ can allow for too many options to have a chance of being selected


## Decoding — Top- $p$ Sampling

Problem with Top- $k$ sampling: the cut-off can be too quick/slow -

- When $P$ is flatter, a small $k$ can remove too many viable options
- When $P$ is sharper, a high $k$ can allow for too many options to have a chance of being selected

Solution: Top-p Sampling (Nucleus sampling [Holtzman et al., 2020]) sample from all tokens in the top- $p$ cumulative probability mass

## Decoding — Top-p Sampling

Solution: Top-p Sampling (Nucleus sampling [Holtzman et al., 2020]) sample from all tokens in the top- $p$ cumulative probability mass


## Decoding - Temperature

Recap: at timestep $t$, the model computes a distribution $P\left(y_{t} \mid\left\{y_{<t}\right\}\right)$ over possible next tokens

$$
P\left(y_{t} \mid\left\{y_{<t}\right\}\right)=\frac{\exp \left(\mathbf{s}_{w}\right)}{\sum_{w^{\prime}} \exp \left(\mathbf{s}_{w^{\prime}}\right)} \text { with } \mathbf{s} \in \mathbb{R}^{|V|}
$$

## Decoding - Temperature

Recap: at timestep $t$, the model computes a distribution $P\left(y_{t} \mid\left\{y_{<t}\right\}\right)$ over possible next tokens

$$
P\left(y_{t} \mid\left\{y_{<t}\right\}\right)=\frac{\exp \left(\mathbf{s}_{w}\right)}{\sum_{w^{\prime}} \exp \left(\mathbf{s}_{w^{\prime}}\right)} \text { with } \mathbf{s} \in \mathbb{R}^{|V|}
$$

We can apply a temperature hyper-parameter $\tau$ to re-balance $P$ :

$$
P\left(y_{t} \mid\left\{y_{<t}\right\}\right)=\frac{\exp \left(\mathbf{s}_{w} / \tau\right)}{\sum_{w^{\prime}} \exp \left(\mathbf{s}_{w^{\prime}} / \tau\right)} \text { with } \mathbf{s} \in \mathbb{R}^{|V|}
$$

When $\tau>1$, then $P$ becomes more uniform When $\tau<1$, then $P$ becomes more concentrated/spiky

## Decoding - Temperature

We can apply a temperature hyper-parameter $\tau$ to re-balance $P$ :

$$
P\left(y_{t} \mid\left\{y_{<t}\right\}\right)=\frac{\exp \left(\mathbf{s}_{w} / \tau\right)}{\sum_{w^{\prime}} \exp \left(\mathbf{s}_{w^{\prime}} / \tau\right)} \text { with } \mathbf{s} \in \mathbb{R}^{|V|}
$$

When $\tau>1$, then $P$ becomes more uniform When $\tau<1$, then $P$ becomes more concentrated/spiky





## Back to In-Context Learning!

## Emerging Abilities of LLMs: GPT-3 (2020)

GPT-3 [Brown et al., 2020]:
-Parameter increase: 1.5B $\rightarrow$ 175B

## Recap

-Trained or more data: (40GB $\rightarrow>600 \mathrm{~GB}$ )


## Language Models are Few-Shot Learners

## Emergent Few-Shot Learning Abilities

Specify a task by pre-pending examples of the task before your input Referred to as In-Context Learning - we can teach the model a new task without performing any gradient updates


## Emergent Few-Shot Learning Abilities



## Emergent Few-Shot Learning Abilities

## In-Context Learning on SuperGLUE



## Emergent Few-Shot Learning Abilities



## Emergent Few-Shot Learning Abilities



## Emergent Few-Shot Learning Abilities

Wordscramble (few-shot)


## Emergent Few-Shot Learning Abilities

Arithmetic (few-shot)


## Emergent Few-Shot Learning Abilities

TriviaQA


## Emergent Few-Shot Learning Abilities

TriviaQA


Parameters in LM (Billions)

## In-Context Learning

Circulation revenue has increased by $5 \%$ in Finland. // Positive

Panostaja did not disclose the purchase price. // Neutral

Paying off the national debt will be extremely painful. // Negative

The company anticipated its operating profit to improve. //

## LM

Circulation revenue has increased by 5\% in Finland. // Finance

They defeated ... in the NFC Championship Game. // Sports

Apple ... development of in-house chips. // Tech

The company anticipated its operating profit to improve. //

## LM

## Sensitivity to Prompts

## Poor template choices can severely degrade model performance



Formatted demonstrations

> text: Worst film ever target: negative text: Awesome, I like it target: positive
input: Worst film ever It was negative. input: Awesome, I like it It was positive.

