
Natural Language Understanding, Generation,
and Machine Translation
Lecture 3: Conditional Language Models (with n-grams)

Alexandra Birch
19 January 2024 (week 1)

School of Informatics
University of Edinburgh
a.birch@ed.ac.uk

Based on slides by Adam Lopez.

1

a.birch@ed.ac.uk

Overview

Revision

Language models

n-gram Language models

Conditional language models

Modeling translation with n-grams

Parameter estimation

Decoding

Required, optional, and revision readings are listed on
Opencourse.

2

Agenda for Today

Last lecture: should have given you some intuitions about how
to model the problem of machine translation.

This lecture: see how to turn those intuitions into a
probabilistic model that can be learned from data and used to
translate new sentences.

3

Revision

Predict the next word!

Summer is hot winter is

4

Predict the next word!

She is drinking a hot cup of

5

Predict the next word!

In the park I saw a

Image captioning
6

A language model is a probabilistic model of strings

Example: Train a probabilistic model from CNN Business
Headlines.

• Disneyland raises prices ahead of new Star Wars land
opening

• Face-scanning technology at Orlando airport expands to
all international travelers

• More than 1 million people subscribe to this electric
toothbrush startup

• Heart drug recall expanded again

Sample new headlines:

• Star Wars Episode IX Has New Lime Blazer
• Coca-Cola is Scanning Your Messages for Big Chinese Tech
• Amazon is Recalling 1 Trillion Jobs

Source: http://aiweirdness.com/

7

Conditional language models have many uses

There are many, many applications where we want to predict
words conditioned on some input:

• speech recognition: condition on speech signal
• machine translation: condition on text in another language
• text completion: condition on the first few words of a
sentence

• optical character recognition: condition on an image of
text

• image captioning: condition on an image
• grammar checking: condition on surrounding words

8

DISCLAIMER: Notation is not universally consistent!

In each lecture: notation will be consistent. Variables named.

If you find something confusing or inconsistent, PLEASE ASK!
Someone else also found it confusing or inconsistent.

Across lectures: notation will be similar, but not identical.

Expect notation to be internally consistent in an individual
lecture, paper, or exam question, not globally consistent.

In general: there is no universally agreed upon notation for any
of this stuff. Different fields and even subfields have different
conventions, but even they tend to vary.

tl;dr: Notation is a kind of language, and there are many
different dialects. I might code switch between dialects without
noticing.

9

Language modeling as probabilistic prediction

Given a finite vocabulary V, we want to define a probability
distribution P : V∗ → R+.

The finite vocabulary bit should worry you. We’ll come back to
this, but not today!

Revision questions:

• What is the sample space?
• What might be some useful random variables?
• What constraints must P satisfy?

10

How to derive an n-gram language model

Let w be a sequence of words. Let |w| be its length and let wi
be its ith word. So, w = w1 . . .w|w|.

Q: How do we define the probability P(w) = P(w1 . . .w|w|)?

Let Wi be a random variable taking value of word at position i.

Use the chain rule:

P(w1 . . .w|w|) =P(W1 = w1)×
P(W2 = w2 | W1 = w1)×
. . .

P(W|w| = w|w| | W1 = w1, . . . ,Wk−1 = w|w|−1)

P(W|w|+1 = ⟨STOP⟩ | W1 = w1, . . . ,Wk = w|w|)

Note: ⟨STOP⟩ is a symbol not in V.
11

Written more concisely

P(w1 . . .w|w|) =P(w1)×
P(w2 | w1)×
. . .

P(w|w| | w1, . . . ,w|w|−1)

P(⟨STOP⟩ | w1, . . . ,w|w|)

=

|w|+1∏
i=1

P(wi|w1, . . . ,w|w|−1)

Defines a joint distribution over an infinite sample space in
terms of conditional distributions, each over a finite sample
space (but with potentially infinite history!)

12

n-gram models make all terms finite with a Markov assumption

P(wi | w1, . . . ,wi−1) ∼ P(wi | wi−n+1, . . . ,wi−1)

What is P(wi | wi−n+1, . . . ,wi−1)?

