Advanced Techniques in NLP: Summarisation with In-Context Learning and LoRA (2024)

University of Edinburgh
Pasquale Minervini

Tutorial 6: Implementing Text Summarisation Systems (Week 12)

In our course, we explored the basics and some advanced topics in NLP, including abstractive and extractive text summarisation. In this tutorial, we delve into two cutting-edge methods: in-context learning for summarisation and parameter-efficient fine-tuning with LoRA (Low-Rank Adaptation). Both techniques represent the forefront of making NLP models more flexible and efficient.

Question 1: In-Context Learning for Summarisation

In-Context Learning allows models to perform tasks without explicit retraining or fine-tuning, using a prompt that includes examples of the task to guide the model’s predictions. This question focuses on applying in-context learning to summarisation using the CNN/Daily Mail (CNN/DM) or XSum datasets.

Question 1: In this task, you will leverage LLaMA, a decoder-only transformer-based language model, for in-context learning applied to summarisation. Implement a summarisation system using in-context learning with either the CNN/DM or XSum dataset. Outline the steps you would take to format the data, design your prompts, and evaluate the system’s performance. Consider the impact of the number and quality of in-context examples on the system’s output.

Question 2: Parameter-Efficient Fine-Tuning with LoRA

Low-Rank Adaptation (LoRA) is a parameter-efficient fine-tuning technique that adapts pre-trained models to specific tasks without modifying the original model weights. Instead, LoRA introduces trainable parameters that interact with the pre-trained weights through low-rank matrices. This approach significantly reduces the number of parameters needed to fine-tune large models on tasks like summarisation.

Question 2: Using the CNN/DM or XSum dataset, implement a summarization system by applying LoRA for fine-tuning a pre-trained decoder-only transformer-based language model, such as LLaMA. Outline the steps to integrate LoRA into the LLM architecture, focusing on the specific adaptations needed for a decoder-only transformer-based model. Describe the modifications necessary to integrate LoRA into the model architecture, the training process, and how you would assess the effectiveness of this approach compared to traditional fine-tuning methods.