Comparing models

LLaMA 2 70B: 0.65 : Falcon 40B: 0.90 ©

```
LLaMA 2 70B: 0.94 (0)
Falcon 40B: 0.94 (0)
```

Comparing prediction methods

| Direct: | 0.65 |
| :--- | ---: |
| Channel: | 0.75 |
| Calibration: | 0.88 © |

```
0.94 ©
Channel: 0.51 (i.)
Calibration: 0.94 (0)
```

Possible solutions: Template Ensembles [Voronov et al., 2024], Global and Local Entropy of the predictions [Lu et al., 2022]

## ICL Fails on Complex Reasoning Tasks

Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?

A: The answer is 5

Arithmetic Reasoning (AR)
(+-x $\div$...)

## ICL Fails on Complex Reasoning Tasks

Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?

A: The answer is 5
Q: Take the last letters of the words in "Elon Musk" and concatenate them

A: The answer is $\mathbf{n k}$.
$\underset{(+-x \div \ldots)}{\text { Arithmetic Reasoning (AR) Symbolic Reasoning (SR) }}$

## ICL Fails on Complex Reasoning Tasks

Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?

A: The answer is 5
Q: Take the last letters of the words in "Elon Musk" and concatenate them

A: The answer is $\mathbf{n k}$.

Arithmetic Reasoning (AR) Symbolic Reasoning (SR) (+ - x $\div .$. )

Q: What home entertainment equipment requires cable? Answer Choices: (a) radio shack
(b) substation (c) television (d) cabinet

A: The answer is (c).

Commonsense Reasoning (CR)

## Arithmetic Problems

Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May. How many clips did Natalia sell altogether in April and May?

Weng earns $\$ 12$ an hour for babysitting. Yesterday, she just did 50 minutes of babysitting. How much did she earn?

10

James writes a 3-page letter to 2 different friends twice a week. How many pages does he write a year?

624

## Results for GPT-3 fine-tuned on GSM8K [Cobbe et al., 2021]

## Arithmetic Problems



Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May. How many clips did Natalia sell altogether in April and May?

72

Weng earns \$12 an hour for babysitting. Yesterday, she just did 50 minutes of babysitting. How much did she earn?

10

James writes a 3-page letter to 2 different friends twice a week. How many pages does he write a year?

624

## Results for GPT-3 fine-tuned on GSM8K [Cobbe et al., 2021]

## Arithmetic Problems

## Finetuned GPT-3 175B

## Prior best

PaLM 540B: standard prompting
PaLM 540B: chain-of-thought prompting


Math Word Problems (GSM8K)

Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May. How many clips did Natalia sell altogether in April and May?

Weng earns \$12 an hour for babysitting. Yesterday, she just did 50 minutes of babysitting. How much did she earn?

James writes a 3-page letter to 2 different friends twice a week. How many pages does he write a year?

## Results for PaLM 540B "trained" via ICL on GSM8K

## ICL Fails on Complex Reasoning Tasks

Scaling up LMs does not efficiently achieve accurate results in Arithmetic Reasoning (AR), Commonsense Reasoning (CR), and Symbolic Reasoning (SR) tasks

Proposed solution: Chain of Thought Prompting

# Chain of Thought Prompting 

## Few-Shot

## Chain of Thought Prompting Elicits Reasoning in Large Language Models

## Jason Wei Xuezhi Wang Dale Schuurmans Maarten Bosma <br> Brian Ichter Fei Xia Ed H. Chi Quoc V. Le Denny Zhou <br> Large Language Models are Zero-Shot Reasoners

## Zero-Shot

Takeshi Kojima
The University of Tokyo
t.kojima@weblab.t.u-tokyo.ac.jp

Machel Reid
The University of Tokyo

Yutaka Matsuo The University of Tokyo

Shixiang Shane Gu
Google Research, Brain Team

## Chain of Thought Prompting

Definition: a Chain of Thought is a series of intermediate natural language reasoning steps that lead to the final output

## Chain of Thought Prompting

Definition: a Chain of Thought is a series of intermediate natural language reasoning steps that lead to the final output

In a way, it is similar to the backward-chaining reasoning algorithm from logic programming, where complex task are (recursively) decomposed into simpler tasks

## Chain of Thought Prompting

Definition: a Chain of Thought is a series of intermediate natural language reasoning steps that lead to the final output

In a way, it is similar to the backward-chaining reasoning algorithm from logic programming, where complex task are (recursively) decomposed into simpler tasks

It can provide several benefits:

- Intermediate problems can be easier to solve for a LLM


## Chain of Thought Prompting

Definition: a Chain of Thought is a series of intermediate natural language reasoning steps that lead to the final output

In a way, it is similar to the backward-chaining reasoning algorithm from logic programming, where complex task are (recursively) decomposed into simpler tasks

It can provide several benefits:

- Intermediate problems can be easier to solve for a LLM
- The reasoning step can provide an explanation for the prediction


## Chain of Thought Prompting

Definition: a Chain of Thought is a series of intermediate natural language reasoning steps that lead to the final output

In a way, it is similar to the backward-chaining reasoning algorithm from logic programming, where complex task are (recursively) decomposed into simpler tasks

It can provide several benefits:

- Intermediate problems can be easier to solve for a LLM
- The reasoning step can provide an explanation for the prediction
- Only requires inference with a LLM - no fine-tuning!