Given wi−n+1, . . . ,wi−1, P is a probability distribution, hence:

Probabilities must be non-negative P : V→ R+

... and all sum to one
∑
w∈V

P(w | wi−n+1, . . . ,wi−1) = 1

Any function satisfying these constraints is a probability
distribution! How would you define one?

Simple idea: since the number of P(wi | wi−n+1, . . . ,wi−1) terms
is finite, let each one be a parameter (i.e. a real number) in a
table indexed by wi−n+1, . . . ,wi.

13

n-gram probabilities can be estimated by counting

Estimate conditional probabilities from n-gram counts in the
training data D:

P(w2 | w1) =
CountD(w1w2)
CountD(w1)

P(w3 | w1,w2) =
CountD(w1w2w3)
CountD(w1w2)

Why does this work?

14

Counting n-grams maximizes likelihood

Suppose we have a bigram model. Let θ be the parameters of
this model, indexed by bigrams, so that P(w2 | w1) = θw1w2 .

The likelihood of the training data D, as a function of the
model parameters (bigram probabilities) is then:

P(D | θ) =
∏

w1w2∈V2
θ
CountD(w1w2)
w1w2

The maximum likelihood estimate chooses θ̂ such that

θ̂ = argmax
θ
P(D | θ)

15

Counting n-grams maximizes likelihood

Suppose the word white appears ten times, followed seven
times by house and three times by whale. Maximum likelihood
sets P(house | white) = 7

10 .

16

Estimating n-gram probabilities accurately is hard

• The higher n gets, the better the model, if you have
enough data.

• But most higher-order n-grams will never be
observed—are these sampling zeros or structural zeros?

• Requires smoothing and/ or backoff to estimate
probabilities of unseen n-grams.

• Good models need to be trained on billions of words.
• This entails lots of memory and clever data structures.

17

You can use an n-gram LM to predict the next word

If we have a sequence of words w1 . . .wk, then we can use the
language model to predict the next word wk+1:

ŵk+1 = argmax
wk+1

P(wk+1|w1 . . .wk)

This is useful for applications that process input in real time
(word-by-word).

18

Conditional language models

How would you model translation with n-grams?

Så varför minskar inte vi våra utsläpp?

So why are we not reducing our emissions?

Let x be the Swedish sentence, y be English.

x = x1...x|x|
y = y1...y|y|
How can we define P(y | x)?

Note: probabilistic machine translation models originated with
French-English translation, and in older papers you will often see f (for
French) instead of x, and e (for English) instead of y. In ML, x and y typically
denote input and output, respectively, and are more common in current
literature. 19

How would you model translation with n-grams?

Så varför minskar inte vi våra utsläpp ? So why are we not
reducing our emissions ?

What if we model translation as one long sequence?

P(yx) = P(x1...x|x|y1...y|y|)

Problem: the English sentence will usually be longer than n!

20

How would you model translation with n-grams?

Så So varför why minskar are inte we vi not våra reducing
utsläpp our ? emissions ?

What if we alternate source and target words?

P(yx) = P(x1y1...x|x|y|x|y|x|+1...y|y|)

Problem 1: The sentences are not usually the same length!

Problem 2: English and Swedish word orders are different!

21

Could we use word alignments to model translation?

Så varför minskar inte vi våra utsläpp ?

So why are we not reducing ouremissions ?

Key idea: we want to model bigram translation probabilities,
like P(So | Så), P(why | varför), P(are | våra), and so on...

But this changes our model! If x is Swedish and y is English, we
must now also model z, the alignment.

We get P(y | x) =
∑
z
P(y, z | x) from the laws of probability.

22

Modeling English conditioned on Swedish with bigrams

Decompose P(y, z | x) using the chain rule:

P(y, z | x) =P(y | x, z)P(z | x)
=P(|y|, |z| | x)

|y|∏
i=1

P(yi | y1, ..., yi−1, x, z)
|z|∏
i=1

P(zi | z1, ..., zi−1, x)

Note: the chain rule is always true under the laws of
probability. But as the modeler, you get to choose the order of
the variables (since any order is valid).

The first term chooses the length of y and z. We need to make
some independence assumptions to simplify the other two
terms into something we can work with. 23

Modeling English conditioned on Swedish with bigrams

Så varför minskar inte vi våra utsläpp ?

So why are we not reducing ouremissions ?

Step 1. Draw length of English, conditioned on Swedish.
Step 2. For each English position, draw a Swedish word
uniformly at random. Let |z| = |y| and let zi be position of
aligned Swedish word for yi.
Step 3. For each English word, draw its translation from a
bigram translation probability.

Full model: P(|y| | x)
|y|∏
i=1

P(zi | |x|)P(yi | xzi)

Is this model familiar? 24

Modeling English conditioned on Swedish with bigrams

Input states: {Så, varför, minskar, inte, vi, våra, utsläpp, ?}

Tags: Så varför minskar vi inte minskar våra utsläpp ?
Input: So why are we not reducing our emissions ?

Alternative view: each training example contains a set of states
(Swedish words), and a sequence of English words that we tag
with those states.

This is just a (zero-order) hidden Markov model. You can also
use higher order Markov models!

P(|y| | x)
|y|∏
i=1

P(zi | |x|)︸ ︷︷ ︸
transition probability

P(yi | xzi)︸ ︷︷ ︸
emission probability

25

Counting expected alignments maximizes likelihood

Goal: estimate bigram translation probabilities, e.g. P(So | Så).

Problem: We can’t count, because the alignments are not in
the data! In our model, z is a latent variable (also called a
hidden variable, unobserved variable, or nuisance variable).

Let θ be the set of bigram parameters, and P(yi | xj) = θxjyi
Maximum likelihood says:

θ̂ = argmax
θ
P(D | θ)

= argmax
θ

∏
xj,yi∈V2

θ
EP(D|θ)[Count(xjyi)]
xjyi

In words: use expected counts for unobserved events.

Problem: to compute expected counts, we need to know θ!
26

Expectation maximization requires iteration

Expectation maximization iteratively improves an estimate of θ:

1. Make an initial guess (random or uniform), called θ̂0.
2. At iteration i, let θ̂i = argmaxθ P(D | θi−1).

Likelihood is provably non-decreasing for each new estimate
of θ.

27

Decoding with (conditional) language models

Question. What is the most probable string, according to a
language model P(w), or a conditional language model P(y | x)?
Note. With conditional language models, we often use Bayes’
rule:

P(y | x) = P(x, y)
P(x) =

P(y)P(x | y)
P(x) ∝ P(y)︸︷︷︸

language model

P(x | y)︸ ︷︷ ︸
translation model

The language model and translation model can be trained
separately!
Greedy search. At time step i, predict yi that maximizes
P(yi | y1, ..., yi−1, x).
Beam search. At time step i, keep the k best yi’s that maximizes
P(yi | y1, ..., yi−1, x).
Greedy/ beam search don’t find optimal y according to P(y | x)! 28

n-gram models exemplify many key concepts in ML for NLP

Why care about n-grams? Aren’t they obsolete?

1. Many of these ideas turn up again in neural models.
• All machine learning maximizes some objective function.
• Neural models still use beam search.
• Latent variables are common in unsupervised learning.
• Alignment directly inspired neural attention.
• Neural models exploit same signals, though more powerful.

2. Older models are still often useful in low-data settings.
3. An extension of the model in this lecture translates
n-grams to n-grams: phrase-based translation. It is still
used by Google for some languages, despite move to
neural MT in 2017.

4. Understanding the tradeoffs of working with Markov
assumptions will help you appreciate the fact that neural
models usually make them go away! 29

Summary

• Language models assign probabilities to discrete
sequences.

• Useful for natural language generation in many
applications.

• n-gram models use a Markov assumption to model an
infinite sample space with a finite set of parameters.

• Machine translation is just conditional language
modeling.

• To effectively model translation with n-grams, we need
additional latent variables to model word alignment.

• One way to estimate the parameters of latent variable
models is with a generalization of maximum likelihood
estimation, called expectation maximization.

30

Next Week

• Feedforward NN
• Recurrent NN
• How to format the input and output data
• Assignment will be out next week.

31

	Revision
	Language models
	n-gram Language models

	Conditional language models
	Modeling translation with n-grams
	Parameter estimation
	Decoding