# Chain of Thought Prompting 

Few-shot CoT [Wei et al., 2022]

## Standard Prompting

## Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11 .
Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

## Model Output

A: The answer is 27 .

# Chain of Thought Prompting 

## Few-shot CoT [Wei et al., 2022]

## Standard Prompting

## Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11 .
Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

## Model Output

A: The answer is 27 .

## Chain-of-Thought Prompting

## Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. $5+6=11$. The answer is 11 .

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

# Chain of Thought Prompting 

## Few-shot CoT [Wei et al., 2022]

## Standard Prompting

## Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11 .
Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

## Model Output

A: The answer is 27 .

## Chain-of-Thought Prompting

## Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. $5+6=11$. The answer is 11 .

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

## Model Output

A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had $23-20=3$. They bought 6 more apples, so they have $3+6=9$. The answer is 9 .

# Chain of Thought Prompting 

Zero-shot CoT [Kojima et al., 2022]

# Chain of Thought Prompting <br> Zero-shot CoT [Kojima et al., 2022] <br> (a) Few-shot 

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?
A: The answer is 11 .
Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?
A:
(Output) The answer is 8. $X$

# Chain of Thought Prompting <br> Zero-shot CoT [Kojima et al., 2022] <br> <br> (a) Few-shot <br> <br> (a) Few-shot <br> (b) Few-shot-CoT 

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?
A: The answer is 11 .
Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?
A:
(Output) The answer is $8 . X$

# Chain of Thought Prompting <br> Zero-shot CoT [Kojima et al., 2022] <br> <br> (a) Few-shot <br> <br> (a) Few-shot <br> (b) Few-shot-CoT 

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?
A: The answer is 11 .
Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?
A:
(Output) The answer is $8 . X$

## (c) Zero-shot

Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?
A: The answer (arabic numerals) is

## (Output) 8 X

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?
A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. $5+6=11$. The answer is 11 .
Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?
A:
(Output) The juggler can juggle 16 balls. Half of the balls are golf balls. So there are 16/2=8 golf balls. Half of the golf balls are blue. So there are $8 / 2=4$ blue golf balls. The answer is 4 .

# Chain of Thought Prompting <br> Zero-shot CoT [Kojima et al., 2022] 

## (a) Few-shot

(b) Few-shot-CoT

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?
A: The answer is 11 .
Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?
A:
(Output) The answer is $8 . X$

## (c) Zero-shot

Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?
A: The answer (arabic numerals) is

## (Output) 8 X

> Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?
> A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. $5+6=11$. The answer is 11 .
> Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?
> A:
> (Output) The juggler can juggle 16 balls. Half of the balls are golf balls. So there are $16 / 2=8$ golf balls. Half of the golf balls are blue. So there are $8 / 2=4$ blue golf balls. The answer is 4 .

## (d) Zero-shot-CoT (Ours)

Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?
A: Let's think step by step.
(Output) There are 16 balls in total. Half of the balls are golf balls. That means that there are 8 golf balls. Half of the golf balls are blue. That means that there are 4 blue golf balls. $\downarrow$

# Chain of Thought Prompting <br> Zero-shot CoT [Kojima et al., 2022] 

## 【1st prompt】 <br> Reasoning Extraction

Q: On average Joe throws 25 punches per minute. A fight lasts 5 rounds of 3 minutes. How many punches did he throw?
A: Let's think step by step.

# Chain of Thought Prompting Zero-shot CoT [Kojima et al., 2022] 

```
    \1st prompt】
Reasoning Extraction
```

Q: On average Joe throws 25 punches per minute. A fight lasts 5 rounds of 3 minutes. How many punches did he throw?
A: Let's think step by step.


In one minute, Joe throws 25 punches.
In three minutes, Joe throws 3 * $25=75$ punches. In five rounds, Joe throws 5 * $75=375$ punches.

# Chain of Thought Prompting <br> Zero-shot CoT [Kojima et al., 2022] 

```
    \1st prompt】
Reasoning Extraction
```


## [2nd prompt】 Answer Extraction

Q: On average Joe throws 25 punches per minute. A fight lasts 5 rounds of 3 minutes. How many punches did he throw? A: Let's think step by step.

In one minute, Joe throws 25 punches. In three minutes, Joe throws 3 * $25=75$ punches. In five rounds, Joe throws 5 * $75=375$ punches.

Q: On average Joe throws 25 punches per minute. A fight lasts 5 rounds of $3 \cdots$
A: Let's think step by step.
In one minute, Joe throws 25 punches. . . - In five rounds, Joe throws 5 * $75=375$ punches.
Therefore, the answer (arabic numerals) is

# Chain of Thought Prompting <br> Zero-shot CoT [Kojima et al., 2022] 

```
    \1st prompt】
Reasoning Extraction
```


## [2nd prompt】 Answer Extraction

Q: On average Joe throws 25 punches per minute. A fight lasts 5 rounds of 3 minutes. How many punches did he throw? A: Let's think step by step.

In one minute, Joe throws 25 punches. In three minutes, Joe throws 3 * $25=75$ punches. In five rounds, Joe throws 5 * $75=375$ punches.

Q: On average Joe throws 25 punches per minute. A fight lasts 5 rounds of $3 \cdots$
A: Let's think step by step.
In one minute, Joe throws 25 punches. . . • In five rounds, Joe throws 5 * $75=375$ punches. .
Therefore, the answer (arabic numerals) is

375.

## CoT Prompting — Experiments

## Free Response

Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?

A: There are originally 3 cars. 2 more cars arrive. $3+2=5$. The answer is 5 .

- Eight handcrafted examples
- All with equations with flexible formats
- Benchmarked on:
- GSM8K [Cobbe et al., 2021]
- SVAMP [Patel et al., 2021]
- MAWPS [Koncel-Kedziorski et al., 2016]


## CoT Prompting — Experiments

## Multiple Choice

Q: A person is traveling at $20 \mathrm{~km} / \mathrm{hr}$ and reached his destiny in 2.5 hr then find the distance?
Answer Choices: (a) 53 km (b) 55 km (c) 52 km (d) 60 km (e) 50 km

A: The distance that the person traveled would have been 20 $\mathrm{km} / \mathrm{hr}$ * $2.5 \mathrm{hrs}=50 \mathrm{~km}$. The answer is (e).

- Four exemplars, whose questions, intermediate reasoning, and answers are sampled from the training set
- Exemplars have flexible formats
- Benchmarked on:
- AQuA-RAT [Ling et al., 2017]


## CoT Prompting — Results <br> $\ldots$ Standard prompting

- Chain-of-thought prompting
-     -         - Prior supervised best


Model scale (\# parameters in billions)

## GSM8K

Josh decides to try flipping a house. He buys a house for $\$ 80,000$ and then puts in $\$ 50,000$ in repairs. This increased the value of the house by $150 \%$. How much profit did he make?

## SVAMP

Each pack of dvds costs 76 dollars. If there is a discount of 25 dollars on each pack. How much do you have to pay to buy each pack?


## MAWPS - MultiArith

The school cafeteria ordered 42 red apples and 7 green apples for students lunches. But, if only 9 students wanted fruit, how many extra did the cafeteria end up with?

## AQuA-RAT

A person is traveling at $20 \mathrm{~km} / \mathrm{hr}$ and reached his destiny in 2.5 hr then find the distance?
Answer Choices: (a) 53 km (b)
55 km (c) 52 km (d) 60 km (e) 50
km


## Arithmetic Reasoning — Observations

Instruct GPT-3
Both zero-shot and few-shot CoT prompting are emergent abilities of model scale

CoT does not help for smaller models, while it yields significant improvements for models with >100B parameters
Few-shot CoT achieves better accuracy than zero-shot CoT

## Symbolic Reasoning — Last Letter Concatenation

Last letter concatenation

Q: Take the last letters of the words in "Elon Musk" and concatenate them
$A$ : The last letter of "Elon" is " $n$ ". The last letter of "Musk" is " $k$ ". Concatenating them is "nk". The answer is nk.

Generate full names by randomly concatenating names from the top names from name census data Four exemplars with strict format

## Symbolic Reasoning — Coin Flip

## Coin Flip

Q: A coin is heads up. Tom does not flip the coin. Mike does not flip the coin. Is the coin still heads up?

A: The coin was flipped by no one. So the coin was flipped 0 times. The coin started heads up, and it was not flipped, so it is still heads up. So the answer is yes.

Eight exemplars with strict format

## In \& Out-of-Domain Tests

In-domain Test Set: test examples have the same number of steps as the few-shot training examples Out-of-Domain (OOD) Test Set: examples have more steps than the few-shot training examples

## Symbolic Reasoning - Last Letter Concatenation




## In-Domain

Take the last letters of the words in "Elon Musk" and concatenate them.

## Out-of-Domain

Take the last letters of the words in "Johann Sebastian Bach" and concatenate them.

## Symbolic Reasoning — Coin Flip



